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In this lecture, we consider the Z2 synchronization problem. We use the free energy trick and the replica
trick to derive the asymptotic expressions for some desired observables.

1 Z2 synchronization problem

We first recall the statement of Z2 synchronization problem introduced in Lecture 4. The goal of Z2 syn-
chronization problem is to estimate the signal θ ∈ {−1,+1}n from observation

Y =
λ

n
θθ> +W ∈ Rn×n,

where W ∼ GOE(n) are noise associated with the observation and λ > 0 is a parameter that controls
the signal-to-noise ratio. We assume a Bayesian prior of θi ∼i.i.d. Unif({±1}) on θ. As we have derived
in Lecture 4, the log-likelihood for a given parameter σ ∈ {−1,+1}n of the problem is given by (up to a
constant)

− n
∥∥∥∥Y − λ

n
σσT

∥∥∥∥2

F

∝σ 〈σ,Y σ〉. (1)

This leads to the Gibbs measure on {−1, 1}n

Pβ,λ(σ) ∝ exp {β〈σ,Y σ〉} .

We will consider the performance of the average estimator

θ̂(Y ) = 〈σ〉β,λ =
∑

σ∈{−1,+1}n
σ · Pβ,λ(σ).

We have shown that when β = ∞, θ̂(Y ) is the maximum likelihood estimator, and when β = λ/2, θ̂(Y )
reduces to the Bayes estimator.

2 Overview of the Main Results

The goal of this lecture is to initiate the derivation of the following observable in the thermal dynamic limit

m∗(β, λ) ≡ lim
n→∞

1

n
E

[
n∑
i=1

〈ψ(σi,θi)〉β,λ

]
,

s∗(β, λ) ≡ lim
n→∞

1

n
E

[
n∑
i=1

ψ(〈σi〉β,λ,θi)

]
,

where ψ : R2 → R is a test function.

1



2.1 Formalism

Our first result states that

m∗(β, λ) ≡ lim
n→∞

1

n
E

[
n∑
i=1

〈ψ(σi,θi)〉β,λ

]
= EG,θ

{
Eσ̄∼D(tanh(2βλµ∗θ+2β

√
q∗G)) [ψ(σ̄, θ)]

}
, (2)

where G ∼ N (0, 1), θ ∼ Unif({±1}), and σ̄ ∼ D(2βλµ∗θ + 2β
√
q∗G) represents the distribution supported

on {±1} uniquely defined the expectation

E [σ̄] = tanh(2βλµ∗θ + 2β
√
q∗G).

Here q∗, µ∗ are two real numbers that can be computed as solutions to the following self-consistent equations:

q∗ = EG,θ
[
tanh(2βλµ∗θ + 2β

√
q∗G)2

]
,

µ∗ = EG,θ [θtanh(2βλµ∗θ + 2β
√
q∗G)] ,

Although we will not show in this lecture series, a more general results suggests that for σ ∼ Pβ,λ and θ

with θi
i.i.d.∼ Unif({±1})

lim
n→∞

1

n

n∑
i=1

ψ(σi, θi) = EG,θ
{
Eσ̄∼D(tanh(2βλµ∗θ+2β

√
q∗G)) [ψ(σ̄, θ)]

}
.

The interpretation of this more general result is that the empirical law 1
n

∑n
i=1 δ(σi,θi) converges to the law

of (σ̄, θ) from equation (2).

Our second result states that

s∗(β, λ) ≡ lim
n→∞

1

n
E

[
n∑
i=1

ψ(〈σi〉β,λ,θi)

]
= EG,θ [ψ(tanh(2βλµ∗θ + 2β

√
q∗G), θ)] . (3)

Similarly, we can interpret the result as the convergence of empirical law

1

n

n∑
i=1

δ(〈σi〉β,λ,θi) → Law of (m, θ),

where
θ ∼ Unif({±1}), G ∼ N (0, 1), m = tanh(2βλµ∗θ + 2β

√
q∗G).

2.2 Illustrations of the formalism

In this subsection, we provide several example to illustrate how our formalism from the previous section
could be applied.

Square loss. For the square loss ψ(a, θ) = (a− θ)2, equation (3) translates to

lim
n→∞

1

n
E‖〈σ〉β,λ − θ‖22 = EG,θ

[
(tanh(2βλµ∗θ + 2β

√
q∗G)− θ)2

]
.

Signed square loss. Since θ ∈ {−1,+1}n, a natural loss to consider is ψ(a, θ) = (sign(a)− θ)2. Equation
(3) suggests that

lim
n→∞

1

n
E‖sign〈σ〉β,λ − θ‖22 = EG,θ

[
(sign(tanh(2βλµ∗θ + 2β

√
q∗G))− θ)2

]
.
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Alignment loss. Another loss to consider is to count how many σi’s are aligned with its θi. This leads
to the loss ψ(a, θ) = a · θ. Then equation (3) implies Then

lim
n→∞

1

n
E

n∑
i=1

θi〈σi〉β,λ = lim
n→∞

1

n
E〈θ, 〈σ〉β,λ〉 = EG,θ [θ · sign(tanh(2βλµ∗θ + 2β

√
q∗G))] = µ?.

3 Derivation of the main result

In this section, we will derive the expression for m∗(β, λ) using the free energy trick and the replica trick.

3.1 Formulation

We first formulate the problem into statistical physics language. The configuration space would be Ω =
{−1,+1}n with base measure ν0 = Uniform measure over Ω (Bayesian prior). The Hamiltonian for the
original system is the log likelihood (1). In order to compute the observable of associated with m?(β, λ)
quantity, we define the perturbed Hamiltonian

Hλ,h(σ) = −〈σ,Wσ〉 − λ〈σ, θ〉2 − h
n∑
i=1

ψ(σi, θi).

The free energy of the system is

Zn(β, λ, h) =

∫
Ω

exp {−βHλ,h(σ)}ν0(dσ).

Finally, we can define the free energy density and compute the limiting observable by taking derivative w.r.t.
the perturbation strength h.

ϕ(β, λ, h) = lim
n→∞

1

n
E [logZn(β, λ, h)] ,

m∗(β, λ) =
1

β
∂hϕ(β, λ, h)

∣∣∣
h=0

.

Given the aforementioned setup, the following claims gives an implicit expression for the free energy density
ϕ(β, λ, h).

Claim 1. For some values of (β, λ)1, the free energy density for Z2 synchronization problem can be written
as

ϕ(β, λ, h) = ext
µ,q

u(µ, q;β, λ, h)

where

u(µ, q;β, λ, h) = −βλµ2 + β2(1− q)2 + EG,θ {log [Eσ exp {2βλµσθ + 2β
√
qGσ + βhψ(σ, θ)}]} .

The expectation is taken over the randomness (G, θ, σ) ∼ N (0, 1)×Unif ({±1})×Unif ({±1}).

We will derive the claim above using the replica trick from the last lecture to compute the free energy
integral:

Lemma 2 (Replica Trick). For a given random variable Z

E[logZ] = lim
k→0

1

k
logE[Zk].

1This is a result of our heuristic approach. The precise region of (β, λ) where the claim holds is beyond the scope of this
lecture.
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This suggests us to divide the derivation into three parts

(a). S(k, β, λ, h) ≡ lim
n→∞

1

n
logE

[
Zn(β, λ, h)k

]
, (The n limit.)

(b). ϕ(β, λ, h) ≡ lim
k→0

1

k
S(k, β, λ, h), (The k limit.)

(c). m∗(β, λ) ≡ 1

β
∂hϕ(β, λ, h)

∣∣∣
h=0

. (The h derivative.)

In the following subsections, we will go through (a)− (c).

3.2 The n→∞ limit

We will start by computing the free energy integral

E[Zn(β, λ, h)k] = E
[∫

Ω

exp(−βHλ,h(σ)ν0(dσ))

]k
= E

[∫
Ω⊗k

exp

(
−β

k∑
a=1

Hλ,h(σa)

)
k∏
a=1

ν0(dσa)

]

=

∫
Ω⊗k

exp

{
β

(
k∑
a=1

λ
〈θ, σa〉2

n
+ h

k∑
a=1

n∑
i=1

ψ(σai ,θi)

)}
E

[
exp

(
β

k∑
a=1

〈σa,Wσa〉

)]
︸ ︷︷ ︸

Moment Generating Function

k∏
a=1

ν0(dσa)

Here the first equation follows by writing out the exponent k as the integral over k replicas, and the second
line follows from the definition of Hλ,h. Since W ∼ GOE(n), the expectation over W can be computed using
the formula for the moment generating function of Gaussian random variable. This gives

E

[
exp

(
β

k∑
a=1

〈σa,Wσa〉

)]
= exp

β2
k∑

a,b=1

〈σa, σb〉2/n

 .
Plug this into E[Zn(β, λ, h)k], we get

E[Zn(β, λ, h)k] =

∫
Ω⊗k

k∏
a=1

ν0(dσa) exp

β
k∑
a=1

λ
〈θ,σa〉2

n
+ β2

k∑
a,b=1

〈σa.σb〉2

n
+ βh

k∑
a=1

n∑
i=1

ψ(σai ,θi)


Same as the last lecture, we introduce the delta identity function to factor out the first two terms in the
exponential from the integral

1 =

∫ k∏
a=1

dq0a

k∏
a,b=1

dqab

k∏
a=1

δ(〈θ,σa〉 − nq0a)

k∏
a,b=1

δ(〈σa,σb〉 − nqab).

Then

E[Zn(β, λ, h)k] = exp

βλn k∑
a=1

q2
0a + β2n

k∑
a,b=1

q2
ab

× Ent,

where

Ent =

∫
Ω⊗k

k∏
a=1

ν0(dσa)

k∏
a=1

δ(〈θ,σa〉 − nq0a)

k∏
a,b=1

δ(〈σa,σb〉 − nqab) exp

[
βh

k∑
a=1

n∑
i=1

ψ(σai ,θi)

]
.
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The entropy term Ent can be computed using the delta identity formula and the saddle point approximation,
which gives

lim
n→∞

1

n
log Ent = inf

Λ∈R(k+1)×(k+1)
〈Q,Λ〉/2 + logEσ

exp

− k∑
a,b=0

λab
σaσb

2
+ βh

k∑
a=1

ψ(σa, σ0)

 ,
where σ = (σ0, σ1, . . . , σa)

i.i.d.∼ Unif{−1, 1}. By another use of saddle point approximation, we get

S(k, β, λ, h) = lim
n→∞

1

n
logEZn(β, λ, h)k = sup

Q
inf
Λ
U(Q,Λ),

where

U(Q,Λ) = βλ

k∑
a=1

q2
0a + β2

k∑
a,b=1

q2
ab +

〈Q,Λ〉
2

+ logEσ

exp

− k∑
a,b=0

λab
σaσb

2
+ βh

k∑
a=1

ψ(σa, σ0)

 .
3.3 Heuristic solution to the minimax problem

The distinction between sup v.s. inf isn’t crucial in this setting. Ultimately we want to use the first order
stationary condition to figure out the Q and Λ that achieves the supremum/infimum. On a high level, we
want to solve the stationary equation

∂QU(Q,Λ) = 0, ∂ΛU(Q,Λ) = 0.

Since U(Q,Λ) is quadratic in Q, we can start by

∂q0aU(Q,Λ) = 0⇒ λ0a = −2βλq0a, 1 ≤ a ≤ k,
∂qabU(Q,Λ) = 0⇒ λab = −4β2qab, 1 ≤ a 6= b ≤ k.

Plug this back into the formula for U = U(Q) and with a slight abuse of notation, we get

U(Q) = −βλ
k∑
a=1

q2
0a−β2

k∑
a,b=1

q2
ab+logEσ

exp

2βλ

k∑
a=1

q0aσ
aσ0 + 2β2

k∑
a,b=1

qabσ
aσb + βh

k∑
a=1

ψ(σa, σ0)

 .
Then, the S quantity is extrema of U : S(k, β, λ, h) = extQU(Q). However, after we plug in the stationary
condition to get rid of λab, the equation ∂QU(Q) = 0 becomes highly non-linear and no closed form solution
can be found. The core difficulty here is the high-dimension nature of the stationary equation. We can
reduce the high dimensional problem to a low dimensional one by exploiting the symmetry of the objective
function. More concretely,

U(ΠQΠT) = U(Q), where Π =

[
1 0
0 Π

]
, Π ∈ Rk×k a permutation matrix.

This leads to the replica symmetric ansatz

Q =


1 µ . . . µ
µ 1 q
... 1
µ q 1

 , µ, q ∈ R.
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In another word, we guess that the extrema is achieved at Q that satisfies the aforementioned functional
form. In this ansatz, the diagonal entries are all 1 because for σa ∈ Ω = {−1,+1}n, 〈σa,σb〉/n = 1. The
ansatz gives a simplified expression

U(k, µ, q) =− βλkµ2 − β2
(
k + k(k − 1)q2

)
+ 2β2(1− q)k

+ logEσ

exp

2βλµ

k∑
a=1

σaσ0 + 2β2q

k∑
a,b=1

σaσb + βh

k∑
a=1

ψ(σa, σ0)

 ,
which makes computing the k → 0 limit tractable.

3.4 The k → 0 limit

The goal of this section is to compute

ϕ(β, λ, h) = lim
k→0

1

k
S(k, β, λ, h)

for S(k, β, λ, h) = extQU(Q) = extµ,qU(k, µ, q). Here we assume the lim and ext operation can be exchanged,
and we get

ϕ(β, λ, h) = ext
µ,q

lim
k→0

1

k
U(k, µ, q) = ext

µ,q
u(µ, q;β, λ, h).

To compute u(µ, q;β, λ, h), we want to further simplify U(k, µ, q) first. We can remove the cross term 〈σa, σb〉
in U(k, µ, q) using the following expression derived from Gaussian moment generating function.

Lemma 3 (Gaussian Moment Generating Function). For G ∼ N (0, 1),

E
[
eλG

∑k
a=1 σ

a
]

= exp

λ2

2

k∑
a,b=1

σaσb


Direct application of the above lemma gives

U(k, µ, q) = −βλkµ2 − β2
(
k + k(k − 1)q2

)
+ 2β2(1− q)k

+ logEG,σ

[
exp

{
2βλµ

k∑
a=1

σaσ0 + 2β
√
qG

k∑
a=1

σa + βh

k∑
a=1

ψ(σa, σ0)

}]
= −βλkµ2 − β2

(
k + k(k − 1)q2

)
+ 2β2(1− q)k + logEG,θ

[
(Eσ exp {2βλµσθ + 2β

√
qGσ + βhψ(σ, θ)})k

]
,

where
G ∼ N (0, 1), θ ∼ Unif({−1, 1}), σ ∼ Unif({−1, 1}).

To deal with the term involving expectation to the k-th moment, we can use the inverse replica trick:

Lemma 4 (Inverse Replica Trick). For a random variable T ,

lim
k→0

1

k
logE T k = E log T.

Setting T = Eσ exp
{

2βλµσθ + 2β
√
qGσ + βhψ(σ, θ)

}
in the above lemma, we get

u(µ, q;β, λ, h) ≡ lim
k→0

1

k
U(k, µ, q)

=− βλµ2 − β2(1− q2) + 2β2(1− q) + EG,θ {log [Eσ exp {2βλµσθ + 2β
√
qGσ + βhψ(σ, θ)}]}

=− βλµ2 + β2(1− q)2 + +EG,θ {log [Eσ exp {2βλµσθ + 2β
√
qGσ + βhψ(σ, θ)}]} .

This concludes the derivation of Claim 1.
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3.5 The h derivative

Finally, we need to compute 1
β∂hϕ(β, λ, h)

∣∣∣
h=0

for ϕ(β, λ, h) = ext
µ,q

u(µ, q;β, λ, h). By implicit differentiation

theorem

1

β
∂hϕ(β, λ, h)

∣∣∣
h=0

=
1

β
∂hu(µ, q;β, λ, h)

∣∣∣
(q=q∗,µ=µ∗,h=0)

,

where (µ∗, q∗) = arg ext
µ,q

u(µ, q;β, λ, h)
∣∣∣
h=0

. Direction calculation using the first order stationary condition

gives 
µ∗ = EG,θ

[
θ · tanh

(
2βλµ∗θ + 2β

√
q∗G

)]
,

q∗ = EG,θ
[
tanh

(
2βλµ∗θ + 2β

√
q∗G

)2
]
.

Plugging in (µ?, q?) gives

m?(β, λ) =
1

β
∂hϕ(β, λ, h)

∣∣∣
h=0

= EG,θ

[
Eσ
[
exp

{
2βλµ∗σθ + 2β

√
q∗Gσ

}
ψ(σ, θ)

]
Eσ
[
exp

{
2βλµ∗σθ + 2β

√
q∗Gσ

}] ]
= EG,θ [Eσ̄∼D [ψ(σ̄, θ)]] ,

where σ̄ is a random variable supported on {−1, 1} uniquely defined by the condition

E[σ̄] = tanh(2βλµ∗θ + 2β
√
q∗G).

This completes the derivation of the formalism (2) in 2.1.
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