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In this course, we study the computational and statistical aspects of statistical models in the high
dimensional asymptotic limit (the mean-field asymptotics). We will introduce heuristic tools in physics
including the replica method and the cavity method. These tools can be made rigorous using approaches
including the Gaussian comparison inequality, the leave-one-out analysis, and approximate message passing
algorithms. Applications of these methods include the spiked matrix model, the LASSO problem, and the
double-descent phenomenon.

1 Motivating example: The LASSO problem

We will get a flavor of the difference between the non-asymptotic theory and the asymptotic theory using
the example of LASSO.

Let x0 ∈ Rd, A ∈ Rn×d, w ∈ Rn and y = Ax0 +w ∈ Rn. We consider the case d� n but hope that x0

is sparse in some sense (e.g x0 is k-sparse if x0 has k non-zero elements). To recover x0 given A and y, we
solve the following LASSO problem

x̂ = arg min
x

1

2n
‖y −Ax‖22 +

λ

n
‖x‖1. (1)

Figure 1 illustrates loss landscape of linear regression with mean-squared error, where LASSO encourages
solutions within some l1 level set. Our objective is to quantify/bound the normalized mean squared error,
||x̂ − x0||22/||x0||22. Note that different papers use different normalization of the LASSO problem. Here the
normalization I used is such that the presentation is simpler. When you read a paper on LASSO, you should
first look at their normalization and then interpret the results.

1.1 Non-asymptotic theory of LASSO

A line of papers studied the LASSO risk in the non-asymptotic regime. The following result is due to
[NRWY12]. Theorem 2 is a fully deterministic statement: the result is satisfied by any deterministic A, x0,
w, and y.

Definition 1 (Restricted strong convexity). We say a matrix A ∈ Rn×d satisfies the restricted strong
convexity property, if there exists universal constants c1 and c2, such that for any v ∈ Rd, we have

‖Av‖22
n

≥ c1‖v‖22 − c2
log d

n
‖v‖21. (2)

Why this property is called restricted strong convexity? If we define f(x) = (1/2n)‖y −Ax‖22, strong
convexity property says that ∇2f(x) � c1Id, so that for any direction v, we have

‖Av‖22
n

≥ c1‖v‖22.

Restricted strong convexity simply says that f is strongly convex in the direction v when ‖v‖1 is small.
For sensing matrix A that satisfies RSC property, we have the following control of the LASSO risk.
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Theorem 2 ([NRWY12]). For any A ∈ Rn×d satisfying the RSC property (2) with constant c1 and c2, there
exists universal constant c < ∞ (depending only on c1, c2), such that as long as λ ≥ 2‖ATw‖∞, for any
x0 ∈ Rd and S ⊆ [d] with |S| ≤ n/(c log d), the LASSO estimator (1) satisfies

‖x̂− x0‖22 ≤ c
λ2|S|
n2

+ c
λ

n
‖x0,Sc‖1 + c

log d

n
‖x0,Sc‖21.

Theorem 2 does not tell us whether there exists a matrix that satisfies the RSC property. The following
proposition tells us that, for Gaussian random matrix A, RSC property holds with high probability.

Proposition 3. For A ∈ Rn×d with Aij ∼ N (0, 1), Eq. (2) is satisfied for some constant c1 and c2 with
high probability as n→∞.

In the following, we will make simpler assumptions to understand Theorem 2.

Corollary 4. Let A ∈ Rn×d with Aij ∼ N (0, 1/‖x0‖22). Let x0 ∈ Rd be k-sparse with the support of x0

given by S. Let w be σ2-sub-Gaussian. Then for any δ > 0, there exists constant C(δ) such that, as long as
we take n ≥ C(δ)k log d and λ ≥ C(δ) · σ

√
n log d, then with probability at least 1− δ, the LASSO estimator

(1) satisfies
‖x̂− x0‖22
‖x0‖22

≤ C(δ)σ2k log d

n
.

The corollary tells us that, to well-estimate a k-sparse ground truth vector, it is enough to have sample
size n� k log d.

Remark 5. In the non-asymptotic setting, everything is explicit, i.e there are no limiting statements. Ad-
ditionally, the assumptions on the distribution of x0 are quite weak.

1.2 High dimensional asymptotics of LASSO

Note that the non-asymptotic theory of LASSO does not allow us to consider the proportional regime
n ∝ k ∝ d. In many cases, however, this proportional regime is very interesting. It would be desirable to
establish a theory to characterize the performance of LASSO in this regime.

Theorem 6 ([BM11]). We consider the asymptotic limit when n/d→ δ ∈ (0,∞) as d→∞. Let A ∈ Rn×d

with Aij ∼ N (0, 1/n). Let x0 ∈ Rd with x0,i ∼iid P0. Let w ∼ N (0, σ2In). Let x̂ be the LASSO estimator
(1). Then we have

lim
d,n→∞

1

d
‖x̂− x0‖22 = E(X0,Z)∼P0×N (0,1)[(η(X0 + τ?Z; θ?)−X0)2],

where η(x) = sign(x) · (|x| − 1)+ is the soft thresholding function and τ? = τ?(α?). Here we denote τ?(α) to
be a function such that, for fixed α, τ?(α) is the largest solution of

τ2 = σ2 + δ−1E(X0,Z)∼P0×N (0,1){[η(X0 + τZ;ατ)−X0]2},

and we denote α? by the unique non-negative solution of

λ = ατ?(α) ·
[
1− δ−1E[η′(X0 + τ?(α)Z;ατ?(α))]

]
.

Moreover, for any Lipschitz function ψ, we have almost surely

lim
d→∞

1

d

d∑
i=1

ψ(x̂i, x0,i) = E(X0,Z)∼P0×N (0,1)[ψ(η(X0 + τ?Z;α?τ?), X0)].
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Remark 7. The asymptotic error for high-dimensional LASSO estimator is equivalent to

EX̂,X0
[(X̂ −X0)2],

where (X̂,X0) following the distribution of

(X0, Z) ∼ P0 ×N (0, 1), Y = X0 + τ?Z,

X̂ = arg min
v

{
(Y − v)2 + τ?α?|v|

}
= η(Y, τ?α?).

This can be interpreted as an one dimensional LASSO problem.

We can plot the limiting risk versus the regularization parameter λ, which is given in Figure 2. This
curve gives the precise U-shaped curve for the Bias and Variance tradeoff of LASSO estimator. Note that
this U-shaped curve cannot be completely captured by the non-asymptotic theory, since the non-asymptotic
theory doesn’t give lower and upper bounds that match up to 1 + o(1). The sharp characterization of the
risk is an advantage of the high dimensional asymptotic theory.

Figure 1: LASSO regularizer encourages sparsity.

0 0.5 1 1.5 2 2.5 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2: The risk of the LASSO estimator

1.3 Comparison of non-asymptotic theory and high dimensional asympotics

Here we present a table that compares the non-asymptotic theory versus the asymptotic theory.
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Non-asymptotics theory High dimensional asymptotics
Typical regime (Relatively) Strong signal-to-noise ratio

(n� k log d)
Constant signal-to-noise ratio
(n ∝ d ∝ k)

Advantages Less model assumptions. Result holds for
any finite parameter size.

Precise asymptotic formula: upper and
lower bounds match sharply.

Limitations A gap of upper and lower bounds up to con-
stant or logarithmic factors.

More detailed model assumptions. (Some-
times) hard to control how large should the
parameter be so that the asymptotic regime
kick in.

When useful? Characterize the behavior of a model or an
algorithm with general assumptions.

Identify the exact location of phase transi-
tion.

Examples Statistical learning theory: bounding exces-
sive risk by uniform convergence. Analyz-
ing the non-convex landscape of empirical
risk minimization.

The phase transition phenomenon for com-
pressed sensing. Understanding the double-
descent phenomenon. The optimal loss
function in machine learning

2 Mean-field theory and statistical physics

2.1 The mean field theory

The following definition of the mean field theory is adapted from wikipedia.
In physics and probability theory, mean-field theory studies the behavior of high-dimensional random

(stochastic) models by studying a simpler model that approximates the original by averaging over degrees of
freedom.

In our example, the LASSO problem is a high dimensional random model, while the one dimensional
model in remark 7 is the simpler model that approximates the original one.

2.2 Method from statistical physics

The focus of this course is to analyze statistical models through the high dimensional asymptotic viewpoint.
In many cases, we are interested in deriving the asymptotic formula instead of proving the formula rigorously,
and statistical physics tools can be used to predict these formula. These predicted formula can be simply
verified through experiments. While some predictions have been made rigorous in some way, typically proving
these formula is much more complicated than deriving them.

Figure 3 motivates some of the connections between statitical physics and statistical learning. In this
course, we will introduce the “replica method” introduced by physicists early in 1970s. We will show how
it can be used to predict the behaviors of statistical models and algorithms in the asymptotic limit. Simple
models will be used as examples in class: the spiked GOE matrix and the LASSO problem. We will revisit
these models several times. We will first show how the replica method can be used to predict the behavior of
these models. Then we will show how these predictions can be proved using rigorous tools. These rigorous
tools include the Gaussian comparison theorem, the Stieltjes transforms, and approximate message passing
(AMP) algorithms.

3 Level of rigorous of this course

In this course, we will sometimes adopt a physics level of rigorous, and sometimes adopt a mathematics
level of rigorous. We will not involve in the measure theoretic issues. That being said, we will assume every
function is measurable and most of the time integrable. Sometimes we will assume differentiability, assume
exchange of limits, and assume exchange of limits and differentiation. We will clarify these heuristic when
we did so.
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Optimization
Bayesian Inference

Gibbs measure of spin glass model
Sherrington-Kirkpatrick model)

Heuristic tools
1980s-1990s

Replica Method
Cavity method
TAP approach
Kac-Rice formula
Dynamical MF theory

Rigorous

CGMT
AMP
leave-one-out

Applications

Coding theory

random combinatorial
optimization

statistical learning

Figure 3: Tools developed in statistical physics with applications to statistical learning.

The reason why we don’t adopt the fully rigorous approach is that, it can take a long time to explain every
details in checking these exchange of limits assumptions, which may make the audience lose the intuition
and the main idea.
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