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Exercise 4.

For 1 ≤ i ≤ n, we have

∂iΦ(λ) =
∂i
∫

Ω
exp{〈λ,M(σ)〉}µ0(dσ)∫

Ω
exp{〈λ,M(σ)〉}µ0(dσ)

=

∫
Ω

Mi(σ)

(
exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

)
=

∫
Ω

Mi(σ)µλ(dσ) = 〈Mi〉λ

Also for 1 ≤ i, j ≤ n, we have

∂i∂jΦ(λ) = ∂i

∫
Ω

Mj(σ)

(
exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

)
=
∂i
∫

Ω
Mj(σ) exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

−
∫

Ω

Mj(σ) exp{〈λ,M(σ)〉}µ0(dσ)
∂i
∫

Ω
(σ) exp{〈λ,M(σ)〉}µ0(dσ)

(
∫

Ω
(σ) exp{〈λ,M(σ)〉}µ0(dσ))2

=

∫
Ω

Mi(σ)Mj(σ)

(
exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

)
−
∫

Ω

Mj(σ)

(
exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

)∫
Ω

Mi(σ)

(
exp{〈λ,M(σ)〉}µ0(dσ)∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ)

)
= 〈MiMj〉λ − 〈Mi〉λ〈Mj〉λ

Thus we conclude (1) ∇λΦ(λ) = 〈M〉λ and (2) ∇2
λΦ(λ) = 〈MM>〉λ − 〈M〉λ〈M>〉λ.
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Exercise 5.

STEP 1. For fixed λ > 0, Gn is Lipschitz in X.
Let σ1, . . . , σn(≥ 0) be eigenvalues of XX>. Then we have

‖∂XGn(λ,X)‖2
F = ‖ 2

n
X>(λIn +XX>)−1‖2

F

=
4

n2
tr
(
(λIn +XX>)−1(XX>)(λIn +XX>)−1

)
=

4

n2

n∑
i=1

σi
(λ+ σi)2

≤ 4

n2

n∑
i=1

1

4λ
=

1

nλ

Where the third equality comes from the fact that the trace of a symmetric reel matrix is sum
of their eigenvalues.

STEP 2. For any ε > 0, there exists u <∞, such that

lim
n→∞

P

(
sup
λ≥u
|Gn(λ)− log(λ)| ≥ ε

)
= 0,

and
lim
n→∞

sup
λ≥u
|E[Gn(λ)]− log(λ)| ≤ ε.

Let u = 4
ε2
. Note that log(λ) = Gn(λ, 0) so that |Gn(λ)− log(λ)| ≤

√
1
nλ
‖X‖F . Therefore

using Jensen’s inequality, we have for any λ ≥ u,

|E[Gn(λ)]− log(λ)| ≤ E[|Gn(λ)− log(λ)|]

≤ E

[√
1

nλ
‖X‖F

]

≤
√

1

nλ

√
E[‖X‖2

F ] =

√
1

λ
< ε

Also, with same logic, for fixedX, {supλ≥u |Gn(λ)− log(λ)| ≥ ε} ⊆ {‖X‖F ≥
√
nuε}, so that

P

(
sup
λ≥u
|Gn(λ)− log(λ)| ≥ ε

)
≤ P

(
‖X‖2

F ≥ nuε2
)

= P(Z ≥ 4dn)

≤ e−dn

where Z ∼ χ2
dn, and the last inequality comes from the concentration inequality of the chi-

square distribution. Therefore, taking limit n→∞, n/d→ γ, we have both desired result.
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STEP 3. For any λ0 > 0 and ε > 0,

lim
n→∞

P

(
sup
λ0≤λ
|Gn(λ,X)− E[Gn(λ,X)]| ≥ ε

)
= 0

Combined with STEP 2, it is enough to show that

lim
n→∞

P

(
sup

λ0≤λ≤u
|Gn(λ,X)− E[Gn(λ,X)]| ≥ ε

)
= 0

First, for any fixed λ, using Gn(λ,X) is Lipchitz, we have:

P(|Gn(λ,X)− EGn(λ,X)| ≥ t) ≤ 2e−λndt
2/2

(Let f(X̃) := Gn(λ, X̃/
√
d), which is 1/

√
λnd-Lipschitz. Then let X̃ :=

√
dX so that X̃

has i.i.d standard Gaussian entries. Then we can apply Gaussian concentration inequality
on f(X̃)

d≡ Gn(λ,X) to get the concentration bound above.) Now let G(ε) be a ε cover
of G := {G(λ, ·)|λ ∈ [λ0, u]}, where N(ε) = |G(ε)| is the covering number of G, where we
use ∞-norm as the metric. Now for each g ∈ G, let g̃ ∈ G(ε) be an element in g such that
‖g − g̃‖ ≤ ε. Then we have

sup
λ∈[λ0,u]

|Gn(λ,X)− E[Gn(λ,X)]| = sup
g∈G
|g(X)− E[g(X)]|

≤ sup
g∈G

(|g(X)− g̃(X)|+ |g̃(X)− E[g̃(X)]|+ |E[g̃(X)]− E[g(X)]|)

≤ 2ε+ sup
g∈G(ε)

|g(X)− E[g(X)]|

Therefore, using union bound, for any ε ∈ (0, t/2), we have

P( sup
λ∈[λ0,u]

|Gn(λ,X)− E[Gn(λ,X)]| ≥ t) ≤ P( sup
g∈G(ε)

|g(X)− E[g(X)]| ≥ t− 2ε)

≤ 2N(ε)e−λnd(t−2ε)2/2

Note that |∂λGn(λ,X)| = 1
n
tr((λIn +XX>)−1) ≤ 1

λ0
, and thus N(ε) ≤ u−λ0

λ0ε
. Thus taking

ε = t/4 gives

P( sup
λ∈[λ0,u]

|Gn(λ,X)− E[Gn(λ,X)]| ≥ t) ≤ 8(u− λ0)

λ0t
e−λndt

2/8

and thus taking limit n→∞, n/d→ γ gives the desired result.
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Exercise 6.

Question 1

Fn(β, λ,v,W ) =
1

nβ
log

∫
Sn−1

exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

=
1

nβ
log

∫
Sn−1

exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ),

where X is a matrix with i.i.d. N (0, 1/2n) entries.

First, let’s compute the gradient of Fn(β, λ,v,W ) in X:

∇XFn(β, λ,v,W ) =
1

nβ
∇X log

∫
Sn−1

exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ)

=
1

nβ

∫
Sn−1 ∇X exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ)

=

∫
Sn−1 σσ

> exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ)∫
Sn−1 exp{nβ〈σ, (λvv> +X +X>)σ〉/2}νn(dσ)

— note that this is expectation of σσ> with respect to the measure on the sphere whose
density is proportional to

∫
Sn−1 exp{nβ〈σ, (λvv>+X+X>)σ〉/2}νn(dσ). Since ‖σσ>‖F = 1

for any σ ∈ Sn−1 and since expectation of a norm is always greater or equal than the norm
of expectation, we obtain

‖∇XFn(β, λ,v,W )‖F ≤ 1

Thus, by Gaussian Lipschitz concentration

P(|Fn(β, λ,v,W )− EFn(β, λ,v,W )| > t) ≤ 2 exp(−nt2).

Now, as in the previous exercise, we also compute derivatives in λ and β to obtain uniform
results:

∂

∂λ
Fn(β, λ,v,W ) =

∂

∂λ

1

nβ
log

∫
Sn−1

exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

=

∫
Sn−1〈σ,vv>σ〉/2 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

=〈(v>σ)2〉β,λ,n/2,

where 〈·〉β,λ,n denote average w.r.t. the probability measure on Sn−1 proportional to exp{nβ〈σ, (λvv>+
W )σ〉/2}νn(dσ).

Since v and σ are on the sphere, we see that∣∣∣ ∂
∂λ
Fn(β, λ,v,W )

∣∣∣ ≤ 1/2.
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Now we take derivative in β:

∂

∂β
Fn(β, λ,v,W ) =

∂

∂β

1

nβ
log

∫
Sn−1

exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

=− 1

nβ2
log

∫
Sn−1

exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

+
1

β

∫
Sn−1〈σ, (λvv> +W )σ〉/2 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

Note that since β and λ belongs to compact regios B and Λ separated from zero, σ and v have
unit norms, and W has norm bounded by a constant with high probability (probability goes
to 1 as n goes to infinity), the following inequalities imply that Fn(β, λ,v,W ) is Lipschitz in
β with high probability:

1

nβ2
log

∫
Sn−1

exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

≤ 1

nβ2
log max

σ∈Sn−1
exp{nβ〈σ, (λvv> +W )σ〉/2}

=
1

nβ2
max
σ∈Sn−1

{nβ〈σ, (λvv> +W )σ〉/2}

≤ 1

minB β
(max

Λ
λ+ ‖W ‖)/2

— bounded by a constant with probability that goes to one as n goes to infinity (the constant
only depends on Λ and B, but not on n).

1

β

∫
Sn−1〈σ, (λvv> +W )σ〉/2 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

≤ 1

minB β
max
σ∈Sn−1

〈σ, (λvv> +W )σ〉/2

≤ 1

minB β
(max

Λ
λ+ ‖W ‖)/2

— bounded by a constant with probability that goes to one as n goes to infinity (the constant
only depends on Λ and B, but not on n).
The last thing we need is to bound the Lipschitz constant of the expectation of Fn(β, λ,v,W )
w.r.t. variables β and λ. Fn(β, λ,v,W ) is a.s. 1-Lipschitz in λ, so it’s expectation is also
1-Lipschitz. When it comes to dependence on β, we derived that

|Fn(β, λ,v,W )− Fn(β′, λ,v,W )| ≤ 1

minB β
(max

Λ
λ+ ‖W ‖)|β − β′|.

Taking expectation we get

|EFn(β, λ,v,W )−EFn(β′, λ,v,W )| ≤ E|Fn(β, λ,v,W )−Fn(β′, λ,v,W )| ≤ 1

minB β
(max

Λ
λ+E‖W ‖)|β−β′|.
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Since E‖W ‖ is bounded by a constant independent of n, we see that EFn(β, λ,v,W ) is also
Lipschitz with constant Lipcshitz constant.

The rest of the argument is analogous to the previous exercise: for any fixed compacts Λ and
B that are separated from zero and fixed ε do the following:

1. Fix δ > 0.
2. For n large enough with probability at least 1− δ/2 Fn(β, λ,v,W ) and EFn(β, λ,v,W )

have bounded (by a constant which doesn’t depend on n) Lipschitz constants, so the
supremum of Fn(β, λ,v,W )−EFn(β, λ,v,W ) over B×Λ doesn’t exceed ε/2 plus supre-
mum over a ε-net over B × Λ.

3. Since the ε-net is a finite set and we have concentration at each point, for n large enough
with probability at least 1− δ/2 supremum over ε-net doesn’t exceed ε/2.

4. Thus, for any δ if n is large enough then

P(sup
B×Λ
|Fn(β, λ,v,W )− EFn(β, λ,v,Wβ, λ,v,W )| > ε) ≤ 1− δ.

5. Since we can take δ arbitrary small, we obtain

lim
n→∞

P(sup
B×Λ
|Fn(β, λ,v,W )− EFn(β, λ,v,W )| > ε) = 0.

This finishes the proof.

Question 2

We already showed in the previous part that

∂

∂λ
Fn(β, λ,v,W ) =〈(v>σ)2〉β,λ,n/2,

where 〈·〉β,λ,n denote average w.r.t. the probability measure on Sn−1 proportional to exp{nβ〈σ, (λvv>+
W )σ〉/2}νn(dσ). If we plug β = λ the measure becomes proportional to exp{nλ〈σ, (λvv>+
W )σ〉/2}νn(dσ) — exactly the posterior distribution over σ. Thus, we have

∂

∂λ
Fn(β, λ,v,W )|β=λ =v>〈σσ>〉p(dσ|Y )v/2 = v>V̂ (Y )v/2.

Now let’s compute the second derivative:

∂2

∂λ2
Fn(β, λ,v,W ) =

∂

∂λ

∫
Sn−1〈σ,vv>σ〉/2 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

=
nβ/4

∫
Sn−1〈σ,vv>σ〉2 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫

Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

−nβ/4
(∫

Sn−1〈σ,vv>σ〉 · exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)∫
Sn−1 exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ)

)2

We see that(∂2/∂λ2)Fn(β, λ,v,W )/(nβ) is the variance of quantity v>σ)2 w.r.t the proba-
bility measure on Sn−1 which is proportional to exp{nβ〈σ, (λvv> +W )σ〉/2}νn(dσ). Since
variance is always non-negative, Fn(β, λ,v,W ) is convex in λ.
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Question 3

Suppose f is a convex function of [a, b] and sup[a,b] |f(x)| ≤ ε. Let’s take some point c ∈
(a + δ, b − δ). Since f is convex, f(a) ≥ f(c) + f ′(c)(a − c) and f(b) ≥ f(c) + f ′(c)(b − c).
Thus, we can write

−2ε/δ ≤ f(c)− f(a)

c− a
≤ f ′(c) ≤ f(b)− f(c)

b− c
≤ 2ε/δ.

This implies that uniform convergence of convex functions fn to zero on [a, b] implies uniform
convergence of f ′n on [a+ δ, b− δ].
Now let’s take Λ′ to be a compact set that doesn’t contain zero, but contains δ-vicinity of Λ
for some δ > 0. From the previous questions we know that

lim
n→∞

P( sup
(β,λ)∈Λ′×Λ′

|Fn(β, λ,v,W )− EFn(β, λ,v,W )| > ε) = 0.

From the statement above and the fact that Fn(β, λ,v,W ) is convex in λ, we obtain

lim
n→∞

P( sup
(β,λ)∈Λ×Λ

|∂λFn(β, λ,v,W )− E∂λFn(β, λ,v,W )| > 2ε/δ) = 0,

(note that we swapped expectation and differentiation without a proof).

And thus

lim
n→∞

P( sup
(β,λ)∈Λ×Λ

|∂λFn(β, λ,v,W )β=λ − E∂λFn(β, λ,v,W )β=λ| > 2ε/δ) = 0,

Since ε is arbitrary and ∂λFn(β, λ,v,W )|β=λ = v>V̂ (Y )v/2 the desired statement follows.
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Exercise 7.

Question 1. Let Hλ(σ) = H(σ) + 〈σ,λ〉, then

∇λi
F (β,λ) =

∑
σ∈Ωd

(
− 1

β

)
(−βσi)

exp{−βHλ(σ)}∑
σ∈Ωd

exp{−βHλ(σ)}

=
∑
σ∈Ωd

σiµβ,λ(σ) = 〈σi〉β,λ

and thus ∇λF (β,λ)|λ=0 = 〈σ〉β

Question 2. Let Hλ(σ) = H(σ) + λ‖σ‖2
2, then

∇λF (β, λ) =

(
− 1

β

)
(−β‖σ‖2

2)
exp{−βHλ(σ)}∑
σ∈Ωd

exp{−βHλ(σ)}

=
∑
σ∈Ωd

‖σ‖2
2µβ,λ(σ) = 〈‖σ‖2

2〉β,λ

and thus ∇λF (β, λ)|λ=0 = 〈‖σ‖2
2〉β

Question 3. Let Hλ(σ
′) = H(σ1) +H(σ2) + λ〈σ1,σ2〉, then

∇λF (β, λ)|λ=0 =
∑
σ′∈Ω′

〈σ1,σ2〉
exp{−βH(σ1)− βH(σ2)}∑

σ′∈Ω′ exp{−βH(σ1)− βH(σ2)}

=
∑

σ1,σ2∈Ω

〈σ1,σ2〉
exp{−βH(σ1)∑

σ1∈Ωd
exp{−βH(σ1)}

exp{−βH(σ2)∑
σ2∈Ωd

exp{−βH(σ2)}

=
∑

σ1,σ2∈Ω

〈σ1,σ2〉µβ(σ1)µβ(σ2)

=
∑

σ1,σ2∈Ω

n∑
i=1

σ1iσ2iµβ(σ1)µβ(σ2)

=
n∑
i=1

∑
σ1,σ2∈Ω

σ1iσ2iµβ(σ1)µβ(σ2)

=
n∑
i=1

〈σi〉β · 〈σi〉β = ‖〈σ〉β‖2
2

Question 4. Let Ω′ = {±1}d×p, and Hλ(σ
′) =

∑p
i=1 H(σi) + λ

∏p
i=1〈Ai,σi〉 then with same
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logic with Question 3, we have

∇λF (β, λ)|λ=0 =
∑
σ′∈Ω′

p∏
i=1

〈Ai,σi〉
∏

i exp{−βH(σi)}∏
i

∑
σi∈Ω exp{−βH(σi)}

=
∑
σ′∈Ω′

p∏
i=1

〈Ai,σi〉
∏
i

exp{−βH(σi)}/Z(β)

=
∑

σ1,...,σp∈Ω

p∏
i=1

(〈Ai,σi〉µβ(σi))

=

p∏
i=1

〈〈Ai,σ〉〉β

=

p∏
i=1

〈Ai, 〈σ〉β〉 = 〈A, 〈σ〉⊗pβ 〉
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