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Exercise 4.

For 1 <17 <n, we have

0; Jo exp{(X, M(c))} 1o (do)
Jo exp{(A, M(0)) }p1o(do)

/M (fj;ii{AAMA;<)>>};ﬁ(oiZ>)

:/Mi(fu)\d(f: M;) A
Q

9B(N) =

Also for 1 <i,7 < n, we have

| exp{(A, M(0))}o(do)
;0,0 (A /M <erxp{ A M(o )>}M0(d0)>

_ 0 Jo Mj(o) exp{(A, M(0)) }1o(do)

I exp{ (N M(0)) ol do)
12 Jolo) exp{ A, M(0)) (o)

_/M' o) exp{(X, M (o)) }po(do fQ o) exp{(X, M (0)) }o(do))?

[ ()

/M ( exp{(\, M (o },Mo (do) )/M ( exp{(A, M(0))} o (do)

Jo exp{(X, M(0))}po(do
Mj)x — (Mi)a(M;)x

Jo exp{(X, M(o)) }p1o(do)

Thus we conclude (1) VA®(X) = (M) and (2) VZP(N) = (MM ")y — (M)x(M ).
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Exercise 5.

STEP 1. For fixed A > 0, GG, is Lipschitz in X.
Let 01,...,0,(> 0) be eigenvalues of X X ". Then we have

2
[0 G X7 = 12X T (M + X XT) 77

4 _ _
:7WMQL+XXU%XXUQQ+XX39

Where the third equality comes from the fact that the trace of a symmetric reel matrix is sum
of their eigenvalues.

STEP 2. For any € > 0, there exists u < oo, such that

lim P (sup |G (A) —log(N)] > e) =0,

n—o0 )\ZU
and

lim sup |[E[G,(N\)] — log(A)| < e.

n—00 \>q,

Let u = %. Note that log(A) = G,(),0) so that |G,(X) —log(A)| < /= /| X||p. Therefore

using Jensen’s inequality, we have for any A\ > u,

[E[Gn(A)] = log(M)] < E[|Gn(A) — log(A

<e|yL ||X||F]
<o EIR = | <

Also, with same logic, for fixed X, {sup,s, |Grn(A) —log(A)| > €} C {|| X ||r > y/nue}, so that

P <sup |Gn(N) — log(A)] > (—:) <P (| X7 = nue®)

A>u

P(Z > 4dn)

—dn

IN
o

where Z ~ x?2 , and the last inequality comes from the concentration inequality of the chi-
square distribution. Therefore, taking limit n — oo, n/d — -, we have both desired result.
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STEP 3. For any Ay > 0 and € > 0,
lim P (sup |G, (A, X) — E[G, (A, X)]| > e) =0
n—oo /\0S>\

Combined with STEP 2, it is enough to show that

lim P ( sup |G,(\, X) —E[G,(\, X)]| > E) =0

ne0 N\ AoSA<u
First, for any fixed A, using G, (A, X) is Lipchitz, we have:
P(|G.(\, X) —EG,(N\, X)| >t) < 9p—Andt?/2

(Let f(X) := Gu(\, X /V/d), which is 1/v/And-Lipschitz. Then let X := v/dX so that X

has i.i.d standard Gaussian entries. Then we can apply Gaussian concentration inequality

on f(X) < Gn(A, X) to get the concentration bound above.) Now let G(e¢) be a e cover
of G := {G(\,-)|A € [N, u]}, where N(¢) = |G(e€)| is the covering number of G, where we
use oo-norm as the metric. Now for each g € G, let § € G(¢) be an element in g such that
llg — g|| <e. Then we have

sup |G (A, X) = E[Gn (A, X)]| = sup |g(X) - E[g(X)]]

AE[No,u] 9€9
= Sglelgp(lg(X) — §(X)| + [9(X) — E[g(X)]| + |[E[g(X)] — E[g(X)]])
< %+ u 19(X) — E[g(X)]|

Therefore, using union bound, for any € € (0,¢/2), we have

P sup [Gu(A X) — E[Ga(A, X)]| > 1) < P(sup |g(X) — E[g(X)]| > ¢ — 2¢)

A€[Xo,u] 9g€G(e)
< 2N<E)6—>\nd(t—26)2/2

Note that [0yG (X, X)| = tr(AL, + XX 7)) < %0, and thus N(e) < “/\*0)20 Thus taking
€ =t/4 gives

P sup [Gu(A X) — E[Gu (N X)]| > 1) < S A0) joanartys
AE[Xo,u] >\0t

and thus taking limit n — oo, n/d — 7 gives the desired result.
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Exercise 6.

Question 1

F.(B, A\, v, W) —% log /8”1 exp{nB{a, A\vv' + W)a)/2}v,(do)

Z% log /S eplnflo, (o' + X + XT)o)/2}v(do),

where X is a matrix with i.i.d. A(0,1/2n) entries.
First, let’s compute the gradient of F,,(8, A\, v, W) in X:

VxE.(B,\v,W) :%VX log /Sn1 exp{nf{o, ()\va + X + XT)J)/Q}Vn(dO')

1 Jonr Vx exp{nf(o, (Avv" + X + X o) /2}v,(do)

nf foexp{nB{o, AvvT + X + X T)o)/2}v,(do)

:f5n—1 oo exp{nB{o, Mv' + X + X ")o)/2}v,(do)
Jon_r exp{nf(o, (AvvT + X + X T)o)/2}v,(do)

— note that this is expectation of oo with respect to the measure on the sphere whose
density is proportional to [5, , exp{n3(o, (Avv'+X+X")o)/2}v,(do). Since oo | =1
for any o € S"! and since expectation of a norm is always greater or equal than the norm
of expectation, we obtain

HVXFn(ﬁ7 A, W)”F <1

Thus, by Gaussian Lipschitz concentration

P(|Fu(B,\, v, W) —EF,(B8,\,v, W)| > t) < 2exp(—nt?).

Now, as in the previous exercise, we also compute derivatives in A and 8 to obtain uniform

results:
O p@aew) =2 L / exp{nflo, vov” + W)a) /2 (do)
AT ey P Rl S o ’ n
Jenlo,vvTa) /2 - exp{nlo, (v + W)o)/2}v,(do)
Jon_r exp{nf(o, (A\vv" + W)o)/2}v,(do)
=((v"0)?) s /2,
where (-)5 1, denote average w.r.t. the probability measure on S"~! proportional to exp{ns(o, (Avv "+
Wo)/2} v, (do).

Since v and o are on the sphere, we see that

0
SRS A0, W) <172
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Now we take derivative in £:

%Fn(ﬁ, A v, W) :%% log /snl exp{np(o, \wv'" + W)a)/2}v,(do)
1

=——log /sw 1 exp{np(o, Awv' + W)a)/2}v,(do)

N 1 [sur (o, (Moo +W)o) /2 - exp{nf{o, (Mvv + W)eo)/2}v,(do)
64 Jon—r exp{np(o, (Avv" + W)o)/2}v,(do)

Note that since 5 and A belongs to compact regios B and A separated from zero, o and v have
unit norms, and W has norm bounded by a constant with high probability (probability goes
to 1 as n goes to infinity), the following inequalities imply that F,, (8, A, v, W) is Lipschitz in
£ with high probability:

1

o /S ep{nslo, (wv” + W) /2}u(do)
;2 log max _exp{nf(o (A" +W)a)/2}
_niﬁz max {nBlo, (oo + W)a)/2)

< (m{ng—i—HWH)/Q

T ming

— bounded by a constant with probability that goes to one as n goes to infinity (the constant
only depends on A and B, but not on n).

1 [gur{o, Qvv" + W)a)/2 - exp{nf(o, (Avv' + W)o)/2}v,(do)
B Jonr exp{nf(o, (Avv" + W)o)/2}v,(do)

< max (o, (\vv' + W)a)/2

o minB ﬁ ocSn—1

(max A + [|W[)/2

<—
ming

— bounded by a constant with probability that goes to one as n goes to infinity (the constant
only depends on A and B, but not on n).

The last thing we need is to bound the Lipschitz constant of the expectation of F,,(3, A\, v, W)
w.r.t. variables f and A. F,(8,\,v, W) is a.s. 1-Lipschitz in A, so it’s expectation is also
1-Lipschitz. When it comes to dependence on 3, we derived that

[Fn(B, A0, W) = Fu (B, 2,0, W) < (max A + W[5 — 5.

ming

Taking expectation we get

|EF, (B, A\, v, W)—EF,(8',\,v, W)| < E|F,(8,\,v, W)—F,(5',\,v, W)| <

1
i AT E W)
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Since E||W || is bounded by a constant independent of n, we see that EF, (5, \, v, W) is also
Lipschitz with constant Lipcshitz constant.

The rest of the argument is analogous to the previous exercise: for any fixed compacts A and
B that are separated from zero and fixed € do the following:
1. Fix 6 > 0.

2. For n large enough with probability at least 1 — /2 F,,(8, A\, v, W) and EF, (3, A\, v, W)
have bounded (by a constant which doesn’t depend on n) Lipschitz constants, so the
supremum of F,, (8, A\, v, W) —EF,(5,\,v, W) over B x A doesn’t exceed €/2 plus supre-
mum over a e-net over B x A.

3. Since the e-net is a finite set and we have concentration at each point, for n large enough
with probability at least 1 — 6/2 supremum over e-net doesn’t exceed €/2.

4. Thus, for any ¢ if n is large enough then
P(sup |F,(6,\, v, W) —EF,(B,\, v, WB, A\, v, W)| >¢) <1-4.
BxA

5. Since we can take § arbitrary small, we obtain

lim P(sup |F.(8,\,v, W) — EF,(8,\,v, W)| > ¢€) =0.

n—o0 BxA

This finishes the proof.
Question 2

We already showed in the previous part that

%Fn(ﬁ> )‘a v, W) :<(UTU)2>BV\7”/2’

where (-)5 1, denote average w.r.t. the probability measure on S"~! proportional to exp{ns(o, (Avv '+
W)o)/2}v,(do). If we plug 3 = X the measure becomes proportional to exp{nA(a, (A\vv" +
W)o)/2}v,(do) — exactly the posterior distribution over o. Thus, we have

0 .
5Fn(ﬁ, A0, W)|poy =0 (00 ) paoy)v/2 = v V(Y )v/2.

Now let’s compute the second derivative:
02 0 Joulo,vvT0) /2 exp{nf(o, (Mo + W)o)/2}v,(do)
WFH(B’ Ao, W) e ° Jon—r exp{nf(o, (Avv" + W)o)/2}v,(do)
_np/4 Jn-i (o, vv'o)? - exp{nB(o, \v'" + W)a)/2}v,(do)
B Jon_r exp{nf(o, (A\vv" + W)o)/2}v,(do)

Jon-i(o,vv ) - exp{nfo, (Ao’ + W)a)/Q}yn(da)>2
Jon—1 exp{nf(o, (Avv" + W)o)/2}v,(do)

s

We see that(9%/0N?)F, (8, \,v, W)/(nf3) is the variance of quantity v'e)? w.r.t the proba-
bility measure on S"~! which is proportional to exp{nB{o, (Avv" + W)a)/2}v,(do). Since
variance is always non-negative, F, (5, \, v, W) is convex in \.

7
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Question 3

Suppose f is a convex function of [a,b] and supy,, |f(z)| < €. Let’s take some point ¢ €
(a+0,b—9). Since f is convex, f(a) > f(c)+ f'(c)(a —¢) and f(b) > f(c)+ f'(¢)(b— c).

Thus, we can write

fle) = f(a) < f'(e) < JO) = J() < 2¢/d.

—2e/6 <
€/0 < c—a b—rc

This implies that uniform convergence of convex functions f,, to zero on [a, b] implies uniform
convergence of f' on [a+ §,b— ¢].

Now let’s take A’ to be a compact set that doesn’t contain zero, but contains d-vicinity of A
for some 9 > 0. From the previous questions we know that

lim P( sup |FL.(B,\,v,W) —EF,(8,\,v,W)| >¢) =0.
n—oo (ﬁ,)\)EA’XA’

From the statement above and the fact that F,,(3, A, v, W) is convex in A\, we obtain

lim P( sup |O\Fn(B,\,v,W) —EOLE,(5,\,v,W)| > 2¢/§) =0,

N0 (B A)eAXA

(note that we swapped expectation and differentiation without a proof).
And thus

lim P( sup |8)\Fn(6, A, W)ﬁ:A — E@AFH(B, A0, W)g;)\| > 26/5) =0,
N0 (BA)eAXA

Since € is arbitrary and 0y F, (3, A\, v, W)|s—r = v V(Y )v/2 the desired statement follows.
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Exercise 7.

Question 1. Let Hy(o) = H(o) + (o, A), then

1 exp{—BHx(o)}
TN = 2 () s e
= Z oitg (o) = (0i)pa

and thus VyF(8, A)|x=0 = (0)3

Question 2. Let Hy(o) = H(o) + \||o||3, then

(I gigipy . xP{=BHA(o)}
VAF(B, ) —( 5)( Bl H?)Zaeﬂdexp{—ﬂHA(U)}
— Z lol3usn(o) = (lol3) s

ocQy

and thus VyF (8, \)|xo = (||lo]|2)s

Question 3. Let Hy(o') = H(o1) + H(0o2) + Ao, 02), then

exp{—pBH (o) — BH(02)}
oreq ©Xp{—BH(0o1) — BH(02)}

VaF (B, A)a=0= Y _ (0'170'2>Z

N o el BH(e) exp{—5H ()
_0'1,0'2269< v 2>201€Qdexp{_ﬁH(al)}Zazeﬁdexp{_ﬁH(UQ)}
= Z (o1, 02)p15(01)ps(02)

01,026

= Z Z 01i02i15(01 ) f15(02)

01,0260 i=1

:Z Z 01i092i15(01 ) f1(02)

i=1 01,0260

=2 _(00)s {oi)s = {o)sll3

Question 4. Let ' = {£1}*? and H,(o/) = >0, H(o:) + A[[}_,(Ai, o;) then with same

=1
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logic with Question 3, we have

. oy ILew(-pHo))
v)\F(ﬁ?/\)b\:O - Z H Al? i H Z

E e Xp{—H (1)}
> H Auo) [Jeol-s0(e) /209

- Z H Azaaz Mﬁ g; )

10



