
STAT260 Mean Field Asymptotics in Statistical Learning

Concentration inequalities
Lecturer: Song Mei Assignment 1 - Due on 2/14/2021

Homework submissions are expected to be in pdf format produced by LATEX. For coding exercises, you are
free to choose your favorite programming language, but matlab or Python are highly recommended. Grading
of coding exercises will base on the figures produced by the simulations, but you need also submit the source
code in the original format (e.g. ‘.m’ or ‘.py’).

Coding exercises

Exercise 1: Eigenvalue and eigenvectors of the spiked matrix model

Let v ∈ Sn−1 ≡ {x ∈ Rn : ‖x‖22 = 1} be any fixed vector. We observe a matrix Y = λvvT + W , where
W ∼ GOE(n). That is, W ∈ Rn×n, Wij ∼iid N (0, 1/n) for i < j, and Wii ∼iid N (0, 2/n), and W = W T.
The parameter λ is the signal-to-noise ratio and is a fixed real number that does not grow with n. Given
observation Y , we would like to estimate v. The maximum likelihood estimator gives the spectral estimator
v̂(Y ):

v̂(Y ) = arg max
u∈Sn−1

〈u,Y u〉.

We further denote

λmax(Y ) = max
u∈Sn−1

〈u,Y u〉 = 〈v̂(Y ),Y v̂(Y )〉, u(Y ) = 〈v̂(Y ),v〉2.

We have shown in class that λmax(Y ) (and actually, also u(Y )) will concentrate well around their expectation,
i.e., we have

lim
n→∞

P
(∣∣∣λmax(Y )− E[λmax(Y )]

∣∣∣ ≥ ε) = 0, lim
n→∞

P
(∣∣∣u(Y )− E[u(Y )]

∣∣∣ ≥ ε) = 0.

In this exercise, we perform some simulations to show how well they concentrate for finite n.
Please do the following simulation: for each n = 50, 200, 800, and each λ ∈ [0, 3] with grid size 0.1, obtain

ns = 20 independent samples of matrices Y (i) ∼iid Y , i ∈ [ns]. Compute the sample mean and sample

standard deviation of {λmax(Y (i))}i∈[ns] and {u(Y (i))}i∈[ns], i.e., for f ∈ {λmax, u},

Ê[f(Y )] ≡ 1

ns

ns∑
i=1

f(Y (i)), ŝtd[f(Y )]2 ≡ 1

ns

ns∑
i=1

(
f(Y (i))− Ê[f(Y )]

)2

.

For each f ∈ {λmax, u}, make an error bar plot of (Ê[f(Y )], ŝtd[f(Y )]) versus λ (λ will be the x-axis),

with Ê[f(Y )] the mean variable and ŝtd[f(Y )] the error variable (cf. https://www.mathworks.com/help/

matlab/ref/errorbar.html). Please plot the curves for n = 50, 200, 800 in the same figure. So in total
there will be two figures, one for f = λmax and one for f = u.

We will show in later lectures that

lim
n→∞

E[λmax(Y )] =

{
2, λ ≤ 1,

λ+ 1/λ, λ > 1.
lim
n→∞

E[u(Y )] =

{
0, λ ≤ 1,

1− 1/λ2, λ > 1.

Please also plot these theoretical predictions in the same figure.
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Exercise 2: The LASSO risk

In this exercise, we confirm the predictions in the following theorem.

Theorem 1 (Bayati and Montanari, 2011). We consider the asymptotic limit when n/d → δ ∈ (0,∞) as
d → ∞. Let A ∈ Rn×d with Aij ∼ N (0, 1/n). Let x0 ∈ Rd with x0,i ∼iid P0, w ∼ N (0, σ2In), and
y = Ax0 +w. Let x̂ be the LASSO estimator

x̂ = arg min
x

1

2n
‖y −Ax‖22 +

λ

n
‖x‖1. (1)

Then we have

lim
d,n→∞,n/d→δ

1

d
‖x̂− x0‖22 = E(X0,Z)∼P0×N (0,1)[(η(X0 + τ?Z; θ?)−X0)2],

where η(x; θ) = sign(x) · (|x| − θ)+ is the soft thresholding function and τ? = τ?(α?). Here, define τ?(α) to
be the largest solution of

τ2 = σ2 + δ−1E(X0,Z)∼P0×N (0,1){[η(X0 + τZ;ατ)−X0]2},

and α? to be the unique non-negative solution of

λ = ατ?(α) ·
[
1− δ−1E[η′(X0 + τ?(α)Z;ατ?(α))]

]
.

Moreover, for any Lipschitz function ψ, we have almost surely

lim
d→∞

1

d

d∑
i=1

ψ(x̂i, x0,i) = E(X0,Z)∼P0×N (0,1)[ψ(η(X0 + τ?Z;α?τ?), X0)].

Let us fix the model parameters to be the following

δ = n/d = 0.64,

σ2 = 0.2,

P0(x = 1) = P0(x = −1) = 0.064, P0(x = 0) = 1− P(x = 1)− P(x = −1).

Question 1

Please do the following simulation: for each d = 50, 200, 800 (recall n = δd), and each λ ∈ [0, 3] with grid

size 0.1, obtain ns = 10 independent samples of instances (A(i),x
(i)
0 ,y(i)), i ∈ [ns]. Compute the LASSO

estimator x̂λ as in Eq. (1) (There are standard package solving lasso in both matlab and python. You can
also write the algorithm by yourself. ). Denote

R =
1

d
‖x̂λ − x0‖22.

Make an error bar plot of (Ê[R], ŝtd[R]) versus λ (λ will be the x-axis), with Ê[R] the mean variable and

ŝtd[R] the error variable. Please plot the curve for d = 50, 200, 800 on the same figure. Moreover, plot the
curve of the theoretical prediction as in Theorem 1 on the same figure. The matlab code to generate the
theoretical prediction is provided.

You are expected to see a U-shaped curve for this exercise.

Question 2

Fix d = 800, λ = 1. Generate an instance (A,x0,y). Compute the LASSO estimator x̂λ. Perform a
histogram plot of the non-zero coordinates of x̂λ. Moreover, sample (xi)i∈[d] ∼iid X̂, where X̂ is distributed
as η(X0 + τZ;α?τ?), for X0 ∼ P0 and Z ∼ N (0, 1) independent. Perform a histogram plot of (xi)i∈[d] on
the same figure.

You are expected to see that these two histogram plots are very close.
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Exercise 3: Play with the LASSO risk asymptotic formula (Extra credit)

Follow the settings of Exercise 2. Define the asymptotic risk function by

R(P0, λ, δ, σ
2) ≡ E(X0,Z)∼P0×N (0,1)[(η(X0 + τ?Z; θ?)−X0)2],

where η, τ?, and α? are defined in Exercise 2.
Please plot the following figures:

• Take σ2 and P0 to be the same as in Exercise 2. Define

λ?(δ) = arg min
λ

R(P0, λ, δ, σ
2).

Plot λ?(δ) and R(P0, λ?(δ), σ
2) versus δ, for δ ∈ [0.1, 10].

• Define P0,ε as
P0,ε(x = 1) = P0,ε(x = −1) = ε, P0,ε(x = 0) = 1− 2ε.

Fix δ = 0.64 and σ2 = 0.2. Plot R(P0,ε, λ?(δ), σ
2) versus ε, for ε ∈ [0, 0.064].
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Theoretical exercises

Exercise 4. The exponential family calculus

In this exercise, we don’t go into measure-theoretic issues. You can assume every function is integrable, and
integration and derivative can be exchanged.

Let µ0 be a reference probability measure on Ω. Let M : Ω → Rd be any measurable function. For
λ ∈ Rd, we denote the Gibbs-measure µλ by

µλ(dσ) ∝ exp{〈λ,M(σ)〉}µ0(dσ).

You can think about µλ as the Gibbs measure defined in class with inverse temperature β = 1. Here the
Hamiltonian is absorbed in µ0.

We further denote the log normalizing constant (the free entropy) by

Φ(λ) = log

∫
Ω

exp{〈λ,M(σ)〉}µ0(dσ),

and for any measurable function f : Ω→ R, we denote

〈f〉λ ≡
∫

Ω

f(σ)µλ(dσ).

Question: Please show that
∇λΦ(λ) = 〈M〉λ,

and
∇2
λΦ(λ) = 〈MMT〉λ − 〈M〉λ〈MT〉λ = 〈(M − 〈M〉λ)(M − 〈M〉λ)T〉λ.

Remark: In statistics, these formulas are the calculus of the exponential family. The matrix ∇2
λZ(λ) is the

Fisher-information matrix in estimating the parameter λ. These formulas are very useful in this course.

Exercise 5: Concentration of the log-determinant of random matrices

Let X ∈ Rn×d with Xij ∼ N (0, 1/d). Let λ > 0 and n = γd for fixed γ ∈ (0,∞). Denote

Gn(λ,X) ≡ 1

n
log(det(λIn +XXT)).

Question: Please show that, for any λ0 > 0, γ ∈ (0,∞), and ε > 0, we have

lim
n→∞,n/d→γ

P
(

sup
λ∈[λ0,∞)

∣∣∣Gn(λ,X)− E[Gn(λ,X)]
∣∣∣ ≥ ε) = 0.

Hint: First, for fixed λ > 0, show that Gn is Lipschitz in X, and use Gaussian concentration inequality to
give a non-asymptotic concentration bound (remember to rescale X). Then use the ε-net method to take
union bound over λ in a compact interval. The non-compact part of λ can be dealt with by showing that,
for any ε > 0, there exists u <∞, such that

lim
n→∞

P
(

sup
λ≥u

∣∣∣Gn(λ)− log(λ)
∣∣∣ ≥ ε) = 0,

and
lim
n→∞

sup
λ≥u

∣∣∣E[Gn(λ)]− log(λ)
∣∣∣ ≤ ε.
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Exercise 6. Concentration of the overlap of the Bayes Posterior

Let v ∼ νn = Unif(Sn−1) be the signal vector. We observe a matrix Y = λvvT +W , where W ∼ GOE(n) is
independent of v. The parameter λ is the signal-to-noise ratio and is a fixed real number that does not grow
with n. Given observation Y , we would like to estimate v. Let us consider the posterior mean estimator
V̂ : Rn×n → Rn×n:

V̂ (Y ) = E[vvT|Y ] =

∫
σσTp(dσ|Y ),

where p(dσ|Y ) is the posterior distribution of v given the observation matrix Y (show this by yourself):

p(dσ|Y ) ∝ exp{nλ〈σ,Y σ〉/2}νn(dσ).

The reason why we work with E[v|Y ] instead of E[vvT|Y ] is that, E[v|Y ] is always 0 and is an uninformative
estimator.

In this exercise, we will show the concentration of the overlap q(Y ) ≡ 〈v, V̂ (Y )v〉 (the larger the overlap,
the better the estimator). We decompose this task to several steps.

First, motivated by the free energy trick, we define the normalized free energy as(up to a sign)

Fn(β, λ,v,W ) =
1

nβ
log

∫
Sn−1

exp{nβ〈σ,Y σ〉/2}νn(dσ) =
1

nβ
log

∫
Sn−1

exp{nβ〈σ, (λvvT+W )σ〉/2}νn(dσ).

Question 1: Show that for any compact intervals B,Λ ⊂ (0,∞), we have (the probability and expectation
is taken with respect to v and W )

lim
n→∞

P
(

sup
λ∈Λ,β∈B

∣∣∣Fn(β, λ,v,W )− E[Fn(β, λ,v,W )]
∣∣∣ ≥ ε) = 0.

Hint: Follow the similar steps as in Exercise 5. Note that by symmetry, the probability and the expectation
does not depend on the choice of v.
Question 2: Show that for any λ ∈ (0,∞), we have

∂λFn(β, λ,v,W )|β=λ = 〈v, V̂ (Y )v〉/2,

and Fn(β, λ,v,W ) is convex in λ:
∂2
λFn(β, λ,v,W ) ≥ 0.

Hint: Use the calculus of the exponential family.
Question 3: Show the following. Suppose

f(β, λ) ≡ lim
n→∞

E[Fn(β, λ,v,W )]

exists. Moreover, suppose there exists a compact interval Λ ⊂ (0,∞), such that for any β ∈ Λ, ∂λf(β, λ)
is continuous with respect to λ ∈ Λ. Then for any ε > 0, we have (the probability and expectation is with
respect to v and W )

lim
n→∞

P
(∣∣∣〈v, V̂ (Y )v〉/2− ∂λf(β, λ)|β=λ

∣∣∣ ≥ ε) = 0.

Hint: Prove a quantitative version of the following lemma, and take fn(λ) = Fn(β, λ,v,W ) for fixed β, v
and W .

Lemma 1. Let {fn(λ)}n≥0 be a deterministic sequence of convex functions on a [0, 1]. Suppose the function
converges to some convex function f pointwisely:

lim
n→∞

|fn(λ)− f(λ)| = 0.

and suppose f ′(λ) exists for any λ ∈ (0, 1). Then its derivative also converges to f ′ pointwisely on λ ∈ (0, 1):

lim
n→∞

|f ′n(λ)− f ′(λ)| = 0.

Remark: The whole proof can be generalized to the case when νn is any probability measure that is
supported on the unit ball B(0, 1), and the Bayes estimator with mis-specified prior β 6= λ.
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Exercise 7: The free energy trick and replicas

Let H : Ωd = {±1}d → R be a Hamiltonian, and let µβ be the associated Gibbs probability measure of H,
i.e.,

µβ(σ) ∝ exp{−βH(σ)}.

For any g ∈ Ωd → Rp, define its ensemble average 〈g〉β by

〈g(σ)〉β ≡
∑
σ∈Ωd

g(σ)µβ(σ).

Question 1

Find a Hamiltonian Hλ on the space Ωd, parameterized by λ ∈ Rd, such that defining

F (β,λ) = − 1

β
log

∑
σ∈Ωd

exp{−βHλ(σ)},

we have ∇λF (β,λ)|λ=0 = 〈σ〉β .

Question 2

Find a Hamiltonian Hλ on some space Ωd, parameterized by λ ∈ R, such that defining

F (β, λ) = − 1

β
log

∑
σ∈Ωd

exp{−βHλ(σ)},

we have ∇λF (β, λ)|λ=0 = 〈‖σ‖22〉β .

Question 3 (Extra credit)

Find a Hamiltonian Hλ on some space Ω′, parameterized by λ ∈ R, such that defining

F (β, λ) = − 1

β
log

∑
σ′∈Ω′

exp{−βHλ(σ′)},

we have ∇λF (β, λ)|λ=0 = ‖〈σ〉β‖22. (Hint: This is different from 〈‖σ‖22〉β . Consider to take Ω′ = Ωd ×Ωd. )

Question 4 (Extra credit)

Let A ∈ (Rd)⊗p be a p-tensor. Please find a Hamiltonian Hλ on some space Ω′, parameterized by λ ∈ R,
such that defining

F (β, λ) = − 1

β
log

∑
σ′∈Ω′

exp{−βHλ(σ′)},

we have ∇λF (β, λ)|λ=0 = 〈A, 〈σ〉⊗pβ 〉 (the outer bracket 〈·, ·〉 is the inner product in tensor space, while the
inner bracket 〈·〉β is the ensemble average under measure µβ).
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