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General motivation

I Bayesian inference: high dimensional integration is hard!

I Variational inference: integration/summation ! optimization.
A popular objective function: “mean field free energy”.

I Applications: topic modeling, stochastic block model, low rank
matrix estimation, compressed sensing....
... within which “MF free energy” is known to be not optimal.

I Today: introduce the optimal objective “TAP free energy”, and
provide rigorous results.
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Z2 synchronization

I Signal:

x = [x1; : : : ; xn]
T 2 Zn

2 ; xi
i:i:d:
� Unif(Z2); Z2 = f+1;�1g:

I Observation: for 1 � i < j � n

Yij =
�

n
xixj +Wij :

I Noise Wij � N (0; 1=n).
I SNR � 2 [0;1) fixed, dimension n!1.
I In matrix notation:

Y =
�

n
xxT +W :

I Task: given Y = (Yij), estimate x (or say X = xxT).
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Bayes estimation in Z2 synchronization

I Settings:
x � Unif(Zn

2 ); Y = (�=n)xxT +W :

I Estimate X = xxT with loss:

`(X;cX) = (1=n2)kX � cXk2F :

I For � < 1, estimation is impossible.
I For � > 1, estimation is possible and efficient, e.g., spectral

estimator (Baik, Ben Arous, Peche phase transition).
I The optimal estimator is the Bayes estimator (also minimax

estimator): cXBayes = E[xxTjY ]:
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Bayes estimation in Z2 synchronization

I Settings:
x � Unif(Zn

2 ); Y = (�=n)xxT +W :

I Risk:
MSE�(cX) = (1=n2)E[kxxT � cXk2F ]:

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

S
E

Bayes MSE

PCA MSE

Song Mei (Stanford University) TAP free energy September 19, 2018 5 / 29



Compute the Bayesian estimator

I The Bayesian estimator:

cXBayes = E[xxTjY ] =
X
σ2Zn

2

σσTp(σjY ):

I The posterior distribution:

p(σjY ) =
1

Z
expf�hσ;Y σi=2g:
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Mean field variational inference
I The posterior distribution:

p(σjY ) =
1

Z
expf�hσ;Y σi=2g:

I Approximate p(σjY ) by q 2 PMF:

PMF =
n
q(σ) =

nY
i=1

qi(�i) : qi 2 P(Z2)
o
�= [�1; 1]n:

I Minimize the relative entropy between q and p(σjY ):

min
q2PMF

Dkl(qkp(σjY )):

I Equivalently minimizing minm2[�1;1]n FMF(m)

FMF(m) � �
nX
i=1

h(mi)� �hm;Ymi=2 � � logZ;

where h(m) = �1�m
2 log(1�m2 )� 1+m

2 log(1+m2 ).
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Mean field variational inference

I Mean field free energy:

FMF(m) � �
nX
i=1

h(mi)� �hm;Ymi=2:

I For m? = argminmFMF(m), we hope

m?m
T
? �

cXBayes = E[xxTjY ]:

I It was shown that m?m
T
? 6� E[xxTjY ] [Ghorbani, Javadi, and

Montanari, 2017].
I The assumption that posterior distribution can be approximately

factorized into the product of marginals is wrong!
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The TAP free energy
I Thouless, Anderson, and Palmer (1977) proposed the TAP free

energy when they study the Sherrington-Kirkpatrick model, whose
Gibbs measure gives

G�;�(σ) =
1

Z�;�
expf�hσ;Y σig:

where Yij � N (�=n; 1=n).
I When � = �, the Gibbs measure of SK model is the same as the

posterior of Z2 synchronization
I The TAP free energy (when � = �) gives

FTAP(m) � �
nX
i=1

h(mi)�
�

2
hm;Ymi

| {z }
FMF

�
n�2

4

h
1�

kmk22
n

i2
| {z }
Onsager’s correction term

:
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I For m? = argminmFTAP(m), we hope

m?m
T
? �

cXBayes = E[xxTjY ]:

I Our main theorem shows that this is correct.
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Proof of the main theorem

Theorem (Fan, M., Montanari, 2018)

Denote C�;n = fm 2 [�1; 1]n : rFTAP(m) = 0;FTAP(m) � ��2=3g.
There exists �0 > 0, such that for any � > �0, we have

lim
n!1

E
h

sup
m2C�;n

1

n2
kmmT � cXBayesk

2
F ^ 1

i
= 0: (1)

All the critical points (below a threshold) are close to the Bayesian
estimator.
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Relationship with AMP

I Another way to construct the Bayes estimator is approximate message
passing [Donoho, Maleki, and Montanari, 2009], [Bolthausen, 2014]:

mk+1 =tanh(�Ymk � �2[1� kmkk22=n]m
k�1) :

I Fixed point of AMP is a critical point of the TAP free energy.

I The risk of AMP iterations converge to the Bayes risk [Deshpande,
Abbes, and Montanari, 2016], [Montanari and Venkataramanan, 2017]:

lim
k!1

lim
n!1

1

n2
kmk(mk)T � xxTk2F = lim

n!1
MSEn(cXBayes):

I But it is not known if AMP will converge to a fixed point (It is still an
open problem).
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Related literatures in spin glass theory

TAP free energy in unbiased SK.

I TAP equations: [Talagrand, 2004], [Chatterjee, 2009], [Chen, 2011],
[Auffinger and Jagannath, 2016], Posterior means/Pure states satisfy
TAP equations.

I TAP free energy: [Chen and Panchenko, 2017], constrained TAP
minimum are exact.

Calculating the complexity.

I [Auffinger, Ben Arous, and Cerny, 2010], [Subag, 2016].
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Proof of the main theorem

Theorem (Fan, M., Montanari, 2018)

Denote C�;n = fm 2 [�1; 1]n : rFTAP(m) = 0;FTAP(m) � ��2=3g.
There exists �0 > 0, such that for any � > �0, we have

lim
n!1

E
h

sup
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1
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All the critical points (below a threshold) are close to the Bayesian
estimator.
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Proof idea - Count the number of critical points
I Recall

FTAP(m) � �

nX
i=1

h(mi)�
�

2
hm;Ymi �

n�2

4

h
1�

kmk22
n

i2
:

I Define some important statistics of m:

E(m) = FTAP(m)=n; Q(m) = kmk22=n; M(m) = hm;xi=n:

I For any U � R3, define

Critn(U) � #fm : rE(m) = 0; (Q(m);M(m); E(m)) 2 Ug: (2)

Proposition

E[Critn(U)] � exp
n
n sup
(q;';e)2U

S?(q; '; e) + o(n)
o
:
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Proof idea - Count the number of critical points

S?(q; '; e) = sup
a2R

inf
(�;�;�;
)2R4

S(q; '; a; e;�; �; �; 
);

where

S(q; '; a; e;�; �; �; 
) =
1

4�2

ha
q
�

��'2

q
� �2(1� q)

i2
� q�� '� � a� �

h
�

�2

4
(1� q2) +

a

2
� e

i

 + log I;

and

I =

Z
1

�1

1

(2��2q)1=2
exp

n
�

(x� ��')2

2�2q

+ � tanh2(x) + � tanh(x) + �x tanh(x) + 
 log[2 cosh(x)]
o
dx:
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Proof idea - Count the number of critical points

I Key proposition: for U � R3,

E[Critn(U)] � exp
n
n

T (U)z }| {
sup

(q;';e)2U
S?(q; '; e)+o(n)

o
;

I For any U such that T (U) > 0, there could potentially be critical
points of FTAP in U .

I For any U such that T (U) < 0, there is no critical points of FTAP

in U , with high probability.
I If we admit the key proposition, suffice to show that T (U) < 0

unless U contains a neighborhood of the Bayes estimator.
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Proof idea - the complexity function S?

I S?(e) = supq;' S?(q; '; e).

E
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lambda = 2

I At e?, S?(e?) = 0.
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Proof idea - the complexity function S?

I S?(') = supq;e S?(q; '; e).

M
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

le
x
it
y

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
lambda = 2

I At '?, S?('?) = 0.

Song Mei (Stanford University) TAP free energy September 19, 2018 19 / 29



Proof idea - the complexity function S?

I S?(q) = sup';e S?(q; '; e).
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Proof idea - the complexity function S?

There exists �0, for � � �0,
I S?(q?; '?; e?) = 0, where (q?; '?; e?) � (Q(m?);M(m?); E(m?))

for cXBayes �m?m
T
? .

I S?(q; '; e) < 0 for any e � ��2=3 and (q; '; e) 6= (q?; '?; e?).
The proof of these two properties is more than calculus. It requires
bounds using concentration inequalities.
Combining with the key inequality it is easy to show the main theorem.

E[Critn(U)] � exp
n
n sup
(q;';e)2U

S?(q; '; e) + o(n)
o
:

Now suffice to show the key inequality.
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Calculating the Crit: Kac-Rice formula

Lemma (Kac-Rice formula, c.f. [Adler and Taylor, 2007)
] Let f : Rd ! R be a “sufficiently regular” random morse function. Let
pm(z) be the density of rf(m) at z. For any Borel measurable set
T � Rd, denote

Crit(T ) = #fm 2 T : rf(m) = 0g:

Then

E[Crit(T )] =E
h Z

T

��detr2f(m)
�� � �(rf(m)) � dm

i

=

Z
T

E
h��detr2f(m)

�����rf(m) = 0
i
pm(0)dm:

I jdetr2f(m)j is the correct weight function so that each critical point
count exactly once.

Song Mei (Stanford University) TAP free energy September 19, 2018 22 / 29



Dealing with determinant of Hessian

I The conditional Hessian is distributed as (up to some scaling)

[r2FTAP(m)jrFTAP(m) = 0]
d
=D +W + low rank perturbation;

where D = diag(di), and W � GOE(n).
I The low rank perturbation has vanishing effects. Therefore, we

just need to calculate E[jdet(H)j], with

H =D +W :
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Dealing with determinant of Hessian

H =D +W = diagonal + GOE:

1

n
logE[jdet(H)j] =

1

n
logE

h nY
i=1

j�i(H)j
i
�

1

n
log

h nY
i=1

j�i(H)j
i

=
1

n

nX
i=1

log j�i(H)j =
Z
R
log jxj � �H(dx) � E

h Z
R
log jxj � �H(dx)

i
:

where �H = (1=n)
Pn

i=1 �(�i(H)).
I Approximate equalities are due to concentration.
I The Stieltjes transform of �H can be approximately calculated

using free probability theory.
I Once the Stieltjes transform of �H is known, the quantity

E
h R

R(log jxj)�H(dx)
i
can be computed.
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Free convolution of two distribution

Let A 2 Rn�n, and �A = (1=n)
Pn

i=1 �(�i(A)). For any z 2 C+, the
Stieltjes transform of �A is defined as

gA(z) =

Z
R

1

x� z
�A(dx) =

1

n

nX
i=1

1

�i(A)� z
:

Lemma (Due to free probability theory)
Let D = diag(di) be a diagonal matrix, and let H =D +W . Then

EgH(z) =
1

n

nX
i=1

1

di � z � EgH(z)
+ on(1): (3)
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Calculate E[
R
R log jxj � �H(dx)]

I Define
B(t) = E

Z
R
log(x� it)�H(dx):

I We have

<B(0+) =E
Z
R
log jxj � �H(dx);

B0(t) =� iE
Z
R
[1=(x� it)]�H(dx) = �iE[gH(it)]:

I We guess a formula

~B(t) =
1

n

nX
i=1

log(di � it� EgH(it)) +
1

2
[EgH(it)]2:

Then ~B(t) satisfy all the conditions that B(t) approximately
satisfy, so that ~B(t) = B(t) + on(1).

I Hence
1

n
logE[jdet(H)j] = ~B(0) + on(1):
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Summary

I TAP free energy is accurate for Z2 synchronization.

I Can be generalized to topic modeling, low rank matrix estimation,
compressed sensing, etc...

I It is interesting to study and apply variational inference beyond
mean field.
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