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The MaxCut SDP problem

I A 2 Rn�n symmetric.

I MaxCut SDP:
maximize
X2Rn�n

hA;Xi
subject to Xii = 1; i 2 [n];

X � 0:

(SDP)

I Applications: MaxCut problem, Z2 synchronization, Stochastic
block model...
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MaxCut Problem

I G: a positively weighted graph. AG: its adjacency matrix.
I MaxCut of G: known to be NP-hard

maximize
x2f�1gn

1

4

nX
i;j=1

AG;ij(1� xixj): (MaxCut)

I SDP relaxation: 0:878-approximate guarantee [Goemanns and
Williamson, 1995]

maximize
X2Rn�n

1

4

nX
i;j=1

AG;ij(1�Xij);

subject to Xii = 1;

X � 0:

(SDPCut)
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Burer-Monteiro approach

I Convex formulation: n up to 103 using interior point method

maximize
X2Rn�n

hA;Xi
subject to Xii = 1; i 2 [n];

X � 0:

(SDP)

I Change variable X = � � �T, � 2 Rn�k, k� n.

I Non-convex formulation: n up to 105

maximize
�2Rn�k

h�;A�i

subject to � = [�1; : : : ; �n]
T;

k�ik2 = 1; i 2 [n]:

(k-Ncvx-SDP)
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Related literatures

I As k � p2n, the global maxima of the Non Convex formulation
coincide with the global maximizer of the Convex formulation
[Pataki, 1998], [Barviok, 2001], [Burer and Monteiro, 2003].

I As k � p2n, Non Convex formulation has no spurious local
maxima [Boumal, et al., 2016].

I What if k remains of order 1, as n!1? Is there spurious local
maxima? Sadly, yes.

I How is these local maxima? Empirically, they are good!
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Geometry

maximize
�2Rn�k

h�;A�i := f(�)

subject to k�ik2 = 1:
o
Mk = f� 2 Rn�k : k�ik2 = 1g:

Definition ("-approximate concave point)
We call � 2Mk an "-approximate concave point of f on Mk, if for any
tangent vector u 2 T�Mk, we have

hu;Hessf(�)[u]i � "hu; ui: (1)

Remark
A local maximizer is 0-approximate concave. An "-approximate
concave point is nearly locally optimal.
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Landscape Theorem

Theorem (A Grothendieck-type inequality)

For any "-approximate concave point � 2Mk of the rank-k
non-convex problem, we have

f(�) � SDP(A)� 1

k � 1
(SDP(A) + SDP(�A))� n

2
": (2)

SDP(A): the maximum value of SDP with input matrix A.

Geometric iterpretation: the function value for all local maxima are
within a gap of order O(1=k) within the global maximum.
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Landscape of non-convex SDP

I f(�) � SDP(A)� 1

k�1(SDP(A) + SDP(�A))� n
2
".

Gap = 1
k�1

⇣
SDP(A) + SDP(�A)

⌘

kSDP(A)

SDP(A) + SDP(�A)

n"/2

a saddle point with
" curvature

global optimizer a local optimizerSDP(A)

�SDP(�A)

Gap
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Efficient Algorithm

I Guaranteed converge rate using Riemannian trust region method.

I Getting absolute error n"+ (SDP(A) + SDP(�A))=(k � 1) within
c � nkAk2

1
="2 trust region steps.

I Empirically, gradient descent converges faster than what is
guaranteed.
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Approximate MaxCut Guarantee

Theorem (Approximate MaxCut Guarantee)
For any k � 3, if �? is a local maximizer of corresponding rank-k
non-convex problem, then we can use �? to find a
0:878� (1� 1=(k � 1))-approximate MaxCut.

The global maximizer: 0:878-approximate MaxCut.

Any Local maximizers: 0:878� (1� 1=(k � 1))-approximate MaxCut.
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Group Synchronization

I SO(d) synchronization, Orthogonal Cut SDP

maximize
X2Rnk�nk

hA;Xi
subject to Xii = Ik;

X � 0:

(3)

I Similar guarantee.
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Conclusion

I Non-convex MaxCut SDP: all local maxima are near global
maxima.

I An alternate algorithm for approximating MaxCut.

I Conclusion generalizable to general SDP problem.

What I did not go into detail
I Z2 synchronization and SO(d) synchronization.

I The one page proof for the Grothendieck-type inequality.
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Questions?

f(�) � SDP(A)� 1

k � 1
(SDP(A) + SDP(�A))� n

2
":

I SDP(�A)? Typically has no relationship with SDP(A). You can
think of it has the same order as SDP(A). Fit well in the MaxCut
problem.

I 1=k tight? We believe Yes.
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