Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality

Song Mei (Stanford University), Theodor Misiakiewicz (Ecole Normale Supérieure), Andrea Montanari (Stanford University), and Roberto I. Oliveira (IMPA)

MAXCUT SDP

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. We consider the SDP arising in the MaxCut problem

$$\begin{array}{ll} \underset{X \in \mathbb{R}^{n \times n}}{\text{maximize}} & \langle A, X \rangle \\ \text{subject to} & X_{ii} = 1, \ i \in [n], \\ & X \succ 0. \end{array}$$
(SDF)

We can solve it in polynomial time, but it scales badly because of the n^2 dimension and the PSD constraint.

LANDSCAPE OF NON-CONVEX SDP

BURER-MONTEIRO APPROACH

The Burer Monteiro approach changes the variable $X = \sigma \sigma^{\mathsf{T}}$ to get rid of the PSD constraint and lower the dimension to $n \times k$.

> $\underset{\sigma \in \mathbb{R}^{n \times k}}{\text{maximize }} \langle \sigma, A\sigma \rangle$ subject to $\sigma = [\sigma_1, \ldots, \sigma_n]^\mathsf{T}$, $\|\sigma_i\|_2 = 1, \quad i \in [n].$

(k-Nevx-SDP)

WHAT DID WE KNOW?

- As $k \ge \sqrt{2n}$, the global maxima of (k-Ncvx-SDP) coincide with the global maximizer of (SDP) [Pat98, Bar01, BM03]. ► As $k \ge \sqrt{2n}$, any local maxima of (k-Nevx-SDP) is a global
 - maximizer of (k-Ncvx-SDP) [BVB16].
- What if k remains of order 1, as $n \to \infty$? It also works well!

GEOMETRY OF THE NON-CONVEX SDP

MAXCUT PROBLEM

Let G be a graph and A_G be its adjacency matrix. The MaxCut of a graph G solves the optimization problem

$$\underset{x \in \{\pm 1\}^n}{\text{maximize}} \quad \frac{1}{4} \sum_{i,j=1}^n A_{G,ij} (1 - x_i x_j). \quad (\text{MaxCut})$$

This optimization problem is known to be NP hard. Goemans and Williamson [GW95] showed that if we solve the problem (SDP) by taking $A = -A_G$, the optimal solution X^* gives an

- ► The function $f(\sigma) = \langle \sigma, A\sigma \rangle$ is smooth on the manifold $\mathcal{M}_{k} = \{ \sigma : \|\sigma_{i}\|_{2} = 1, i \in [n] \}.$
- \triangleright Definition: we call $\sigma \in \mathcal{M}_k$ an ϵ -approximate concave point of f on \mathcal{M}_k , if for any tangent vector $u \in T_{\sigma}\mathcal{M}_k$, we have (1)
 - $\langle u, \operatorname{Hess} f(\sigma)[u] \rangle \leq \varepsilon \langle u, u \rangle.$
- ► A local maximizer is 0-approximate concave. An *E*-approximate concave point is nearly locally optimal.

0.878-approximate solution of the MaxCut problem (MaxCut).

THEOREM (APPLICATION TO MAXCUT)

For any $k \geq 3$, if σ^* is a local maximizer of the rank-k non-convex SDP problem (k-Nevx-SDP) by taking $A = -A_G$, then using σ^* we can find an $0.878 \times (1 - 1/(k - 1))$ -approximate solution of the MaxCut problem (MaxCut).

MAIN THEOREM (A GROTHENDIECK INEQUALITY)

For any ε -approximate concave point $\sigma \in \mathcal{M}_k$ of the rank-knon-convex problem (k-Ncvx-SDP), we have

$$f(\sigma) \ge \operatorname{SDP}(A) - \frac{1}{k-1}(\operatorname{SDP}(A) + \operatorname{SDP}(-A)) - \frac{n}{2}\varepsilon. \quad (2$$

Geometrically: the function value for all local maxima are within a gap of order O(1/k) within the global maximum. Proof strategy: Approximate concave condition + random

FURTHER RESULTS

- \blacktriangleright Application to \mathbb{Z}_2 synchronization problem.
- A similar Grothendieck inequality for the SO(d)synchronization SDP problem.
- Potentially generalizable to general SDP problems.

REFERENCES

projection.

PROVABLY EFFICIENT ALGORITHM

- Riemannian trust region method is guaranteed to converge to a point with absolute error $n\epsilon + (\text{SDP}(A) + \text{SDP}(-A))/(k-1)$ in $c \cdot n ||A||_1^2/\epsilon^2$ trust region steps.
- ▶ SDP(-A) typically has the same order as SDP(A). Empirically, gradient descent converges faster than what is guaranteed.

- [Bar01] Alexander Barvinok, A remark on the rank of positive semidefinite matrices subject to affine constraints, Discrete & Computational Geometry 25 (2001), no. 1, 23–31.
- Samuel Burer and Renato DC Monteiro, A nonlinear programming algorithm for [BM03]solving semidefinite programs via low-rank factorization, Mathematical Programming 95 (2003), no. 2, 329–357.
- [BVB16] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira, The non-convex burer-monteiro approach works on smooth semidefinite programs, Advances in Neural Information Processing Systems, 2016, pp. 2757–2765.
- Michel X Goemans and David P Williamson, Improved approximation algorithms for [GW95]maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM (JACM) 42 (1995), no. 6, 1115–1145.
- Gábor Pataki, On the rank of extreme matrices in semidefinite programs and the Pat98 multiplicity of optimal eigenvalues, Mathematics of operations research 23 (1998), no. 2, 339–358.