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MAXCUT SDP

Let A ∈ Rn×n be a symmetric matrix. We consider the SDP
arising in the MaxCut problem

maximize
X∈Rn×n

〈A, X〉
subject to Xii = 1, i ∈ [n],

X � 0.
(SDP)

We can solve it in polynomial time, but it scales badly because of
the n2 dimension and the PSD constraint.

BURER-MONTEIRO APPROACH

The Burer Monteiro approach changes the variable X = σσT to
get rid of the PSD constraint and lower the dimension to n× k.

maximize
σ∈Rn×k

〈σ, Aσ〉
subject to σ = [σ1, . . . , σn]

T,
‖σi‖2 = 1, i ∈ [n].

(k-Ncvx-SDP)

WHAT DID WE KNOW?

I As k ≥
√

2n, the global maxima of (k-Ncvx-SDP) coincide
with the global maximizer of (SDP) [Pat98, Bar01, BM03].

I As k ≥
√

2n, any local maxima of (k-Ncvx-SDP) is a global
maximizer of (k-Ncvx-SDP) [BVB16].

I What if k remains of order 1, as n→ ∞? It also works well!

GEOMETRY OF THE NON-CONVEX SDP

I The function f (σ) = 〈σ, Aσ〉 is smooth on the manifold
Mk = {σ : ‖σi‖2 = 1, i ∈ [n]}.

I Definition: we call σ ∈ Mk an ε-approximate concave point of
f onMk, if for any tangent vector u ∈ TσMk, we have

〈u, Hess f (σ)[u]〉 ≤ ε〈u, u〉. (1)
I A local maximizer is 0-approximate concave. An

ε-approximate concave point is nearly locally optimal.

MAIN THEOREM (A GROTHENDIECK INEQUALITY)

For any ε-approximate concave point σ ∈ Mk of the rank-k
non-convex problem (k-Ncvx-SDP), we have

f (σ) ≥ SDP(A)− 1
k− 1

(SDP(A) + SDP(−A))− n
2

ε. (2)

Geometrically: the function value for all local maxima are within a
gap of order O(1/k) within the global maximum.
Proof strategy: Approximate concave condition + random
projection.

PROVABLY EFFICIENT ALGORITHM

I Riemannian trust region method is guaranteed to converge to
a point with absolute error
nε + (SDP(A) + SDP(−A))/(k− 1) in c · n‖A‖2

1/ε2 trust
region steps.

I SDP(−A) typically has the same order as SDP(A).
I Empirically, gradient descent converges faster than what is

guaranteed.

LANDSCAPE OF NON-CONVEX SDP
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MAXCUT PROBLEM

Let G be a graph and AG be its adjacency matrix. The MaxCut
of a graph G solves the optimization problem

maximize
x∈{±1}n

1
4

n

∑
i,j=1

AG,ij(1− xixj). (MaxCut)

This optimization problem is known to be NP hard. Goemans and
Williamson [GW95] showed that if we solve the problem (SDP) by
taking A = −AG, the optimal solution X? gives an
0.878-approximate solution of the MaxCut problem (MaxCut).

THEOREM (APPLICATION TO MAXCUT)

For any k ≥ 3, if σ? is a local maximizer of the rank-k non-convex
SDP problem (k-Ncvx-SDP) by taking A = −AG, then using σ?

we can find an 0.878× (1− 1/(k− 1))-approximate solution of
the MaxCut problem (MaxCut).

FURTHER RESULTS

I Application to Z2 synchronization problem.
I A similar Grothendieck inequality for the SO(d)

synchronization SDP problem.
I Potentially generalizable to general SDP problems.
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