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R(Θ) = min
Θ

E[`(y;W 1� �W 2 � � � � � � �W k � x)]:

Empirical surprise of neural network [Zhang et al., 2016]
I Over-parameterized regime.
I Optimization surprise: efficiently fit all the data.
I Generalization surprise: generalize well.
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Two-layers neural network

f̂N (x;Θ) =
NX
i=1

ai�(hwi;xi); Θ = (a1;w1; : : : ; aN ;wN ):

I Feature x 2 Rd.
I Bottom layer weights wi 2 Rd, i = 1; 2; : : : ; N .
I Top layer weights ai 2 R, i = 1; 2; : : : ; N .
I Over-parametrization: N large.
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Two-layers neural network

Hidden layer Output layerInput layer
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Gradient flow with random initialization

Empirical risk: (n: # data; N : # neuron)

Rn;N (Θ) = Êx;n[(y � f̂N (x;Θ))2]

Gradient flow, on empirical risk, with random initialization:

_Θ(t) = �rRn;N (Θ(t));

(ai(0);wi(0)) �i:i:d: Pa;w:
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Convergence guarantees
Lemma (Global min. Not surprise. )
For N > n, we have

inf
Θ

Rn;N (Θ) = 0:

There are many global minimizer with empirical risk 0.

But there are also local minimizers with non-zero risk.

Theorem (The optimization surprise. )

For N � n1+c, we have

lim
t!1

Rn;N (Θ(t)) = 0;

i.e., training loss converges to 0.

Under what assumptions?
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Three variants of the convergence theorem

Gradient flow (n: # data; N : # neuron):

_Θ(t) = �rÊx;n[(y � f̂N (x;Θ(t)))2];

wi(0) �i:i:d: N (0; Id=d):

Theorem: for N large enough, we have

lim
t!1

Rn;N (Θ(t)) = 0:

Random feature (RF) regime

f̂N (x;Θ) =
NX
i=1

ai�(hwi;xi); ai(0) �i:i:d: N (0; 1=N2):

[Andoni et al., 2014], [Danialy, 2017], [Yehudai and Shamir, 2019] ...
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... but different behavior of dynamics

Random feature (RF) regime

f̂N (x;Θ) =
NX
i=1

ai�(hwi;xi); ai � N (0; 1=N2):

I The limiting dynamics is linear (effectively only a is updated).
I Prediction function: kernel ridge regression with kernel

kRF(x; z) = Êw;N [�(hw; zi)�(hw; zi)]:

[Andoni et al., 2014], [Danialy, 2017], [Yehudai and Shamir, 2019] ...
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... but different behavior of dynamics

Neural tangent (NT) regime

f̂N (x;Θ) =
1p
N

NX
i=1

ai�(hwi;xi); ai � N (0; 1):

I The limiting dynamics is linear (the change of Θ is small).
I Prediction function: kernel ridge regression with kernel

kNT(x; z) = Êw;N [�
0(hw;xi)�0(hw; zi)]hx; zi+ kRF(x; z):

[Jacot et al., 2018], [Du et al., 2018], [Du et al., 2018], [Allen-Zhu el
al., 2018], [Zou et al., 2018]...
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... but different behavior of dynamics

Mean field (MF) regime

f̂N (x;Θ) =
1

N

NX
i=1

ai�(hwi;xi); ai � N (0; 1):

I The limiting dynamics is non-linear (both a and W are updated).
I Distributional dynamics:
@t�t(a;w) = r � (�r	(a;w; �t)) + ��1��t.

I Prediction function: f̂(x; �1) =
R
a�(hw;xi)�1(dadw).

[Mei et al., 2018], [Rotskoff and Vanden-Eijnden, 2018], [Chizat and
Bach, 2018], [Sirignano and Spiliopoulos, 2018]...
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Optimization: 0 training loss.

Test risk = training loss + generalization risk.

Today: generalization.
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Generalization theory for kernel methods

I Traditional theory: assume f? 2 RKHS, then kernel ridge
regression generalize well.

I Problem: in high dimension, RKHS is a very small space.

Today: in high dimension, kernel methods (RF and NT) don’t
generalize well.
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Setting 1: N finite, n infinite

Distribution:

x 2 Unif(Sd�1(
p
d)); y = f?(x); f? 2 L2(Sd(

p
d)):

Two classes of linearized neural network: (wi � Unif(Sd))

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hai;xi : ai 2 Rd; i 2 [N ]
o
:

Mild assumptions on � (universal approximation, growth not too fast).
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Lower bound: N finite, n infinite

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
:

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume N = Od(d
`��), and (wi)i2[N ] � Unif(Sd), we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] � kP>`f?k2L2 + od;P(kf?k22);

where P>` is the projection operator orthogonal to the space of
degree-` polynomials.

Example: for f?(x) = x21 � 1, we have P>2f? � f?. Then random
feature regression with N = Od(d

2��) neuron achieves trivial risk,
which is kf?k2L2 .
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Figure: Test risk for learning f(x) = x2
1
� 1, d = 50 and d = 100.
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Similar result for NT

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hai;xi : ai 2 Rd; i 2 [N ]
o
:

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume N = Od(d
`��), and (wi)i2[N ] � Unif(Sd), we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] � kP>`+1f?k2L2 + od;P(kf?k22);

where P>`+1 is the projection operator orthogonal to the space of
degree-(`+ 1) polynomials.

Example: for f?(x) = x31 � x1, we have P>3f? � f?. Then random
feature regression with N = Od(d

2��) neuron achieves trivial risk,
which is kf?k2L2 .

Song Mei (Stanford University) Linearized two layers neural network May 26, 2019 18 / 22



Similar result for NT

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hai;xi : ai 2 Rd; i 2 [N ]
o
:

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume N = Od(d
`��), and (wi)i2[N ] � Unif(Sd), we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] � kP>`+1f?k2L2 + od;P(kf?k22);

where P>`+1 is the projection operator orthogonal to the space of
degree-(`+ 1) polynomials.

Example: for f?(x) = x31 � x1, we have P>3f? � f?. Then random
feature regression with N = Od(d

2��) neuron achieves trivial risk,
which is kf?k2L2 .

Song Mei (Stanford University) Linearized two layers neural network May 26, 2019 18 / 22



Setting 2: N infinite, n finite

Distribution:

xi 2 Unif(Sd�1); yi = f?(xi); f? 2 L2(Sd(
p
d)):

Predicting using regularized kernel ridge regression:

f̂�(x) = k(x;X )(k(X ;X ) + �I)�1f?(x);

where
k(xi;xj) = Ew�Sd�1 [�(hw;xii)�(hw;xji)]:
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Lower bound: N infinite, n finite

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume n = Od(d
`��), we have

inf
�

Ex[(f?(x)� f̂�(x))
2] � kP>`f?k2L2 + od;P(kf?k22);

where P>` is the projection operator orthogonal to the space of
degree-` polynomials.
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Intuition behind these results

In high dimension, the correlation between a degree-k Hermite
polynomial and a random feature is very small

Ew[Hek(x1)�(hw;xi)] = Od(1=d
k):

Also observed in [Danialy, 2016], [Bach, 2017].
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Implications & Conclusions

I In high dimension, even for simple function f(x) = xk1 , it takes
n;N = Od(d

k) to learn it well using linearized neural network
(kernel methods);

I ... while a neural network can learn it (conjecture to be efficiently)
using n;N = Od(1).

I Neural network is more powerful than kernel methods.
I Future work: what class of functions neural network can learn

efficiently.
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