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R(®) = mén]E[Z(y, WicoWgsooo0---0 Wyox).

Empirical surprise of neural network [Zhang et al., 2016|
» Over-parameterized regime.
» Optimization surprise: efficiently fit all the data.

» Generalization surprise: generalize well.
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EENS——————————..
Two-layers neural network

Zaz wz) ) @Z(al,W1,...,aN,wN).
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EENS——————————..
Two-layers neural network

Zaz (wi,x)), O = (a1, wi,...,aN,wnN).

» Feature x € R¢.
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ES————————
Two-layers neural network

Zaz wz’ ) ®:(a’1yw1)"')aNawN)-

v

Feature = € R<.

v

Bottom layer weights w; € R, 1 =1,2,...,N.

v

Top layer weights a; € R,72=1,2,...,N.

v

Over-parametrization: N large.
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Two-layers neural network

Input layer Hidden layer Output layer

=] F = = £ 9Da
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Gradient flow with random initialization

Empirical risk: (n: # data; N: # neuron)

Rn,N(G) = Em,n[(y - fN(m) 6))2]

Gradient flow, on empirical risk, with random initialization:

O(t) = ~VR, n(O(t)),
(a:(0), wi(0)) ~4.id. Pow-
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Convergence guarantees

Lemma (Global min. Not surprise. )
For N > n, we have

%f R, n(©®) =0.

There are many global minimizer with empirical risk 0.
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Convergence guarantees

Lemma (Global min. Not surprise. )

For N > n, we have
i%f R, n(©®) =0.

There are many global minimizer with empirical risk 0.

But there are also local minimizers with non-zero risk.

Theorem (The optimization surprise. )

For N > n'*¢, we have

lim R,y (O(t)) =0,
t—o0

1.e., trawning loss converges to 0.
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E———————————————
Convergence guarantees

Lemma (Global min. Not surprise. )

For N > n, we have
i%f R, n(©®) =0.

There are many global minimizer with empirical risk 0.

But there are also local minimizers with non-zero risk.

Theorem (The optimization surprise. )

For N > n'*¢, we have

lim R,y (O(t)) =0,
t—o0

1.e., trawning loss converges to 0.

Under what assumptions? )
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Three variants of the convergence theorem

Gradient flow (n: # data; N: # neuron):

O(t) = —VEy,a[(y — fu(z; ©(2)))%,
w;(0) ~;i4. N(0,14/d).
Theorem: for N large enough, we have
lim R, y(©(t)) = 0.
t—o00

Random feature (RF) regime

Zaz (wi,®)), ai(0) ~iza N(0,1/N?).

[Andoni et al., 2014|, [Danialy, 2017], [Yehudai and Shamir, 2019] ...
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ES————————
Three variants of the convergence theorem

Random feature (RF) regime

Zaz (wi, ), a; ~N(0,1/N?).

Neural tangent (NT) regime

f Zaz 'wzy : a; NN(Oal)'

Mean field (MF) regime

F( Zaz ((wi, z)), ai ~N(0,1).
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ES————————
. but different behavior of dynamics

Random feature (RF) regime

Za'z w'n 7 aiNN((): 1/N2)

» The limiting dynamics is linear (effectively only a is updated).

» Prediction function: kernel ridge regression with kernel
kr(2, 2) = Bu,n[0((w, 2))o ((w, 2))].

[Andoni et al., 2014], [Danialy, 2017], [Yehudai and Shamir, 2019] ...
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. but different behavior of dynamics

Neural tangent (NT) regime

f Zaz wz, ; a; NN(O:]-)'

» The limiting dynamics is linear (the change of ® is small).

» Prediction function: kernel ridge regression with kernel

-

knT(, 2) = By [0’ ((w, )0’ ((w, 2))){z, 2) + kre(z, 2).

[Jacot et al., 2018], [Du et al., 2018], [Du et al., 2018|, [Allen-Zhu el
al., 2018], [Zou et al., 2018]...
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. but different behavior of dynamics

Mean field (MF) regime

f Zaz wz, , a; NN(O,].)

» The limiting dynamics is non-linear (both a and W are updated).
» Distributional dynamics:

atpt(a'7w) =V (pV\If(a,, w; Pt)) + ,BflAPt-
» Prediction function: f(z;pe) = [ ac((w, ))pe(dadw).

[Mei et al., 2018], [Rotskoff and Vanden-Eijnden, 2018], [Chizat and
Bach, 2018], [Sirignano and Spiliopoulos, 2018|...
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IN———————,,.....
Optimization: 0 training loss.

Test risk = training loss + generalization risk. J
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IN———————,,.....
Optimization: 0 training loss.

Test risk = training loss + generalization risk. J

Today: generalization. J
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E———————————————
Generalization theory for kernel methods

» Traditional theory: assume f, € RKHS, then kernel ridge
regression generalize well.
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E———————————————
Generalization theory for kernel methods

» Traditional theory: assume f, € RKHS, then kernel ridge
regression generalize well.

» Problem: in high dimension, RKHS is a very small space.

Today: in high dimension, kernel methods (RF and NT) don’t
generalize well.
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Setting 1: N finite, n infinite

Distribution:

x € Unif(S*1(vVd)), y= fu(z), fi€ LA(SYVa)).

Two classes of linearized neural network: (w; ~ Unif(S%))
Fre,n(W {f Zaz ((wi, = %GRZG[N]}

Fnr (W) ={f = ZU’((wi,m))(ai,@ ta; € R%i € [N]}.

Mild assumptions on ¢ (universal approximation, growth not too fast).
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Lower bound: N finite, n infinite

Fre,n (W {f Zaz (w;, azERzE[N]}

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)
Assume N = Og4(d¢?), and (ws)icin) ~ Unif(S%), we have

inf  Eq[(fi(®) = £(2))’] > IP>efull72 + oap(ll fll3),

FEFrr,N (W)

where P~y 1s the projection operator orthogonal to the space of
degree-£ polynomaials.
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Lower bound: N finite, n infinite

Fre,n (W {f Zaz (w;, azeRzE[N]}

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)
Assume N = Og4(d¢?), and (ws)icin) ~ Unif(S%), we have

inf  Eq[(fi(®) = £(2))’] > IP>efull72 + oap(ll fll3),

FEFrr,N (W)

where P~y 1s the projection operator orthogonal to the space of
degree-£ polynomaials.

Example: for f,(z) = % — 1, we have P~y f, ~ fi. Then random
feature regression with N = O4(d?>~¢) neuron achieves trivial risk,
which is || f,][2..
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Figure: Test risk for learning f(x) = 22 — 1, d = 50 and d = 100.
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Similar result for NT

N

Fnrn (W) = {f =" o'((wy, @)){ai, x) : a; € RY,i € [N]}.
=1

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume N = Og4(d¢?), and (ws)iein) ~ Unif(S%), we have

fefgg(w) Eo|(fe(®) = f(2))%] > [IP>er1fullfe + 0ap(l £13),

where Psy11 s the projection operator orthogonal to the space of
degree-(£ + 1) polynomaials.
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fefélg,l]ﬁ(w) Eo|(fe(®) = f(2))%] > [IP>er1fullfe + 0ap(l £13),

where Psy11 s the projection operator orthogonal to the space of
degree-(£ + 1) polynomaials.

Example: for fi(z) = 3 — z1, we have P~3f, ~ f.. Then random

feature regression with N = O,4(d? %) neuron achieves trivial risk,
which is || f||2..
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Setting 2: N infinite, n finite

Distribution:

x; € Unif(S¥Y), vy = fulxs), f. € LA(SY(Vd)).

Predicting using regularized kernel ridge regression:

~

Falx) = k(z, X)(k(X, X) + A1) fo(2),

where
k(wi, ;) = Eypuga-1[o((w, xi))o((w, x5))].
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Lower bound: N infinite, n finite

Theorem (Ghorbani, Mei, Misiakiwics, Montanari, 2019)

Assume n = Og(d*~?%), we have
inf Ea[(fi(x) = fr(2))?] 2 [IP>efil 2 + 0ap(lIfl13),

where P~y 1s the projection operator orthogonal to the space of
degree-£ polynomaals.
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Intuition behind these results

In high dimension, the correlation between a degree-k Hermite
polynomial and a random feature is very small

Eo[Hex(z1)o((w, )] = Og(1/d).

Also observed in [Danialy, 2016], [Bach, 2017].
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E———————————————
Implications & Conclusions

» In high dimension, even for simple function f(x) = z¥, it takes
n, N = O4(d¥) to learn it well using linearized neural network
(kernel methods);
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Implications & Conclusions

» In high dimension, even for simple function f(x) = z¥, it takes
n, N = O4(d¥) to learn it well using linearized neural network
(kernel methods);

» ... while a neural network can learn it (conjecture to be efficiently)
using n, N = O4(1).
» Neural network is more powerful than kernel methods.

» Future work: what class of functions neural network can learn
efficiently.
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