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Deep learning
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Convolutional Neural Network
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Non-convex optimization
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Why does non-convex neural network perform well?
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Why does some non-convex optimization perform well?

I Stochastic gradient descent escape bad local minima.
I Good initialization escape bad local minima.
I Globally there are less bad local minima.
I ....
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Non-convex optimization: analysis of global geometry

Number and locations of saddle points and local minima.
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Let’s do it!

The objective function

min
Wi

1

n

nX
i=1

fyi � �(Wk � � ��(W2 � �(W1xi)))g2
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The objective function

min
�

1

n

nX
i=1

fyi � �(h�; xii)g2
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Binary linear classification

The model
zi = (xi; yi). xi 2 Rd, yi 2 f0; 1g.
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One node neural network
The model
zi = (xi; yi). xi 2 Rd, yi 2 f0; 1g.

I Convex logit loss (`c is cvx in �)

`c(�; z) = yhx; �i � logf1 + exp(hx; �i)g:

I Non-convex loss (` is not cvx in �)

`(�; z) = fy � �(hx; �i)g2; where �(t) = 1=(1 + exp(t)):

I Empirical Risk

bRn(�) =
1

n

nX
i=1

`(�; zi) =
1

n

nX
i=1

fyi � �(h�; xii)g2:

I Empirical risk minimizer

�̂n = argmin
�2Bd(R)

bRn(�):

Song Mei (Stanford University) The landscape of non-convex optimization October 19, 2017 10 / 32



One node neural network
The model
zi = (xi; yi). xi 2 Rd, yi 2 f0; 1g.

I Convex logit loss (`c is cvx in �)

`c(�; z) = yhx; �i � logf1 + exp(hx; �i)g:

I Non-convex loss (` is not cvx in �)

`(�; z) = fy � �(hx; �i)g2; where �(t) = 1=(1 + exp(t)):

I Empirical Risk

bRn(�) =
1

n

nX
i=1

`(�; zi) =
1

n

nX
i=1

fyi � �(h�; xii)g2:

I Empirical risk minimizer

�̂n = argmin
�2Bd(R)

bRn(�):

Song Mei (Stanford University) The landscape of non-convex optimization October 19, 2017 10 / 32



One node neural network
The model
zi = (xi; yi). xi 2 Rd, yi 2 f0; 1g.

I Convex logit loss (`c is cvx in �)

`c(�; z) = yhx; �i � logf1 + exp(hx; �i)g:

I Non-convex loss (` is not cvx in �)

`(�; z) = fy � �(hx; �i)g2; where �(t) = 1=(1 + exp(t)):

I Empirical Risk

bRn(�) =
1

n

nX
i=1

`(�; zi) =
1

n

nX
i=1

fyi � �(h�; xii)g2:

I Empirical risk minimizer

�̂n = argmin
�2Bd(R)

bRn(�):

Song Mei (Stanford University) The landscape of non-convex optimization October 19, 2017 10 / 32



One node neural network
The model
zi = (xi; yi). xi 2 Rd, yi 2 f0; 1g.

I Convex logit loss (`c is cvx in �)

`c(�; z) = yhx; �i � logf1 + exp(hx; �i)g:

I Non-convex loss (` is not cvx in �)

`(�; z) = fy � �(hx; �i)g2; where �(t) = 1=(1 + exp(t)):

I Empirical Risk

bRn(�) =
1

n

nX
i=1

`(�; zi) =
1

n

nX
i=1

fyi � �(h�; xii)g2:

I Empirical risk minimizer

�̂n = argmin
�2Bd(R)

bRn(�):

Song Mei (Stanford University) The landscape of non-convex optimization October 19, 2017 10 / 32



A negative theoretical result

Theorem (Auer et. al. . 1996)
For the one node neural network, 8n; d > 0, there exists a dataset
(xi; yi)

n
i=1 such that the empirical risk bRn(�) has bnd cd distinct local

minima.

The landscape of bRn(�) is very rough.

Is this the end of the world of deep learning?
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Real data experiment
I The "Australian" data set from Statlog: d = 11, n = 683.
I Random initialization �(0) � N (0; Id).
I Run gradient descent and track the path �(k).
I Generate multiple paths with independent initializations.
I Plot standard deviation over paths std(�(k)) versus k.

Number of iterations
20 40 60 80 100 120 140 160 180 200

st
d
(

θ
(k
))
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-4

10
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One node neural network

On real data, we "always" observe a unique minimum!

Why?

Data generated by nature is not against us!
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A negative theoretical result
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A positive result

Theorem (Mei, Bai, Montanari. 2016)
Assume Yi are generated via P(Yi = 1jXi) = �(hXi; �0i) with mild
assumption on Xi, as n = 
(d log d), with high probability:
(a) bRn(�) has a unique local minimizer �̂n in Bd(0; R).
(b) �̂n satisfies k�̂n � �0k2 = O(

p
(d logn)=n).

(c) Gradient descent converges exponentially fast to �̂n.

The landscape of bRn(�) is actually smooth!
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Why assuming a statistical model make the landscape
of emprical risk smooth?

1 Assuming a statistical model (Xi; Yi)
i:i:d:� P, i = 1; : : : ; n, we can

define the population risk

R(�) = E
h bRn(�)

i
= EX;Y

h
(Yi � �(h�0; Xi))

2
i
:

The population risk is usually very smooth.
2 We can transfer the good properties of the population risk to the

empirical risk using uniform convergence argument. So empirical
risk will be also smooth.
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Population risk and empirical risk
The population risk has good properties under mild assumptions.
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Figure: Population risk.
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θ̂n = [0.816,−0.268]

Figure: An instance of empirical risk.

How can we relate the properties of empirical risk to population risk?
Uniform convergence!
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Uniform convergence of gradients and Hessians.

Theorem (Uniform convergence. Informal)
Under the settings, for any � > 0, there exists a positive constant
C depending on (R; �) but independent of n and d, such that as
long as n � Cd log d, we have

1

P

0@ sup
�2Bd(0;R)

r bRn(�)�rR(�)

2
�
s
Cd logn

n

1A � 1� �:

2

P

0@ sup
�2Bd(0;R)

r2 bRn(�)�r2R(�)

op
�
s
Cd logn

n

1A � 1� �:

Proof is based on concentration inequalities and covering numbers.
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Uniform convergence implies unique minimum of
empirical risk

Risk	  Empirical	  risk Empirical	  risk Empirical	  risk 
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Risk	  global	  min 

Risk	  
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ERM	  
 

Good	  local	  mins 

Smooth	  far	  from	  mins	  

Risk	  global	  min 
ERM	  
 

Uniform	  smooth	  
surface	  

The	  landscape	  of	  non-‐convex	  empirical	  risk 

1.	  What	  we	  thought 2.	  What	  hopefully	  is	  true 3.	  What	  we	  will	  prove 

Risk	  

Figure: Landscape of empirical risk
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Numerical experiment
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Figure: Probability to find a unique local minimum
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Extensions

I Robust regression, gaussian mixture model, etc. High dimensional
settings d� n. [Mei et. al., 2017]

I ReLU activation. [Tian, 2017]
I Two Layers neural network. [Soltanolkotabi et. al., 2017], [Zhong
et. al., 2017]

I Deep neural network. [Choromanska et. al., 2015]
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Interlude

Before studying the complex neural network, maybe we can first study
some simpler non-convex optimization problems.
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MaxCut Problem

I G: a positively weighted graph. AG: its adjacency matrix.
I MaxCut of G: known to be NP-hard

maximize
x2f�1gn

1

4

nX
i;j=1

AG;ij(1� xixj): (MaxCut)

I SDP relaxation: 0:878-approximate guarantee [Goemanns and
Williamson, 1995]

maximize
X2Rn�n

1

4

nX
i;j=1

AG;ij(1�Xij);

subject to Xii = 1;

X � 0:

(SDPCut)
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The MaxCut SDP problem

I A 2 Rn�n symmetric.

I MaxCut SDP:
maximize
X2Rn�n

hA;Xi
subject to Xii = 1; i 2 [n];

X � 0:

(SDP)

I Applications: MaxCut problem, Z2 synchronization, Stochastic
block model...
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Burer-Monteiro approach

I Convex formulation: n up to 103 using interior point method

maximize
X2Rn�n

hA;Xi
subject to Xii = 1; i 2 [n];

X � 0:

(SDP)

I Change variable X = � � �T, � 2 Rn�k, k� n.

I Non-convex formulation: n up to 105

maximize
�2Rn�k

h�;A�i

subject to � = [�1; : : : ; �n]
T;

k�ik2 = 1; i 2 [n]:

(k-Ncvx-SDP)
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Related literatures

I As k � p
2n, the global maxima of the Non Convex formulation

coincide with the global maximizer of the Convex formulation
[Pataki, 1998], [Barviok, 2001], [Burer and Monteiro, 2003].

I As k � p
2n, Non Convex formulation has no spurious local

maxima [Boumal, et al., 2016].

I What if k remains of order 1, as n!1? Is there spurious local
maxima? Sadly, yes.

I How is these local maxima? Empirically, they are good!
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Geometry

maximize
�2Rn�k

h�;A�i := f(�)

subject to k�ik2 = 1:
o
Mk = f� 2 Rn�k : k�ik2 = 1g:

Definition ("-approximate concave point)
We call � 2Mk an "-approximate concave point of f on Mk, if for any
tangent vector u 2 T�Mk, we have

hu;Hessf(�)[u]i � "hu; ui: (1)

Remark
A local maximizer is 0-approximate concave. An "-approximate
concave point is nearly locally optimal.
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Landscape Theorem

Theorem (A Grothendieck-type inequality)

For any "-approximate concave point � 2Mk of the rank-k
non-convex problem, we have

f(�) � SDP(A)� 1

k � 1
(SDP(A) + SDP(�A))� n

2
": (2)

SDP(A): the maximum value of SDP with input matrix A.

Geometric iterpretation: the function value for all local maxima are
within a gap of order O(1=k) within the global maximum.
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Landscape of non-convex SDP

I f(�) � SDP(A)� 1
k�1(SDP(A) + SDP(�A))� n

2 ".

Gap = 1
k�1

⇣
SDP(A) + SDP(�A)

⌘

kSDP(A)

SDP(A) + SDP(�A)

n"/2

a saddle point with
" curvature

global optimizer a local optimizerSDP(A)

�SDP(�A)

Gap
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Approximate MaxCut Guarantee

Theorem (Approximate MaxCut Guarantee)
For any k � 3, if �? is a local maximizer of corresponding rank-k
non-convex problem, then we can use �? to find a
0:878� (1� 1=(k � 1))-approximate MaxCut.

The global maximizer: 0:878-approximate MaxCut.

Any Local maximizers: 0:878� (1� 1=(k � 1))-approximate MaxCut.
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Group Synchronization

I SO(d) synchronization, Orthogonal Cut SDP

maximize
X2Rnk�nk

hA;Xi
subject to Xii = Ik;

X � 0:

(3)

I Similar guarantee.
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Conclusion

I Studied the global geometry of some non-convex optimization
problems.

I Empirical risk minimization: uniform convergence excludes
spurious local minima.

I Non-convex MaxCut SDP: all local maxima are near global
maxima.

What I did not emphasize: Kac-Rice formula.

Song Mei (Stanford University) The landscape of non-convex optimization October 19, 2017 32 / 32


	Non-convex binary linear classification
	Uniform convergence
	Numerical experiment
	Landscape Theorem
	Applications
	Conclusion

