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Non-convex optimization

Rastign funciin

. (Stanford Univer ) The landscape of non-convex optimization



Why does non-convex neural network perform well?
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Why does some non-convex optimization perform well?
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Why does some non-convex optimization perform well?

v

Stochastic gradient descent escape bad local minima.

v

Good initialization escape bad local minima.

v

Globally there are less bad local minima.
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Non-convex optimization: analysis of global geometry

Number and locations of saddle points and local minima.
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.
Let’s do it!

The objective function

min Z{yz — o (Wi -+ o(Ws - o(Whz)))}
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.
Let’s do it!

The objective function

m1n — Z{y; — o(W2 - o(W1z;))}?
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.
Let’s do it!

The objective function

m1n — Z{yz (6, z:)}°
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Binary linear classification

The model
z; = (i, 9:). ¢ € R, y; € {0,1}. J
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One node neural network

The model
z = (zi,u:). z; € R, y; € {0, 1}. J

» Convex logit loss (4. is cvx in 6)
£c(0;2) = y(z,0) — log{1 + exp((z, 0))}.
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One node neural network

The model
z = (zi,u:). z; € R, y; € {0, 1}. J

» Non-convex loss (£ is not cvx in 6)

£6;2) ={y — o((z, 0})}2, where o(t) = 1/(1 + exp(t)).
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One node neural network
The model
zi = (z:,9:)- T € RY, y; € {0,1}. J

» Non-convex loss (£ is not cvx in 6)
£(6;2) = {y — o((x,6))}?, where o(t) = 1/(1 + exp(t)).
» Empirical Risk

R.(6) = %il 6;2;) = z:{yI —o((6,z:))}2
i=1
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One node neural network
The model
zi = (z:,9:)- T € RY, y; € {0,1}. J

» Non-convex loss (£ is not cvx in 6)
£(6;2) = {y — o((x,6))}?, where o(t) = 1/(1 + exp(t)).
» Empirical Risk

Zzezl = Z{yl—a (6,2:))}°

» Empirical risk minimizer
6, = arg min R, (6).
9€B4(R)
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A negative theoretical result

Theorem (Auer et. al. . 1996)

For the one node neural network, Vn,d > 0, there ezrists a dataset

(z:,9:)™, such that the empirical risk R,(8) has | 214 distinct local
minima.
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Theorem (Auer et. al. . 1996)

For the one node neural network, Vn,d > 0, there ezrists a dataset

(z:,9:)™, such that the empirical risk R,(8) has | 214 distinct local
minima.

The landscape of ﬁn(e) is very rough.
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A negative theoretical result

Theorem (Auer et. al. . 1996)

For the one node neural network, Vn,d > 0, there ezrists a dataset

(z:,9:)™, such that the empirical risk R,(8) has | 214 distinct local
minima.

h M £ A A ‘A‘A aa
The landscape of R,(f) is very rough. ] !“" Y YT “'M

. v ”“ ,/ v

Is this the end of the world of deep learning?
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Real data experiment
» The "Australian" data set from Statlog: d = 11, n = 683.
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Real data experiment

» The "Australian" data set from Statlog: d = 11, n = 683.
» Random initialization 6(0) ~ N(0,14).
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Real data experiment
» The "Australian" data set from Statlog: d = 11, n = 683.
» Random initialization 6(0) ~ N(0,14).
» Run gradient descent and track the path 6(k).
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Real data experiment

» The "Australian" data set from Statlog: d = 11, n = 683.
» Random initialization 6(0) ~ N(0,14).

» Run gradient descent and track the path 6(k).

» Generate multiple paths with independent initializations.
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Real data experiment

The "Australian" data set from Statlog: d = 11, n = 683.
Random initialization 8(0) ~ N (0,1;).

Run gradient descent and track the path (k).

Generate multiple paths with independent initializations.
Plot standard deviation over paths std(8(k)) versus k.
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One node neural network

On real data, we "always" observe a unique minimum! J
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One node neural network

On real data, we "always" observe a unique minimum! J

Why?
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One node neural network

On real data, we "always" observe a unique minimum! J
Why?
Data generated by nature is not against us! J
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A negative theoretical result

Theorem (Auer et. al. . 1996)

For the one node neural network, Vn,d > 0, there exrists a dataset

(z:,9:)%, such that the empirical risk R,(8) has | 2] distinct local
minima.

The landscape of B, (6) is very rough.
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A positive result

Theorem (Mei, Bai, Montanari. 2016)

Assume Y; are generated via P(Y; = 1|X;) = 0({X;, 6)) with mald
assumption on X;, as n = Q(dlogd), with high probability:

(a) R,(6) has a unique local minimizer 6, in B(0, R).

(b) 8, satisfies ||8, — 6o||2 = O(+/(dlogn)/n).

(c) Gradient descent converges exponentially fast to 6.

N

The landscape of R, (6) is actually smooth!
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Why assuming a statistical model make the landscape
of emprical risk smooth?
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Why assuming a statistical model make the landscape
of emprical risk smooth?

@ Assuming a statistical model (X;, Y;) vk P,i=1,...,n, we can

define the population risk
R(0) = E [Ra(9)] = Exy |(¥; — o((60, X:))?] -

The population risk is usually very smooth.
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Why assuming a statistical model make the landscape
of emprical risk smooth?

@ Assuming a statistical model (X;, Y;) vk P,i=1,...,n, we can

define the population risk
R(0) = E [Ra(9)] = Exy |(¥; — o((60, X:))?] -

The population risk is usually very smooth.

® We can transfer the good properties of the population risk to the
empirical risk using uniform convergence argument. So empirical
risk will be also smooth.
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ES————————
Population risk and empirical risk

The population risk has good properties under mild assumptions.
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Figure: Population risk.
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ES————————
Population risk and empirical risk

The population risk has good properties under mild assumptions.

Figure: Population risk. Figure: An instance of empirical risk.
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ES————————
Population risk and empirical risk

The population risk has good properties under mild assumptions.
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Figure: Population risk. Figure: An instance of empirical risk.

How can we relate the properties of empirical risk to population risk?
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ES————————
Population risk and empirical risk

The population risk has good properties under mild assumptions.

0o = [1,0]
2¢ 1 [ f 0 =[0.816, ~0.268] A
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i

Figure: Population risk. Figure: An instance of empirical risk.

How can we relate the properties of empirical risk to population risk?
Uniform convergence!
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Uniform convergence of gradients and Hessians.

Theorem (Uniform convergence. Informal)

Under the settings, for any § > 0, there exists a positive constant

C depending on (R,§) but independent of n and d, such that as
long as n > Cdlogd, we have

(1)
IP’( sup || VR(6) - VR()| g,/aﬂogn> >1-6.
6€B4(0,R) 2 n
(2]

P| sup Hvz‘ﬁzn(e)—sz(e)
0€B2(0,R)

. /Odlogn)zl_é,
op n

Proof is based on concentration inequalities and covering numbers
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Uniform convergence implies unique minimum of
empirical risk

The landscape of non-convex empirical risk

Empirical risk Risk  Empirical risk Risk Empirical risk Risk

Uniform smooth
surface
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Risk global min Risk global min Risk global min
E ERM —aMIe K8

ERM ==’ ERM —)’

1. What we thought 2. What hopefully is true 3. What we will prove

Figure: Landscape of empirical risk
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Numerical experiment
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Extensions

» Robust regression, gaussian mixture model, etc. High dimensional
settings d > n. [Mei et. al., 2017]

» ReLU activation. [Tian, 2017]

» Two Layers neural network. [Soltanolkotabi et. al., 2017|, [Zhong
et. al., 2017]

» Deep neural network. [Choromanska et. al., 2015]
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Interlude

Before studying the complex neural network, maybe we can first study
some simpler non-convex optimization problems.
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I —..
MaxCut Problem

» G: a positively weighted graph. Ag: its adjacency matrix.
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I —..
MaxCut Problem

» G: a positively weighted graph. Ag: its adjacency matrix.
» MaxCut of G: known to be NP-hard

1 n
imize - . Agi(1 - zizj).
e 4= onll = o) (MaxCut)

Song Mei (Stanford University) The landscape of non-convexr optimization October 19, 2017 23 / 32



MaxCut Problem SN

» G: a positively weighted graph. Ag: its adjacency matrix.‘
» MaxCut of G: known to be NP-hard

1 n
maximize - E Acii(l —z;z5). M
m%}&l]}ge 2 2 G,i; (1 — z:z5) (MaxCut)

» SDP relaxation: 0.878-approximate guarantee [Goemanns and
Williamson, 1995]

1
maximize - Z Ag (1 — X55),

XeRnxn S
W= (SDPCut)
subject to X;; =1,
X > 0.
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IN———————,,.....
The MaxCut SDP problem

» A € R™"™ symmetric.
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ES————————
The MaxCut SDP problem

» A € R™*™ symmetric.

» MaxCut SDP:
maximize (A, X)
XERTLX’IL

subject to X;; =1, %€ [n], (SDP)

X = 0.
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ES————————
The MaxCut SDP problem

» A € R™*™ symmetric.

» MaxCut SDP:
maximize (A, X)
XGRTLX’IL
subject to X;; =1, %€ [n], (SDP)

X = 0.

» Applications: MaxCut problem, Z» synchronization, Stochastic
block model...
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Burer-Monteiro approach
» Convex formulation: n up to 10 using interior point method
maximize (A, X)

XER’ILX’".
subject to X;; =1, %€ [n], (SDP)

X = 0.
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Burer-Monteiro approach
» Convex formulation: n up to 10 using interior point method
maximize (A, X)
XERTL)(’".
subject to X;; =1, %€ [n], (SDP)
X = 0.

» Change variable X =0 -0', 0 € R*** k < n.
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Burer-Monteiro approach
» Convex formulation: n up to 103 using interior point method

maximize (A, X)
XER‘IIX’".

subject to X;; =1, %€ [n], (SDP)
X = 0.

» Change variable X =0 -0', 0 € R*** k < n.
» Non-convex formulation: n up to 10°

maximize (o, Ao)
aeR‘nXk

N (k-Ncvx-SDP)

subject to o =[o1,...,0n

lodlla =1, 7 €[n].
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Related literatures

» As k > +/2n, the global maxima of the Non Convex formulation
coincide with the global maximizer of the Convex formulation
[Pataki, 1998], [Barviok, 2001], [Burer and Monteiro, 2003].
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Related literatures

» As k > +/2n, the global maxima of the Non Convex formulation
coincide with the global maximizer of the Convex formulation
[Pataki, 1998|, [Barviok, 2001], [Burer and Monteiro, 2003|.

» As k > +/2n, Non Convex formulation has no spurious local
maxima [Boumal, et al., 2016].

» What if £ remains of order 1, as n — co? Is there spurious local
maxima? Sadly, yes.

» How is these local maxima? Empirically, they are good!
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IN———————,,.....
Geometry

maximize (o, Ao) = f(o)
gERnXk

subject to ||o;||2 = 1. } My ={o e RV : ||os||l2 = 1}
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.
Geometry
maximize (o, Ao) = f(o)
oERnXk

subject to ||o;||2 = 1. } My ={o e RV : ||os||l2 = 1}

Definition (e-approximate concave point)

We call ¢ € My, an e-approximate concave point of f on My, if for any
tangent vector u € T, My, we have

(u, Hessf (o)[ul) < e(u, ). (1)
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Geometry

maximize (o, Ao) = f(o)
oERnXk

subject to ||o;||2 = 1. } My ={o e RV : ||os||l2 = 1}

Definition (e-approximate concave point)

We call ¢ € My, an e-approximate concave point of f on My, if for any
tangent vector u € T, My, we have

(u, Hessf (o)[ul) < e(u, ). (1)

v

Remark

A local maximizer is 0-approximate concave. An e-approximate
concave point is nearly locally optimal.
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Landscape Theorem

Theorem (A Grothendieck-type inequality)

For any e-approzimate concave point o € My, of the rank-k
non-convex problem, we have

f(o) > SDP(A4) — ﬁ(SDP(A) +SDP(-4) - Te.  (2)

v

SDP(A): the maximum value of SDP with input matrix A.

Geometric iterpretation: the function value for all local maxima are
within a gap of order O(1/k) within the global maximum.
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Landscape of non-convex SDP

> f(0) > SDP(A) — - (SDP(A) + SDP(—A4)) — Ze.

SDP(A) global optimi a local op

SDP(A) + SDP(—A)

a saddle point with
€ curvature
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Approximate MaxCut Guarantee

Theorem (Approximate MaxCut Guarantee)

For any k > 3, 1f 0* is a local mazimazer of corresponding rank-k
non-convexr problem, then we can use o* to find a

0.878 x (1 — 1/(k — 1))-approzimate MazCut.

Song Mei (Stanford University)
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Approximate MaxCut Guarantee

Theorem (Approximate MaxCut Guarantee)

For any k > 3, 1f 0* is a local mazimazer of corresponding rank-k
non-convexr problem, then we can use o* to find a

0.878 x (1 — 1/(k — 1))-approzimate MazCut.

The global maximizer: 0.878-approximate MaxCut.

Any Local maximizers: 0.878 x (1 — 1/(k — 1))-approximate MaxCut.
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Group Synchronization

» SO(d) synchronization, Orthogonal Cut SDP

maximize (A4, X)
X eRnkXnk

subject to  X; = I, (3)
X 0.

» Similar guarantee.
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Conclusion

» Studied the global geometry of some non-convex optimization
problems.

» Empirical risk minimization: uniform convergence excludes
spurious local minima.

» Non-convex MaxCut SDP: all local maxima are near global
maxima.

What I did not emphasize: Kac-Rice formula.
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