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Extreme values in transformer-based LLMs

[Dettmers et al., 2022] 
[Xiao et al., 2023] [Sun et 
al., 2024] [Guo et al., 
2024]
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Figure 1: Typical attention map (logarithmic) and value vector norm patterns in LLaMA2-7B-chat. Key observations
include: (1) The `1 norms are non-uniformly distributed across tokens in all layers and heads. (2) In figure (b), for
most heads in layers 3-31, regardless of the input text, there are two attention sink (Xiao et al., 2024) tokens at the
beginning of the text. Contrary to their massive attention scores, their `1 norms are close to 0 (highlighted in red).
(3) In some heads of the last layer, the second attention sink token in figure (b) has a smaller attention score than
other tokens, while its `1 norm is significantly larger than those of other tokens.

these concerns, in the context of KV cache reduc-
tion for LLMs, attention score appears to be highly
indicative of token importance. Recent studies have
demonstrated that removing even a very small num-
ber of tokens with large attention scores can signif-
icantly degrade the model’s performance (Zhang
et al., 2023; Xiao et al., 2024). Nevertheless, before
establishing attention score as the default choice for
the token importance indicator in LLMs, we pose
a timely question: Are there any essential elements
that may have been accidentally omitted when con-
sidering pivotal tokens for KV cache reduction?

Since the output of the attention mechanism is
the result of the multiplication of each token’s at-
tention score with its corresponding value vector,
we investigated the value vectors of LLMs. We
found the `1 norm of each token is highly non-
uniformly distributed, showing distinct differences
in magnitude. Previous study (Xiao et al., 2024)
identifies the attention sink tokens with massive
attention scores. We find, in contrast to the atten-
tion scores, the value vector norms of the attention
sink tokens are much smaller than other tokens.
Such a phenomenon is similar to the finding in
small Transformer models (Kobayashi et al., 2020).
When considering each token’s effects on the at-

tokens tend to receive disproportionately large attention scores
in BERT, yet those scores can often be significantly changed
without impacting the model’s predictions.

tention output, their value vector should also be
considered.

Building upon this observation, we introduce a
new approach termed Value-Aware Token Pruning
(VATP). Unlike traditional methods that rely solely
on attention score, VATP augments the attention
score with the norm of the value vector, provid-
ing a robust metric for evaluating token importance.
Specifically, we propose a novel token pruning met-
ric, where the KV cache of each token is assessed
based on the product of its attention score and the
`1 norm of the corresponding value vector. We con-
duct extensive experiments on the LLaMA2-7B-
chat and Vicuna-v1.5-7B models, evaluating VATP
across 16 long-context tasks from the LongBench
(Bai et al., 2023) benchmark. The results demon-
strate that VATP outperforms attention-score-only
baselines across a wide variety of tasks. Our re-
search clearly reveals the critical, yet previously
overlooked, role of the value vector norms in KV
cache reduction, challenging the prevailing belief
that attention score is all you need for evaluating
token importance in LLMs.

2 Related Work

Many works have explored improving the inference
efficiency of Transformer via token pruning. Goyal
et al. (2020); Zhao et al. (2022) accelerate BERT
by eliminating redundant word vectors based on
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• A universal phenomena: happens in almost all open-source 
LLMs including GPT-2, Llama-2, Llama-3, Pythia, Mixtrial, etc.   

• Troublemaking: inference, quantization, interpretability…
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Transformer-based LLMs

• A transformer is a sequence-to-sequence neural network .  

• Input sequence: ; each  is called a token. 
𝖳𝖥θ : ℝD×N → ℝD×N

H = [h1, h2, …, hN] ∈ ℝD×N hi ∈ ℝD

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). 
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Transformer-based LLMs

• A transformer is a sequence-to-sequence neural network .  

• Input sequence: ; each  is called a token. 
𝖳𝖥θ : ℝD×N → ℝD×N

H = [h1, h2, …, hN] ∈ ℝD×N hi ∈ ℝD

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). 

hNh1H = h2 h3 …h4

Summer is hotInput sentence: . Winter …

𝖳𝖥θ

H′ = h′ Nh′ 1 h′ 2 h′ 3 …h′ 4

is hotDecoding: . Winter …



Transformer architecture

• A transformer is an iterative composition of MLP layers and Attention layers 
 𝖳𝖥θ( ⋅ ) = (Id + 𝖬𝖫𝖯W(L)) ∘ (Id + 𝖠𝖳𝖳𝖭A(L)) ∘ ⋯ ∘ (Id + 𝖬𝖫𝖯W(1)) ∘ (Id + 𝖠𝖳𝖳𝖭A(1))
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Extreme-token phenomena
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Extreme-token phenomena

h1 h2 h3 hN

H = ⋯

Residual states
v1 v2 v3 vN

⋯

Value states

a11
a12 a22
a13 a23 a33

aN1 aNN

0

Attention weights

Residual states     +=    Attention weights    x      Value states

Attention sinks Value-state drains Residual-state peaks
[Xiao et. al., 2023] [Guo et. al., 2024] [Sun et. al., 2024]



Explain why the extreme-token phenomena appear 
in transformer-based LLMs (Static and dynamic)

Goal

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, and Song Mei. Active-Dormant Attention Heads: 
Mechanistically Demystifying Extreme-Token Phenomena in LLMs. arXiv preprint, arXiv: 2410.13835.
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Different attention pattern on Wiki/GitHub
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Active-Dormant Mechanism of attention heads

When zero-out the head, the 
performance of the transformer 
on GitHub data drops a lot. 

L16H25 in Llama-2-7B is active on GitHub data and dormant on Wikipedia data

L16H25 in Llama-2-7B

Different attention pattern on Wiki/GitHub
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A simple statistical model and A simplified transformer

Bigram-Backcopy model

Dataset = {H(i)} ∼iid H

Single-head single-layer transformer

𝖠𝖳𝖳𝖭(H ) = OVH ⋅ Softmax(𝗆𝖺𝗌𝗄(H⊤K⊤QH ))

𝖬𝖫𝖯(H ) = W1 ⋅ ReLU(W2H )

H = tokenize(⟨s⟩ v t v n a u t u h)

𝖳𝖥(H ) Hshifted
= v t v n a u t u h

CrossEntropy
Loss

Training TF by running Adam algorithm on
CrossEntropy(𝖳𝖥(H), Hshifted)

achieves optimal risk

Begin-of-sequece

H = ⟨s⟩ v t v n a u t u h ⋯

Backcopy: 

Copy the backward token at 

trigger tokens

Bigram: 

Sample the next token by Markov 

transition P( | previous token)⋅

𝒱 = {t, e} ∪ {a, b, ⋯d, f, ⋯, s, u, …}



The extreme-token phenomena in simplified model

(a) The Bigram-Backcopy task (b) Attention pattern (c) Small value states

Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.

defined as the (v, v0)th element of (H(`))>K>QH(`). For notation simplicity, we omit the dependence on `

and m in (Qryv, Keyv, Valv, logitv,v0), as these will be clear from context. When the other tokens are clear
from the context, we use the shorthand logitv or logitv0 for logitv,v0 .

We use hsi to refer to the "Beginning-of-Sequence" token. Since the hsi token consistently behaves as an
extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.

2 Extreme-token Phenomena in the Bigram-Backcopy Task
In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.

5

v1 v2 v3 vN

⋯

Value states

a11
a12 a22
a13 a23 a33

aN1 aNN

0

Attention weights

Attention sinks Value-state drains



The role of MLP and Attention head in BB task

𝖠𝖳𝖳𝖭(H )

𝖬𝖫𝖯(H )

H

𝖳𝖥(H )

(a) Excess risk after interventions (b) Training dynamics

Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi

)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi

)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi

)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi

)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.

defined as the (v, v0)th element of (H(`))>K>QH(`). For notation simplicity, we omit the dependence on `

and m in (Qryv, Keyv, Valv, logitv,v0), as these will be clear from context. When the other tokens are clear
from the context, we use the shorthand logitv or logitv0 for logitv,v0 .

We use hsi to refer to the "Beginning-of-Sequence" token. Since the hsi token consistently behaves as an
extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.

2 Extreme-token Phenomena in the Bigram-Backcopy Task
In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
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extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.
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In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
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is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
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On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.
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and m in (Qryv, Keyv, Valv, logitv,v0), as these will be clear from context. When the other tokens are clear
from the context, we use the shorthand logitv or logitv0 for logitv,v0 .

We use hsi to refer to the "Beginning-of-Sequence" token. Since the hsi token consistently behaves as an
extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.

2 Extreme-token Phenomena in the Bigram-Backcopy Task
In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
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The formation of attention sink along pre-training
(a) Excess risk after interventions (b) Training dynamics

Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.
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and m in (Qryv, Keyv, Valv, logitv,v0), as these will be clear from context. When the other tokens are clear
from the context, we use the shorthand logitv or logitv0 for logitv,v0 .

We use hsi to refer to the "Beginning-of-Sequence" token. Since the hsi token consistently behaves as an
extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.
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In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.

5

(a) The Bigram-Backcopy task (b) Attention pattern (c) Small value states

Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.

defined as the (v, v0)th element of (H(`))>K>QH(`). For notation simplicity, we omit the dependence on `

and m in (Qryv, Keyv, Valv, logitv,v0), as these will be clear from context. When the other tokens are clear
from the context, we use the shorthand logitv or logitv0 for logitv,v0 .

We use hsi to refer to the "Beginning-of-Sequence" token. Since the hsi token consistently behaves as an
extreme token in LLMs, we often refer to hsi and extreme tokens interchangeably. We also abuse the notation
by writing (Qryhsi, Keyhsi, Valhsi) to represent the query, key, and value states of the hsi token.

2 Extreme-token Phenomena in the Bigram-Backcopy Task
In this section, we analyze simple transformers trained on the Bigram-Backcopy (BB) task, a simple model
that exhibits extreme-token phenomena. We demonstrate the active-dormant mechanism (cf. Claim 1) and
mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.

5



The Mutual Reinforcement Mechanism

(a) The Bigram-Backcopy task (b) Attention pattern (c) Small value states

Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.
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Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.
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Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.
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On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state
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mutual reinforcement mechanism (cf. Claim 2) within the BB task and provide predictions for the behavior
of sink tokens, which will be validated through LLM experiments in the following section.

The Bigram-Backcopy task is a data-generation model that consists of two sub-tasks: Bigram-transition and
Backcopy. In this model, each sequence begins with the hsi token, followed by tokens sampled according to
a pre-determined bigram transition probability P (in other words, a Markov chain). When specific trigger
tokens are encountered, instead of sampling according to the transition P, the preceding token is copied to the
next position. An illustration of the Bigram-Backcopy task is provided in Figure 2a. Following Bietti et al.
(2024), we select the transition P and the vocabulary V with |V| = V = 64 based on the estimated character-
level bigram distribution from the tiny Shakespeare dataset. In all experiments, the set of trigger tokens, T ,
is fixed and consists of the |T | = 3 most frequent tokens from the unigram distribution. Consequently, the
non-trigger token set, V \ T , comprises 61 tokens.

2.1 One-layer transformer exhibits attention sinks and value-state drains

On the Bigram-Backcopy task, we pre-train a standard one-layer transformer with a single SoftMax attn head
and one mlp layer. Unless otherwise specified, the model is trained using Adam for 10, 000 steps, achieving
near-optimal prediction accuracy. Detailed training procedures are provided in Appendix C.1. Figure 2b
shows that the trained transformer exhibits the attention sink phenomenon, where the hsi token captures a
significant proportion of the attention weights. More importantly, the attention weights display interpretable
patterns: all non-trigger tokens exhibit attention sinks, while the attention for trigger tokens is concentrated
on their preceding positions. Additionally, Figure 2c reveals a value-state drain phenomenon similar to that
observed in LLMs, suggesting that, for non-trigger tokens, the attn head contributes minimal value to the
residual stream. We provide additional attention patterns on different input sequences in Appendix C.2.
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Figure 2: Experiments on the Bigram-Backcopy task. Left (a): The data generation procedure for the Bigram-
Backcopy task. Here we fix ‘t’, ‘e’, and the space character (‘ ’) as trigger tokens. The BB task samples bigram
transitions for non-trigger tokens and backcopies for trigger tokens. Middle (b): The attention map of a given prompt.
Trigger tokens are marked in red. The attention head at non-trigger tokens is dormant and displays attention sinks.
Right (c): The value state norms for the prompt. The hsi token has the smallest norm.
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Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state

6

(a) Excess risk after interventions (b) Training dynamics

Figure 3: Interventions and dynamics of one-layer transformer on the Bigram-Backcopy task. Left (a):
Excess risks for a one-layer model trained on the Bigram-Backcopy (BB) task under various interventions. Right
(b): The excess risks, attention weights, attention logits, and value state norms for the hsi token throughout the
training dynamics. Each curve is rescaled to fall within a 0 to 1 range. On the right side of (b), the horizontal axis is
logarithmically scaled. The �logithsi curve represents the mean of attention logits from all given non-trigger query
tokens v on the hsi token, normalized by the mean of attention logits for other tokens. The shaded area represents
the 90% uncertainty interval on the distribution over all non-trigger tokens. ⌧Song notes: Another thinner vertical line at
iteration 200. �

The active-dormant mechanism of the attention head. Inspired by the interpretable attention weight
patterns observed, we propose the active-dormant mechanism. For any given token, an attention head is
considered active if it makes a significant contribution to the residual state, and dormant if its contribution
is minimal. As illustrated in Figure 2b, when trained on the BB task, the attention head is active for trigger
tokens and dormant for non-trigger tokens.

Figure 3a demonstrates that the mlp layer is responsible for the Bigram task whereas the attn head takes
care of the Backcopy task. When the mlp layer is zeroed out, the backcopy loss remains significantly better
than a random guess, but the bigram loss degrades to near-random levels. Conversely, when the attn layer is
zeroed out, the backcopy loss becomes worse than a random guess, while the bigram loss remains unaffected.
This indicates that on trigger tokens, the attn head is active and handles the backcopy task, whereas on non-
trigger tokens, the attn head is dormant, allowing the mlp layer to handle the Bigram task. We summarize
the active-dormant mechanism of the attn head in Claim 1.

Claim 1 (Active-dormant mechanism). Attention heads of pre-trained models are often governed by the
active-dormant mechanism, exhibiting two phases:

(1) Dormant phase: On non-trigger tokens, the attn head assigns dominant weights to the hsi token,
adding minimal value to the residual stream and having little impact on the model’s output.

(2) Active phase: On trigger tokens, the attn head assigns dominant attention weights to relevant context
tokens, adding substantial value to the residual stream and significantly impacting the model’s output.

The growth of attention logits on the hsi token and the decrease in its value state norms.
Figure 3b illustrates the training dynamics of excess risks, attention weights, attention logits (for each token
vn at position n in the prompt, we compute �logithsi = meann[hQryvn , Keyhsii�meani(hQryvn , Keyvi)i], which
serves as a progress measure for attention sinks), and value state norms for the hsi token. All values are
rescaled to the 0 to 1 range to highlight trends rather than absolute values. Both the Bigram and Backcopy
excess risks decrease to nearly zero within the first 1000 steps, with the Bigram excess risk approaching zero
faster than the Backcopy risk. As the Backcopy risk decreases, the attention weights on the hsi token begin
to increase, suggesting a connection between the formation of attention sinks and the backcopy function in
the attention heads. After the first 1000 steps, although both Bigram and Backcopy excess risks have nearly
reached zero, the attention logits and weights on the hsi token continue to increase, while the value state

6

Attention sinks Value-state drains

Attention sinkValue state drain

Minimizing 
risk

Theorem [Our result; Informal]:  
If the model can accurately predict the next 
token without using the attention head, but 
adding any value state from previous tokens 
worsens the prediction, the attention head will 
become dormant and form an attention sink. 
Dynamically, this arises from a mutual 
reinforcement mechanism:  

• The SoftMax function shifts attention 
weights towards tokens that exhibit value-
state drains, reinforcing these tokens as 
attention sinks.  

• Attention sinks on these extreme tokens 
further suppress their value states, 
reinforcing their role as value-state drains. 



Examine mutual reinforcement in LLMs:  
the OLMo model



Mutual Reinforcement Mechanism in OLMo



Mutual Reinforcement Mechanism in OLMo

The attention sinks start increase when 
value states norms start decreasing 



Mutual Reinforcement Mechanism in OLMo

The attention sinks stop increase when 
value states norms stop decreasing 



Replace softmax to ReLU  
elimintates the extreme-token phenomena

In practice, people have trained small scale ReLU transformer (up to 1 Billion 
parameters), demonstrating similar performance as Softmax transformer.



Summary

• Pretrained transformer-based LLMs exhibit extreme-token phenomena. 

• As predicted from the Bigram-Backcopy model, these extreme-token phenomena 
are governed by the Active-Dormant mechanism and mutual reinforcement 
mechanism.  

• Replacing Softmax to ReLU attention eliminate the extreme-token phenomena.  

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, and Song Mei. Active-Dormant Attention Heads: 
Mechanistically Demystifying Extreme-Token Phenomena in LLMs. arXiv preprint, arXiv: 2410.13835.
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