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Neural tangent model

I Multi-layers NN: fN (x;θ), x 2 Rd, θ 2 RN

I Expanding around θ0:

fN (x;θ) = fN (x;θ0) + hθ � θ0;rθfN (x;θ0)i+ o(kθ � θ0k2):

I Neural tangent model:

fNT;N (x;β;θ0) = hβ;rθfN (x;θ0)i:

I Coupled gradient flow:
d

dt
θt = �rθÊ[(y � fN (x;θt))2]; θ0 = θ0;

d

dt
βt = �rβÊ[(y � fNT;N (x;βt;θ0))

2]; β0 = 0:

I Under proper initialization and over-parameterization:

lim
N!1

jfN (x;θt)� fNT;N (x;βt)j = 0:

[Jacot, Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Chizat, Bach, 2018b], ....
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How about generalization?

I [Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019]:
Cifar10 experiments. NT: 23% test error. NN: less than 5% test error.

I [Arora, Du, Li, Salakhutdinov, Wang, Yu, 2019]:
Small dataset, NT sometimes generalize better than NN.

I [Shankar, Fang, Guo, Fridovich-Keil, Schmidt, Ragan-Kelley, Recht, 2020]
[Li, Wang, Yu, Du, Hu, Salakhutdinov, Arora, 2019]:
Smaller gap between NT and NN on Cifar10 (10% for NT).

Sometimes there is a large gap, while sometimes the gap is small.
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Focus of this talk

When is there a large performance gap between NN and NT?
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Two-layers neural networks
Neural networks:

FNN;N =
n
fN (x;Θ) =

NX
i=1

ai�(hwi;xi) : ai 2 R;wi 2 Rd
o
:

Linearization:

fN (x;Θ) = fN (x;Θ0) +

NX
i=1

�ai�(hw
0
i ;xi)

| {z }
Top layer linearization

+

NX
i=1

a
0
i�
0(hw0

i ;xi)h�wi;xi

| {z }
Bottom layer linearization

+o(�):

Linearized neural networks (W = (wi)i2[N] �iid Unif(Sd�1)):

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

FNT;N (W ) =
n
f =

NX
i=1

�
0(hwi;xi)hbi;xi : bi 2 Rd

; i 2 [N ]
o
:

Song Mei (Stanford University) Neural Networks and Kernel Methods June 29, 2020 5 / 15



Two-layers neural networks
Neural networks:

FNN;N =
n
fN (x;Θ) =

NX
i=1

ai�(hwi;xi) : ai 2 R;wi 2 Rd
o
:

Linearization:

fN (x;Θ) = fN (x;Θ0) +

NX
i=1

�ai�(hw
0
i ;xi)

| {z }
Top layer linearization

+

NX
i=1

a
0
i�
0(hw0

i ;xi)h�wi;xi

| {z }
Bottom layer linearization

+o(�):

Linearized neural networks (W = (wi)i2[N] �iid Unif(Sd�1)):

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

FNT;N (W ) =
n
f =

NX
i=1

�
0(hwi;xi)hbi;xi : bi 2 Rd

; i 2 [N ]
o
:

Song Mei (Stanford University) Neural Networks and Kernel Methods June 29, 2020 5 / 15



Spiked features model

I Signal features and junk features

x = (x1;x2) 2 Rd; x1 2 Rds ; x2 2 Rd�ds ;

ds = d�; 0 � � � 1;

Cov(x1) = snrf � Ids ; Cov(x2) = Id�ds ;

snrf = d�; 0 � � <1 (feature SNR):

I Response depend on signal features

y = f?(x) + "; f?(x) = '(x1):

x1
f⋆(x1, x2) = φ(x1)

x2

Figure: Anisotropic features:
� > 0, snrf > 1

I Feature SNR: snrf = d� � 1.
I Effective dimension: de� = ds _ (d=snrf). We have ds � de� � d.
I Larger snrf induces smaller de� .

More precisely: x � Unif(Sds (r
p
ds))� Unif(Sd�ds (

p
d)). Generalizable to multi-spheres.
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Approximation error with N neurons

Approximation error: R(f?;F) = inff2F kf? � fk2L2 .

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2020)
Assume de�

`+� � N � de�
`+1�� and “generic condition” on �, we have

R(f?;FRF;N (W )) = kP>`f?k
2
L2 + od;P(�);

R(f?;FNT;N (W )) = kP>`+1f?k
2
L2 + od;P(�):

On the contrary, assume ds
`+� � N � ds

`+1��, we have

R(f?;FNN;N ) � kP>`+1f?k
2
L2 + od(�):

Moreover, R(f?;FNN;N ) is independent of snrf .

P>`: projection orthogonal to the space of degree-` polynomials.
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Approximation error with N neurons

Dim de� � ds _ (d=snrf) and ds � de� � d.

To approx. a degree-` poly. in x1:

I NN need at most ds` parameters*.

I RF need de�
` parameters.

I NT need de�
`�1 � d parameters.

Approximation power: NN � RF � NT.

* If we don’t count parameters with value 0.
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Extreme case: low feature SNR

Fix 0 < � < 1, low snrf : � = 0.

To approx. a degree-` poly. in x1:

I NN need at most d�` parameters*.

I RF need d` parameters.

I NT need d` parameters.

Approximation power: NN > RF = NT.

x1
f⋆(x1, x2) = φ(x1)

x2

Figure: Isotropic features: � = 0,
snrf = 1

* If we don’t count parameters with value 0.
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Extreme case: high feature SNR

Fix 0 < � < 1, high snrf : �� 1.

To approx. a degree-` poly. in x1:

I NN need at most d�` parameters*.

I RF need d�` parameters.

I NT need d�(`�1)+1 parameters.

Approximation power: NN � RF > NT.

x1
f⋆(x1, x2) = φ(x1)

x2

Figure: Anisotropic features:
� > 0, snrf > 1

* If we don’t count parameters with value 0.
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Numerical simulations
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Colorbar: � 2 [0; 1].
Dot-dashed: NN.
Dashed lines: RF;
Continuous lines: NT;
Dimension: d = 1024.
Eff. dim: ds = 16.

Conclusion
(a) Power: NN � RF � NT. (b) Risk of NN independent of snrf .
(c) Larger snrf induces larger power of fRF;NTg.
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Similar results for generalization error with finite samples n
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Extreme case: low feature SNR

Fix 0 < � < 1, low snrf : � = 0.

To fit a degree-` poly. in x1:

I 9�, NN need at most d�` samples.

I fRF;NTg kernel need d` samples.

Potential generalization power:
NN > Kernel methods.

x1
f⋆(x1, x2) = φ(x1)

x2

Figure: Isotropic features: � = 0,
snrf = 1
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Implications

Adding isotropic noise in features (i.e., decreasing snrf),
performance gap between NN and fRF;NTg becomes larger.
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Numerical simulations
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Figure: Underlying assumption: labels depend on low frequency components of
images.
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Message

In spiked features model, a controlling parameter of the performance gap
between NN and fRF;NTg is

snrf = Feature SNR =
Signal features variance
Junk features variance

:

I Small snrf , there is a large separation.
I Large snrf , fRF;NTg performs closer to NN.

Somewhat implicitly, NN first finds the signal features (PCA), and then
perform kernel methods on these features.

snrf 6= SNR = kf?k2L2
=E["2]
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Thank you!
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