Revisiting neural network approximation theory in
the age of generative Al

— — From function to algorithm approximation

Song Mei
UC Berkeley

Based on joint work with
Yu Bai (Salesforce Research), Fan Chen (Peking U -> MIT PhD), Licong Lin,
Tianyu Guo (UC Berkeley), Yuchen Wu (Stanford -> Upenn postdoc), Huan Wang,
Caiming Xiong (Salesforce Research)

=

\ ()

/_,,,m

O
N\ (% \\
o,v@.,. &5

Yo
\\\\Aw\\, A
RIS

N\
W

P

Traditional view:
Neural networks are function approximators

Traditional view:
Neural networks are function approximators

Textbook results: A
» 1-hidden layer NNs are universal function approximators.
» NNs efficiently represent “smooth” or “low dimensional” functions.
» For high-dimensional functions, “curse of dimensionality” in worst case.
[Hornik, 1991], [Barron, 1993], [Bach, 2017] P

CoD: Require #neuron ~ 1/ to achieve ¢ accuracy
s : sSmoothness of target function in d dimension

Diffusion model high dimensional input-output

@ DALL-E History Collections

A cartoon displaying a cat riding on an airplane during night, from his home toward a castle

Concatenate

Concatenate

Concatenate

Concatenate

2
)
o)
\(\1‘- £
ﬁ —— — —

///////////////

time embedding

Diffusion model high dimensional input-output

@ DALL-E History Collections

Concatenate

A cartoon displaying a cat riding on an airplane during night, from his home toward a castle

Concatenate

Concatenate

Concatenate

— — — —

///////////////

time embedding

Language model high dimensional input with varying dimensions
Y. How long does it take from SFO to ORD? [)’1][)’z][}’3] ‘ym \
The flight time between San Francisco International Airport (SFO) and Chicago O'Hare [Transformer LM]
International Airport (ORD) varies depending on factors like wind speed and direction, the 3 y
specific flight path chosen, and the type of aircraft used. Generally, non-stop flights from

SFO to ORD take approximately 4 to 4.5 hours. However, actual flight times can be shorter or [xi)] [x

longer, so it's always best to check with the airline for the most accurate and current

information. \ Y d \ Y J

Original sentence Rewritten sentence

Neural networks are funection algorithm approximators

Neural networks are funection algorithm approximators

Today:

1. Examples: Language, Diffusion.

2. Discussion: Function vs Algorithm. Benefits of
the algorithm approximation perspective.

Example: Language models

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
Chowdhery, Aakanksha, et al. "Palm: Scaling language modeling with pathways." arXiv preprint arXiv:2204.02311 (2022).

The in-context learning (ICL) capability

%) Apple->Fruit. Sofa->Furniture. Bird -> 7

©

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

The in-context learning (ICL) capability

: "'b.g Apple -> Fruit. Sofa -> Furniture. Bird -> ?

©

A transformer y = TF;(H) meta-trained with a huge meta-dataset.

In-context learning capability
» Let {(x;, ¥)}iepve1y ~ P, where PP is unknown to TF.

» Take H =[x}, Y1, %5, Y5, .-, Xy» YN Xy41] @S the context input.

» Output a good estimates y,.; = TE;(H) = yy, .

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

The in-context learning (ICL) capability

: "'b.g Apple -> Fruit. Sofa -> Furniture. Bird -> ?
, X,

A transformer y = TF;(H) meta-trained with a huge meta-dataset.

In-context learning capability
» Let {(x;, ¥)}iepve1y ~ P, where PP is unknown to TF.

» Take H =[x}, Y1, %5, Y5, .-, Xy» YN Xy41] @S the context input.

» Output a good estimates y,.; = TE;(H) = yy, .

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N]a p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,
Ma, Zhou 2022], [von Oswald,
Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov
, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N]a p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

e Adataset of (size N) is a meta-datapoint: H = [x, y{, X5, V5, -+, Xp Y-

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,
Ma, Zhou 2022], [von Oswald,
Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov
, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N]a p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

e Adataset of (size N) is a meta-datapoint: H = [x, y{, Xy, Yy, -+, Xy Y]

o Ameta-dataset (size n): {HY =[x,y x, y xD yD1) .

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,
Ma, Zhou 2022], [von Oswald,
Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov
, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N], p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

e Adataset of (size N) is a meta-datapoint: H = [x, y{, Xy, Yy, -+, Xy Y]
o Ameta-dataset (size n): {HY =[x,y x, y xD yD1) .
e Train the GPT2 model using {H(f)}je[n] (a smaller version of ChatGPT).
n N 2
: () _ () 1)
meln Z Z <yi TEyxy vy)

j=1 i=1

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,
Ma, Zhou 2022], [von Oswald,
Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov
, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N], p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

A dataset of (size N) is a meta-datapoint: H = [x, y{, X5, Y, -+ -5 Xn;, Y-
A meta-dataset (size n): {HY =[x,y x, y D, xD y P e
Train the GPT2 model using {H(f)}je[n] (a smaller version of ChatGPT).
n N 2
: () _ () 1)
meln Z Z <yi TEyxy vy)

j=1 i=1

Evaluate the test performance of GPT2 on a new independent task.

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,
Ma, Zhou 2022], [von Oswald,
Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov
, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N], p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

A dataset of (size N) is a meta-datapoint: H = [x, y, X5, Y5, -+« Xy Y-
A meta-dataset (size n): {HY =[x,y x, y D, xD y P e
Train the GPT2 model using {H(f)}je[n] (a smaller version of ChatGPT).
n N)
mZ) (3 = TR0)
Evaluate the test performance of GPT2 on a new independent task.

Noisy linear regression

— TF_NLR
ndge_lam=0.125

- ridge_lam=1.25 4+ Bayes Opt'mal

— ridge_lam=12.5

o
o

squared error
o
()}

[Garg, Tsipras, Liang, Valiant. 2022],

[AkyUrek, Schuurmans, Andreas,

o 5 10 15 20 25 30 35 40 Ma, Zhou 2022], [von Oswald,
in-context examples Niklasson, Randazzo, Sacramento,

Mordvintsev, Zhmoginov, Vladymyrov

, 2022]

ICL experiment on synthetic datasets
A Task : (X yi)}ie[N], p~ N(0,l1,/d),
x;~NOL), y,=xf+e, &~ N0,06%

A dataset of (size N) is a meta-datapoint: H = [x, y, X5, Y5, -+« Xy Y-
A meta-dataset (size n): {HY =[x,y x, y D, xD y P e
Train the GPT2 model using {H(f)}je[n] (a smaller version of ChatGPT).
n N)
min Z) (3 = TR0)
Evaluate the test performance of GPT2 on a new independent task.

Noisy linear regression

- TF_NLR
rndge_lam=0.125

- ridge_lam=1.25 4+ Bayes Optlmal

— ridge_lam=12.5

o
o

squared error
o
()}

[Garg, Tsipras, Liang, Valiant. 2022],
[AkyUrek, Schuurmans, Andreas,

0 5 10 15 20 25 30 35 40 Ma, Zhou 2022], [von Oswald,
in-context examples Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov

Why can GPT (transformers) perform in-context learning (ICL)? 2022l

Transformers

e Atransformer* is a sequence-to-sequence neural network TFy : RPXN — RPXN,
e Input sequence: H = [hy, h,, ..., hy] € RP*Y; each h, € R” is called a token.

o= hi|h| k] s]| hy

e Transformer output: H' = TFy(H) = [hj, -+, h},] € RP*N,
e Final output: y = read(TFy(H)).

* Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
We focus on the encoder architecture.

Transformers: Feedforward layer

e Atransformer is an alternating composition of FF layers and Attention layers
TFH()) — FFW(L) ° ATTNA(L) O s+ 0 FFW(I) ° ATTNA(I)
0 = (W(L),A(L), s W(l),A(l))

* Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformers: Feedforward layer

e Atransformer is an alternating composition of FF layers and Attention layers
TFH()) — FFW(L) ° ATTNA(L) O s+ 0 FFW(I) ° ATTNA(I)
0 = (W(L),A(L), s W(l),A(l))

e Feedforward layer: H = FFy(H) : RPN — RPXN
W=W,Wy), W,W, eRP>*P

e Token-wise function:

hlha ha| P | F |y
l l l l l l FF layer
ABRRHBE

* Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformers: Attention layer

e Atransformer is an alternating composition of FF layers and Attention layers
TFH()) — FFW(L) ° ATTNA(L) O s+ 0 FFW(I) ° ATTNA(I)
0 = (W(L),A(L), s W(l),A(l))

e Attention layer: H' = ATTN,(H) : RPN — RPXN
A =0, K, V) mermrs 0,.K, 6V €RP*P

o Multi-head attention layer: h; = h; + ZZ:I% j]il c({0, ., K, 1)) -V, h

Attention layer

* Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformers: the whole structure

ATTN,w

FFyw
TFy

read

<>

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
Chowadhery, Aakanksha, et al. "Palm: Scaling language modeling with pathways." arXiv preprint arXiv.2204.02311 (2022).

ICL by transformers

1(x;,)’i)}ie[NH] 1d, y; = f({x;, we)) + g

e |CL by transformers:

xl X2 X3 E E XN AN+1
Input format: H= Y1 |Y21Y3]: | |Yv| O1—> Reserved slot for output

O[O1O]:1]:]10]0 |— Scratch pad

l TFg
X X . v X v
e = A A2] 43 ul read o
o(H) = |y | 2| Y3 Y » Output: Yy
S I et % |

Hope: V.| is a good estimator of yy ., |

ICL by transformers

{6 y3) }ie[N+1] 1d,

Yi = f({x we)) + €

e |CL by transformers:

Input format: H =

TFo(H) =

— Reserved slot for output

— Scratch pad

read ~
> OUtpUt: yN_|_1

xl X2 X3 E E XN AN+1

Yi Y2 |Ya]:|: |In] O

OfO1O0]:1:10160
l TFp

xl x2 .X3 . . XN AN+1

Yi|Y2 |)3 YN | I

%k %k % % %

Hope: V.| is a good estimator of yy ., |

e Explanation: transformers can approximate GD on R y(w) =+ X", £(5'w.)

[Akylrek, Schuurmans, Andreas, Ma, Zhou 2022], [von Oswald, Niklasson, Randazzo, Sacramento,
Mordvintsev, Zhmoginov, Vladymyrov , 2022] have rough ideas of this kind.

One-step gradient descent by an attention layer

Attention

One-step gradient descent by an attention layer

Attention

Gradient - 0,7 ((],),E1) <[]

descent

One-step gradient descent by an attention layer

Attention
N 0 |
. | — _ b, x |»] o ’
Weight 0| = =" K E=KH |V =&
t t m m
L s , ,

M
Universal approximation 0 6(s;) R Y | Gy 0(b, s + ¢, 1)

i = E- LY o/((E.E).@) xE]
=1

Transformer versus multi-step GD

Transformer

Input
ATTN, o)

ATTN, o

<>

Transformer versus multi-step GD

Transformer

Input
ATTN, o)

Gradient descent

0=0

w
W

ATTN, o

n
=wl— =% 0,£(x'"w’ y) X x,
NZ (Yi)

N
n
» wr=w!— N Z 0,£(x'wl,y) X x;

» wh=wt1l- 20 £ whly) X x,

<>

> I =S wh)

read

\4

YN+1

Transformer versus PGD

Transformer Proximal gradient descent
Input (A | Ay Ag| 2 | ¢ | Ay w!=0
ATTN,) S > w' —WO——Zﬁ f(x ,yl-)Xxl-
hylho|hs| 2| & |y
FFwo l l l l l l > w! = Prox,z(w"?)
hilhy by i | ¢ By
FFywo l l l l l l » wl = Prox,z(wt0?)

> I =S wh)

read

\4

YN+1

In-context ridge, logistic, LASSO

Parameters for the size of TF;

Embedding dimensions D, number of layers L, number of ATTN heads M,

FF width D', and norm of parameters ||| @ ||

rThm: There exists three transformers with D = D" = O(d), || €| = O(Poly(-)) h
Ridge : L = O(log(N)), M =3,
Logistic : L = O(log(N/d)), M = N/d,
LASSO : L=0(1+d/N), M =2,
that output y,.,; implementing Ridge, Logistic, LASSO, with
Ridge : E[(Dynrq — Yne)?] — 6% < O(dIN),
Logistic : El(Vne1 — Elynveg |xN+1])2] < O(d/N),
LASSO : E[(Pyniq — Yna1)?] — 0> < O(slogd/N) .
- y

[Bai, Chen, Wang, Xiong, Mei, 2023]

Such transformers can be found statistically efficiently

Setting of meta-training:

Meta-dataset {Z} () ~iig 7 With ZV = {(x, y)} iy id.

JjE€[n]
= arg min z,”(W) TE(HWYW)}
VIS, { 2 +l 0()

O = {0 : L layers, M heads, D’ width, B norm}

-
Thm [Generalization for meta-training]:

E| (e TRt) | < inf E| (1. TEG(H))| + @< \/L2(M02+DD')1ogB>

n

[Bai, Chen, Wang, Xiong, Mei, 2023]

Such transformers can be found statistically efficiently

Setting of meta-training:

Meta-dataset {Z} () ~iig 7 With ZV = {(x, y)} iy id.

JjE€[n]
= arg min f(W) TE(HWYW)}
0co { 2 yN 1 0()

O = {0 : L layers, M heads, D’ width, B norm}

-
Thm [Generalization for meta-training]:

E| (e TRt) | < inf E| (1. TEG(H))| + @< \/L2(M02+DD')1ogB>

n

For example, if zis sparse linear model (LASSO), the overall error with N
In-context sample and n meta-training samples gives

2, f slogd [d°
[E[(yNH—TFé(H))]—a:@ =+

[Bai, Chen, Wang, Xiong, Mei, 2023]

Extension: Transformer for decision making

A bandit machine has two arms, each with a fixed reward distribution. Please tell me S d R d
which arm you pick at each round without reasoning, and | will tell you the reward. Your tate an eWar

goal is to maximize the total received rewards. Let's get started.

Round 1: | pick arm 1.
A\ =l Copy gl

Reward 0.6 @ .
Environment TF
Round 2: | pick arm 2.
A\ T Copy
Reward 0.4 @
Round 3: | pick arm 1.
AL T Copy @
Reward 0.8 @ ACtiOﬂ
e : .
Thm (informal): There exists a
transformers that implements
a a a,_ . . :
i ! L Reinforcement learning algorithm such
1 2| : : : —1 t : :
s s 1| | as LinUCB, which can be found through
2 3 Sy
supervised pretraining and achieve near
optimal regret bound.
-

[Lin, Bai, Mei, 2023]

Example: Diffusion models

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]
[Song and Ermon, 2019]
[Ho, Jain, Abbeel, 2020]

[Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole, 2020]

Diffusion models (DALLE-2)

@ DALLE

A cartoon displaying a cat riding on an airplane during night, from his home toward a castle

Diffusion models

Generative modeling task:

Learn a model from {X; };c(,,; ~iiq #» @nd generate a new sample X ~ p approximately

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]

Diffusion models

Generative modeling task:

Learn a model from {X;};cr,1 ~iig #» @nd generate a new sample X ~ p approximately

Step 2: Generate a white noise, and apply the denoising networks sequentially

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]

Diffusion models

Generative modeling task:

Learn a model from {X;};cr,1 ~iig #» @nd generate a new sample X ~ p approximately

Step 1: Train denoising networks using noisy images to predict the clear ones

bbb

Noise

Step 2: Generate a white noise, and apply the denoising networks sequentially

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]

Math formulation
Neuralnetwork denoising

Noise

Step 1: Fit score functions §.() : R? — R4 by ERM over neural networks

1 n

§, = arg min —
NNeF n “)
1=

2
67 g, + NN(Lx. + atgl-)‘ . g~ ML), (A,0)= (e 1—e).
2

Step 2: Discretize the SDE from Gaussian initialization
dY, = (Y,+28;_(Y))dt +4/2dB, t€[0.T], Yy~ H(0,L),

and take the approximate sample X = Y.

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]

Math formulation
Neural network denoising

Noise

Step 1: Fit score functions §.() : R? — R4 by ERM over neural networks

1 n

§, = arg min —
NNeF n “)
1=

2
67 g, + NN(Lx. + atgl-)‘ . g~ ML), (A,0)= (e 1—e).
2

Step 2: Discretize the SDE from Gaussian initialization
dY, = (Y,+28;_(Y))dt +4/2dB, t€[0.T], Yy~ H(0,L),

and take the approximate sample X = Y.

Theorem: Assume n = 00, & = {all functions}. Assume there is no discretization

error and T = 00. Then we have X ~ .

[Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli, 2015]

The score function

» Step 1: Fit score functions §,(-) : R — R? by ERM over neural networks

1 n
§, = arg min —2
NNeF n

_ 2
O, lgi + NN(4,x; + Gtgi)H
i=1 2

» The population risk minimizer gives

St(') = arg Igll\ln |E(x,g)~/,t></l/(0,ld)”6t_1g + NN(/II'X + O-tg)”% — VlOg /’tz())

where p, is the distribution of z, = A,.x + 6, when (x, g) ~ u X 4(0,1,)

Question:
When the score function s,(-) : R — R4 can be efficiently

learned by neural networks?

Prior work

NNs as function approximators: [Oko, 2023], [Chen et al., 2023]

> Assume u has a smooth density, then the score
s(z) = Vlog u(z) is smooth.

> NN can approximate smooth functions.

Challenge: CoD in high-dimension,
l.e., requires network size and sample size to be exp(d).

Alternative approach: The algorithm unrolling perspective

5i(z) = Vlog pu(2)

pixels of the
© X trueimage
.................. (hidden)

pixels of the

.................. ™ Zjj noisy image
(observed)

Our approach:
a) Natural image distribution is often modeled as graphical models

b) For graphical models, score functions can be computed using variational
inference algorithms

c) These VI algorithms often admit efficient NN approximation

The algorithm unrolling perspective

e Assume yu is an Ising model
u(x) < exp{x'Ax/2}, xe{-1,1}4
The score function
s(2) = (4 - m(2) = 2)le7,
mJ(z) = [E(X,g),vﬂ>< 7. Id)[x | Ax+ 0,8 = 7]

1, (x) < exp{x'Ax/2 + Lo *x,z)}, x€ {-1,1}

The algorithm unrolling perspective

e Assume yu is an Ising model
u(x) < exp{x'Ax/2}, xe{-1,1}4
The score function
s(2) = (4 - m(2) = 2)le7,
m(z) = E g)muxs0. 1)lx | Ax+ 0,8 = 7]

1, (x) < exp{x'Ax/2 + Lo *x,z)}, x€ {-1,1}

e Inference in graphical model: m,(z) is close to minimizer of a VI objective

d
m(z) = arg min {FVI(m) = Z — h(m;) — %mT(A — K)m — ﬂ,at_z(m, 2) }

me[—-1,11¢ :
=1

The algorithm unrolling perspective

Assume / is an Ising model
u(x) < exp{x'Ax/2}, xe{-1,1}4
The score function
s(2) = (4 - m(2) = 2)le7,
m(z) = E g)muxs0. 1)lx | Ax+ 0,8 = 7]

1, (x) < exp{x'Ax/2 + Lo *x,z)}, x€ {-1,1}

Inference in graphical model: m,(z) is close to minimizer of a VI objective

d
m(z) = arg min {FVI(m) = Z — h(m;) — %mT(A — K)m — ﬂ,at_z(m, 2) }

me[—-1,11¢ :
=1

The minimizer of the VI objective can be efficiently found by gradient based
algorithm

m(z) ~ mt, m’ =tanh((A — K)m*~! + z), m® = 0.

The algorithm unrolling perspective

e Assume yu is an Ising model
u(x) < exp{x'Ax/2}, xe{-1,1}4
The score function
s(2) = (4 - m(2) = 2)le7,
m(z) = E g)muxs0. 1)lx | Ax+ 0,8 = 7]

1, (x) < exp{x'Ax/2 + Lo *x,z)}, x€ {-1,1}

e Inference in graphical model: m,(z) is close to minimizer of a VI objective

d
m(z) = arg min {FVI(m) = Z — h(m;) — %mT(A — K)m — ﬂ,at_z(m, 2) }

me[—-1,11¢ :
=1

e The minimizer of the VI objective can be efficiently found by gradient based
algorithm

m(z) ~ mt, m’ =tanh((A — K)m*~! + z), m® = 0.
e ResNet approximation
ResNy(z) = W ul, ul=u’"'+ Wfa(qu”ﬂ_l), u’ =W, [z;1].

One-step VI iteration by a FF layer

FF
Z
Weight u—;, W, ¢ —bm<+>
Universal approximation
VI

iteration

Score estimation and sampling guarantees

(.)
Assumption: Let x ~ u(o) «x exp{{c, Ac)/2} and z ~ N (A.x, 6>1,). Denote the marginal
distribution of z by u,. Assume that there exists there exists 8\2,“ > 0,K € R4 with ||K = Al op S A<
such that
Elllm(z) — m)lI21d < €2,
9,2 (3 = hmy 2 m, amy = 22 ey + L om, kimy)
7) =arg min — h(m,) — —(m, Am) — —(z,m) + —(m, Km) ; .
- gme[1 L& 2 c? 2
. W,
2 2
chon = 377 1d_ A s \/ (MdL+a; THD o an gy e
(")
Thm: Take D = M = 6(@d), || 8] = O(Poly(-)) . Then we have
[E[||§;(Z) — St(Z)”%]/d < /ltzdt_4) (Sup g\zll,t + gz%pprox + egen) °
4
Choosing properly the discretization scheme, we have
2
KL(us, i) S (Sup SV“ + gapprox + gen) T 8d1sc
4
- W,

[Mei, Wu, 2023]

Example: the Sherrington Kirkpatrick model

[El Alaoui, Montanari, Sellke, 2022]

e SKmodel: u(x) xexp{px'Jx/2}, xe€{-1,1}¢, J~ GOE(®).

e Forp < 1,we conjecture that
e2,, = Elllm(z) — i(2)131/d < 1/d

e To achieve £ sampling error, with a heuristic calculation, we need

d>1/e*, Lxlog(lle), M>=1/e® n>=1/e'®,

e In comparison with the function approximation viewpoint: n > (1/¢)°@.

e There is no CoD by adopting the algorithm approximation viewpoint.

Functions vs Algorithms

Functions vs Algorithms

Algorithms Functions

>®
—30®

13

Correspondence

——
e

No Algorithm

(aee -

Functions vs Algorithms

Correspondence

Characterizations

Algorithms Functions
® @
o =7
S T——
t
.,/
./
@
- /d)
No Algorithm
Algorithms Functions
() é h
number of steps, smoothness,
type of operations, dimension, sparsity,
stability degree of polynomials
o . . J

The two approximation paradigms

Target function: f:RY> R

Function approximation paradigm:

Calculate the smoothness of f. Call the function approximation theory
for smooth function (potentially with CoD).

Algorithm approximation paradigm:

Construct an algorithm to compute f & U; o --- o U, . Show each U,
admits efficient NN approximation (avoid CoD).

Benefits of viewing NN as algorithms

Benefit 1: Deriving approximation hardness results

e A concrete example of a function hard to be approximated by NNs.

e (Consider the Bayesian linear model

e |n certain SNR regime, the Bayes estimator f(y) = E[f]|y, X] is

computationally inefficient (with certain computational oracles).
[Celentano, Montanari, 2020], [Celentano, Montanari, Wu, 2020], [Bandeira, El
Alaoui, Hopkins, Schramm, Wein, Zadik, 2022], etc.

e Poly-sized NNs (ResNet, TF) are computationally-efficient algorithms.

e (Conjecture: Poly-sized NNs cannot approximate such Bayes estimator.

Bayes estimator

AMP

MSE

SNR

1
4— Gap—P1

Benefit 2: Promoting interpretability of NNs

e (Goal: interpreting the algorithm in trained NNs.

e (Consider in-context learning tasks. What algorithm is
implemented by pretrained transformers?

e For certain data generating models, we utilized some techniques

(probing, pasting) partially interpret the pretrained transformer.
[Guo, Hu, Mei, Wang, Xiong, Savarese, Bai, 2023]

e (Causal intervention approach. [Wang, Variengien, Conmy,
Shlegeris, Steinhardt, 2022]

e This is a hard open question in general!

lnput | X1 | M1

X

"\-
o0

.= What algorithm?

=

v
YN

Benefit 3: Guiding architecture design

Goal: design better NN architecture.

CRATE: a white box transformer.
[Yu, Buchanan, Pai, Chu, Wu, Tong,
Haeffele, Ma, 2023]

Guided by the algorithm unrolling principle.

Interpretable architecture.
Performance comparable to ViT.
Learns better representations than VIT.

Open: Better architecture for language
model? Diffusion model?

_U () softmax(-) ()

Summary

- 5‘2 Apple -> Fruit. Sofa -> Furniture. Bird ->?

Neural network denoising /_WY\/_\/\

Noise

@ Animal.

e New perspective: NNs are funetien algorithm approximators.

¢ This explains the expressivity of NNs in language models and
diffusion models.

e (Opens up many research directions:
» Deriving approximation hardness.
> Promoting interpretability.
» Guiding architecture design.

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection. Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei.
NeurlPS, 2023 (Oral).

Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models. Song Mei, Yuchen Wu. Preprint, 2023.
Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining. Licong Lin, Yu Bai, Song Mei. Preprint, 2023.

How Do Transformers Learn In-Context Beyond Simple Functions? A Case Study on Learning with Representations. Tianyu Guo, Wei Hu, Song Mei, Huan Wang,
Caiming Xiong, Silvio Savarese, Yu Bai. Preprint, 2023.

Breaking the curse of depth

Target function/algorithm: f(@) =U;o--0oUyz)

Approximation of each layer: U, = NN, + ¢, for small ¢,

Function approximation approach:
f=Upo-olUj, ResN=NN,o-oNNj
Error composition, curse of depth:

lf — ResN|| < C(L) - sup [[&/]]
rEeL

If U, is K-Lipschitz: C(L) ~ K" .

Algorithm approximation approach:
loss(ResN(z)) = loss(NN; o --- o« NN
= loss((U; — &) o -0 (Uy— gy))

< loss(f) + C - sup ||l&]]
T k

Uses stability of algorithms, e.g., GD, UCB, etc.

