CH. 10
3) a- 63.9 b- 62.07 c- 63 d- 63
9) a- 21% b- 65% c- 50% d- 50%
10) False, this student will be between 40% and 50% on the final.

CH. 11
3) a- 1.82 * 2.5 = 1.5 b- 1.82 * 1.7 = 1.02
4) a- 1.62 * 15 = 12 (one RMS Error from the regression line)
 b- 65.8
c- one RMS Error from the regression line, 12
5) a- (80-55)/15= 1.67 (SDs above the mean), which is associated on the Z table with
 approximately 90% of the distribution. Take half of the difference from that and 100% to get
 the right tail- 5% of students scored over 80 on the final.
 b- (80-50)/25= 1.2 SDs above the mean on the midterm, which corresponds to a predicted
 final value of 1.2*6*15+55, or 65.8. With a RMS Error of 12, 80 would be 1.18 standard errors
 from the predicted final value. 1.18 is associated on the Z table with approximately 76% of
 the distribution. Take half of the difference from 100% to get the right tail- 12% of students
 who scored 80 on the midterm score over 80 on the final.