1. The game is symmetric, therefore $A = B^T$. Now let

$$
\tilde{K} = \{(x, x) : x \in \Delta_m\} = \Delta_m \times \Delta_m.
$$

Note that \tilde{K} is closed, bounded and convex. We need to define a map $f : \tilde{K} \to \tilde{K}$ such that f is continuous, and then we can apply Brouwer's fixed point theorem. (And then, following the proof in the book, we need to show that this fixed point must be a Nash Equilibrium.) Define c_i as in the notes, and note that $d_i = c_i$ because of symmetry.

$$
c_i = c_i(x, x) = \max\{A_{(i)}x - x^T Ax, 0\}
$$

Note that since the game is symmetric, $A_{(i)}x = x^T B^{(i)}$, and c_i gives the gain (if any) of either player by switching from strategy x to pure strategy e_i.

Now we can define our function f by $f(x, x) = (y, y)$ where

$$
y_i = \frac{x_i + c_i}{1 + \sum_{i=1}^m c_i}
$$

We see that y_i is clearly non-negative, and $\sum_{i=1}^m y_i = 1$, therefore $y_i \in \Delta_m$. Also f is continuous, since c_i is continuous.

By Brouwer’s fixed point theorem, there exists a fixed point for f, say p, with $f(p, p) = (p, p)$. We need to show that p must be a Nash equilibrium.

Since $p_i = \frac{p_i + c_i}{1 + \sum_{i=1}^m c_i}$, $\implies p_i \sum_{i=1}^m c_i = c_i$. This gives us that $c_i(p, p) = 0$ for each i. Therefore, $A_{(i)}p \leq pAp$ for each i, which implies that for every $x \in \Delta_m$,

$$
$$

Since $A_{(i)}p = p^T B^{(i)}$, we see that $p^T B^{(i)} x \leq pAp$ as well. \hfill \Box

2. Let the drivers be x_1, \ldots, x_6 and their associated costs be c_1, \ldots, c_6. Then it is clear that $c_1 = 19$, since k will increment by 1. Now x_2 will choose to use the other possible route to D, and thus c_2 will also be 19. Proceeding in this way for each driver, we see that $c_3 = \min(25, 25) = 25$, $c_4 = 25$, $c_5 = c_6 = 31$, bringing the total cost to 150 units.

If a super highway is introduced along segment AC, then drivers 1, 2, 3 and 5 will go on this to reduce their cost, and drivers 4 and 6 will go along the segments $AB - BD$ to minimize their costs. This will bring the total cost to 102 units.

3. Let the pure strategies for player I be given by s_1 and s_2 where s_1 is the route $AD - DC$ and s_2 is the route $AB - BC$, and the pure strategies for player II be given by r_1 and r_2 where r_1 is the route $BC - CD$ and r_2 is the route $BA - AD$. This results in the following payoff matrix: (with payoff = - cost).

$$
\begin{pmatrix}
 s_1 & s_2 \\
 s_1 & (-5, -5) & (-7, -8) \\
 s_2 & (-5, -4) & (-7, -7)
\end{pmatrix}
$$

The pure Nash equilibria are at (s_1, r_1) and (s_2, r_1).