1. Consider the following asymmetrical mating game described in the book *The Selfish Gene* by Richard Dawkins (1976), in which a female (say, a bird) tries to get a male to stay around and help raise a family of babies, instead of going off and propagating his genes elsewhere. One possible technique for doing this is to insist on a long and arduous courtship before mating. Suppose that a female can be either *coy* (insist on courtship) or *fast* (be willing to mate with anyone), and a male can either be *faithful* (go through a courtship, and then help raise the babies), or *philandering* (be unwilling to go through a courtship, and desert any female after mating). Suppose that the payoff to each parent of babies is +15, and the total cost of raising babies is -20, which can be split equally between both parents, or fall entirely on the female (if the male deserts). Suppose that the cost of long courtship is -3 to each player. Set up the payoff matrix and find an ESS for the males.

2. Problem 4.4, page 108, from *Game Theory, Alive*

3. Problem 4.9, page 109, from *Game Theory, Alive*