
Stat 155 Fall 2009: Solutions to Homework 6

(was due October 29, 2009)

1. Following a preferential ranking system with 4 being the most desirable
outcome and 1 the least; if the homeowner is player I and the burglar is
player II, we can list the rankings as shown below, where a = (G, G), b =
(G, NG), c = (NG, NG), d = (NG, G), where G = gun, and NG = no
gun:

A B
b 4 d
c 3 c
d 2 b
a 1 a

This results in the following payoff matrix:

( Gun No gun
Gun (1, 1) (4, 2)
No gun (2, 4) (3, 3)

)
A slightly different preference (as a homeowner, you might prefer the sit-
uation (G, G) to (NG, G)) will give a different payoff matrix:

( Gun No gun
Gun (2, 2) (4, 1)
No gun (1, 4) (3, 3)

)
As long as you list the preferences, and have a consistent matrix, it is
okay.

2. The pure Nash equilibria are given by (CO,IW) and (IW, CO). To deter-
mine the mixed equilibria, suppose that player I plays CO with probability
p, where 0 < p < 1 and plays IW with probability 1− p. Then player II’s
expected payoffs for playing CO and IW are, respectively, 1·p+(−1)·(1−p)
and 2p + (−a) · (1− p). We are looking for mixed equilibria so that player
II puts positive probability on each of the actions, thus we get:

p− 1(1− p) = 2p− a(1− p)

Thus, we see that p = (a− 1)/a. Since the game is symmetric, we get the
same strategy for player II, and the mixed equilibrium is given by (p,p),
where p = ((a−1)/a, 1/a). Is it possible that (p, e) is a Nash equilibrium,
where e is a pure strategy?

3. Payoff matrix:

( W D

W (10− 2, 10− 2) (10− 7, 10)
D (10, 10− 7) (0, 0)

)
The pure Nash equilibria are given by (W,D) and (D,W). To find the
mixed equilibria, note that the game is symmetric, and so the strategies
for both students are going to be the same. Let us suppose that mixed
equilibrium is given by (p,p, where p = (p, 1− p) and 0 < p < 1. By the
usual reasoning, we solve 8p + 3(1− p) = 10p to get p = 3/5.
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4. Let p be the probability that player I chooses to advertise in the morning,
and so 1−p is the probability that player I advertises in the evening. Sim-
ilarly define q and r for players II and III respectively. If player III chooses
to advertise in the morning, then we get the following payoff matrix for
players I and II:

II

I


M E

M (0, 0, 0) (0, 300, 0)

E (300, 0, 0) (0, 0, 200)


And if player III advertises in the evening, the payoff matrix becomes:

II

I


M E

M (0, 0, 300) (200, 0, 0)

E (0, 200, 0) (0, 0, 0)


Now assume that 0 < p < 1. Then the expected payoff for player II, if he
chooses to advertise in the morning, is given by (recall that r = probabil-
ity that III advertises in the morning):

r(p · 0 + (1− p) · 0) + (1− r)(p · 0 + (1− p) · 200)

while the expected payoff, for player II if he chooses the evening, is

r(p · 300 + (1− p) · 0) + (1− r) · 0

Equating these two, we get:

(1− r)(1− p)(200) = 300rp

For a symmetric Nash equilibrium, p = q = r, and using this to solve
for p, we need to solve the equation p2 + 4p − 2, and thus we get that
p = −2 ±

√
6. Taking the value that is in the interval (0, 1) we see that

p ∼ 0.45.

5. Yes. We will look at the problem for two-person games. The relation “is
better than”, as defined in class, defines a partial order on the outcomes. It
is a transitive relation, so if the outcome (a, b) is better than the outcome
(c, d) which is better than (e, f), then (a, b) must be better than (e, f).
Recall that a Pareto optimal outcome is one that has the property that
there does not exist an outcome that is “better”, in the sense discussed in
class. If a game has no Pareto optimal outcome, then for every outcome
(a, b) there exists some outcome (a′, b′) such that (a′, b′) is better than
(a, b). Then, using the transitivity, we can order the outcomes. Since the
game is finite, this chain is finite, and there must be some outcome (c, d)
at the end of this chain. But then (c, d) must be Pareto optimal, and we
arrive at a contradiction.
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