
Stat 155 Fall 2009: Solutions to Homework 3

(was due September 24, 2009)

1. This is a sum of two subtraction games. Using the notation from class, we
can call the subtraction sets S4 and S5. Then we know that if the two piles
have n and m chips, then g4(n) = n mod 5 and g5(m) = m mod 6. For
(n, m) to be a P-position, we must have g((n, m)) = g4(n) ⊕ g5(m) = 0.
This is true if and only if g4(n) = g5(m), that is: n mod 5 = m mod 6.
(Also see Example 2.13.)

2. • The loops in the flower become stalks, and since 1 ⊕ 1 ⊕ 1 = 1, the
flower has SG value 2.

• In the case of the little girl, fuse the two vertices in her head, since
there are two edges, this circuit reduces to a single vertex, as does
the circuit that forms her skirt (since it has 4 edges). Proceeding in
this way, and using the Colon principle, we see that the SG value of
the girl is 3.

• Keep in mind that the ground is considered a single vertex, so the
legs actually form a circuit with two vertices and two edges. Using
the Fusion principle on this circuit and the circuit forming the dog’s
head, and the Colon principle on the branches, we see that the SG
value of the dog is 2.

• Finally, using the Colon principle on the branches of the tree, we get
a SG value of 3 for the tree.

Now, 2⊕ 3⊕ 2⊕ 5 = 6, and the easiest way to make this 0 is to hack off
the first part of the upper branch of the bottom right branch of the tree.
This will take off a value of 2, and we will be left with a value of 3, thus
taking the SG value of the sum game to 0.

3. There is more than one way to show this. You could use part (a) and say
that every tree has at least one leaf, so the tree on n + 1 vertices must
have at least 1 leaf. Removing the edge connecting this leaf to the rest of
the tree will leave a single vertex and a tree on n vertices, and that must
have n− 1 edges by our assumption, so the original tree must have had n
edges.
Another possible proof is to show that if you have more than n edges on
the tree on n + 1 vertices, you will create a cycle. Start with the tree on
1 vertex, then assume that every tree on n vertices has n− 1 edges. Now
pick any tree on n vertices, and add a vertex. For this to be a tree on
n + 1 vertices, this vertex must have at least one edge connecting it to
the n-vertex tree. Also, it cannot have more than 1 edge connecting it to
another vertex in the n-vertex tree, since that would create two distinct
paths between two vertices on the n + 1-vertex graph, which would then
no longer be a tree. (This proof would also need an argument that every
tree on n + 1 vertices can be obtained by adding a vertex and one edge to
some tree on n vertices.)
Here is another proof:
Clearly, if we have a single vertex, then we have no edges and we have a
tree on n = 1 vertices with 0 edges. Assume that every tree on k vertices
has k − 1 edges, for k = 1, 2, . . . , n. Now consider a tree on n + 1 edges.
Remove an edge - this must disconnect the tree (since it has no cycles),
into two smaller trees, of say l and m vertices each, where l + m = n + 1.
Now, by our assumption, the tree with l vertices must have l − 1 edges,
and the tree with m vertices must have m− 1 edges, and thus the original
tree must have had l − 1 + m− 1 + 1 = n + 1− 1 = n edges.
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