
Using Google Compute Engine

Chris Paciorek

January 30, 2014

WARNING: This document is now out-of-date (January 2014) as Google has updated various
aspects of Google Compute Engine. But it may still be helpful as a general guide.

This document provides a tutorial on using Google Compute Engine (GCE) to do cloud com-
puting, with a focus on statistical users. The syntax here is designed for SCF users, but should
provide guidance for non-SCF users as well.

The basic idea of GCE (and other cloud computing resources such as Amazon’s EC2) is to
allow you to start up one or more virtual computers that run on Google’s servers. You can link
together multiple virtual computers into your own computer cluster. Each virtual computer is
called an ’instance’ (in Google’s terminology). I’ll also refer to it as a ’node’, mimicing the idea of
having a cluster with multiple nodes. The advantage of all this is that you have access to as many
computers as you want, but you only pay for them for as long as you use them.

The instructions below assume that you are logged in to an SCF Linux machine and have access
to your SCF home directory.

1 Getting an account and setting up payment

In general you’ll need a Google account.

1. If your work is affiliated with the SCREMS grant (SCREMS faculty PIs are Nolan, Huang,
Kaufman, Purdom, Yu), get permission from the appropriate PI and then contact
consult@stat.berkeley.edu (cc’ing the PI). You will be added to the scf-gvm0 project and will
use that as the project ID in the instructions below.

2. For most users, you’ll need to establish an account with Google that you either pay for di-
rectly yourself or link with a grant. See https://developers.google.com/compute/docs/signup.
You may want to use your campus Google account (i.e., bMail with email address
<username>@berkeley.edu) account for this rather than a personal Google account. To bill

1

https://developers.google.com/compute/docs/signup

to a grant, please contact consult@stat.berkeley.edu and Jane Muirhead
(statgrants@stat.berkeley.edu), and we’ll work with you to set up the billing so that Google
bills the university. This will establish a new project ID that you will use.

You can view information about your project, including billing, through the Google APIs console:
https://code.google.com/apis/console/

IMPORTANT: You will be billed for the entire time an instance is running, regardless of
whether you are running anything on it. So make sure to terminate the instance when you
are done. See Section 5 for details.

2 Starting a compute instance in the cloud

All management of your cloud computing can be done via shell commands using the gcutil tools.
These are installed on SCF Linux machines, so the basic mode of operation in what follows in this
document is to logon to an SCF Linux machine and execute the commands at a bash shell command
line. gcutil is a set of commands that allow one to start and stop nodes, interact with the nodes,
and generally manage your Google Compute Engine resources. You can see some documentation
at https://developers.google.com/compute/docs/gcutil/. For basic command-line help that lists the
various gcutil commands, do

gcutil help

For help on a specific command, do
gcutil help <command>

2.1 Getting set up

If you are authorized (see above) to use the SCREMS grant, in the instructions below, <projectID>

will be scf-gvm0. Otherwise use whatever project ID you got when signing up with Google.
When you first use gcutil it will require you to authenticate. Do the following:
gcutil auth --project=<projectID>

Then follow the instructions presented. Google will create a public-private key pair to allow
you to do password-less ssh. We recommend that you do enter a passphrase (e.g., it might just
be your SCF password). The private key will be deposited in ~/.ssh/google_compute_engine by
default and the public key will be deposited in all the Google machine instances that you create so
you can ssh to them without a password.

To avoid having to enter your passphrase every time, you can run the following and just enter
the passphrase once in a given session.

ssh-add ~/.ssh/google_compute_engine

2

https://code.google.com/apis/console/
https://developers.google.com/compute/docs/gcutil/
http://www.stat.berkeley.edu/861

In general, whenever you issue a gcutil command, you need to enter the project ID. To avoid
this, do the following:

gcutil getproject --project=<projectID> --cache_flag_values=True

Also, I’m not sure how to do it from the command line, but you can also enter your zone in the
configuration file that is created in the step just above. Just add

--zone=us-central2-a

to the .gcutil.flags file in your home directory.

2.2 Starting an instance and installing software

Note that a basic setup that you can run in a single script is available at setupGoogleCluster.sh.
You’ll need to set the number of nodes, number of cores per node and a few other variables at the
beginning of the script file (and modify the software and R packages installed, if desired).

2.2.1 Starting an instance

In the future, we will have an SCF image that will mimic the environment and most or all software
that exists on the SCF Linux servers. At the moment, this image does not exist. Here are the steps
for using a default Ubuntu image that relies on the same version of Linux as running on the SCF
servers and for adding software to that image. For the moment, these instructions do not cover
Matlab or hadoop.

We’ll set up an environment variable containing the imageID:
imageID=projects/google/global/images/gcel-12-04-v20121106

Note that that image may be out of date when you read this. You can look for standard Google
images using

gcutil listimages --project=google

For a basic Ubuntu image, choose the one with the most recent version date, i.e. gcel-12-04-
vYYYYMMDD and set imageID to be this string.

Next we’ll set up a variable containing the names of the nodes. This isn’t necessary but will
help in automating some of the steps below. Here we’ll name the nodes vm0, vm1, ... (’vm’
standing for ’virtual machine’), but you can name them whatever you want.

numNodes=4 # choose the number of nodes you want here

nodes=$(eval echo vm{0..$(($numNodes-1))})

this should just confirm that you have a shell variable

containing node names: vm0 vm1 vm2 ...:

echo $nodes

3

Next you need to decide what kind of hardware you want for your virtual nodes. You can figure
out what machine types are available by doing:

gcutil listmachinetypes

Decide upon one depending on how much memory, CPU, cores, and disk space you want. You’ll
enter the name of the machine_type below after the –machine_type flag. Here I’ve chose a standard
8-core machine:

gcutil addinstance --image=$imageID --machine_type=n1-standard-8

--zone=us-central2-a --wait_until_running $nodes

Ok, your virtual nodes should now be running. You can ssh to a given node (vm0 in this case)
as:

gcutil ssh vm0

On the virtual node, you’ll have the same username as the system you are coming from. The
machine is running a variant of Ubuntu Linux, which makes thing easy because we run Ubuntu on
the SCF Linux machines.

2.2.2 Putting software on your instance

If you are using an image provided by SCF or an image you’ve already created, then you can skip
this step provided the image has all the software you need already.

If not, the next step is to put the software you want on your instances. In general, we’ll
use the apt-get mechanism of Ubuntu to install pre-existing Ubuntu packages, but you can also
build and install software from scratch on the instances. If you need help with this, contact con-
sult@stat.berkeley.edu.

Next we install R, Octave (an open source version of Matlab), Java, a threaded BLAS for linear
algebra, and openMPI for distributed computing. You can manually ssh to each node and run the
following commands. However, to do this automatically on multiple nodes, insert the following
two lines in a bash script file, which I’ll call install.sh in the syntax below.

sudo apt-get update

sudo apt-get install -y libopenblas-base openmpi-bin libopenmpi-dev

r-base octave3.2 openjdk-7-jre openjdk-7-jdk

echo "DONE with Ubuntu Linux package installation on $(hostname

-s)."

Now run the script file on each node using the following commands:

for node in $nodes; do

gcutil push $node install.sh .

gcutil ssh $node "sudo /bin/bash ./install.sh >& install.log.$node" &

4

done

You’ll need to wait a few minutes for this to finish - to check on it, you can do the following
every so often until all the nodes report as being DONE.

for node in $nodes; do

gcutil ssh $node "grep DONE install.log.$node"

done

If you need additional software to include in the list of packages indicated in install.sh, you can
search amongst available Ubuntu packages (here, e.g., for octave packages) with

apt-cache search octave

And you can see if a specific package is installed and what version would be installed if you did
install it:

apt-cache policy octave3.2

Next we’ll install some standard R packages for parallel computing. You should add whatever
additional R packages you need to the list of packages below, or you can of course omit this if you
won’t be using R. Place the following line in a file; we’ll call it installRpkgs.R, and push to the
nodes.

echo "install.packages(c('Rmpi', 'foreach', 'doMC', 'doParallel',

'doMPI'), repos = 'http://cran.cnr.berkeley.edu');

print(paste('DONE with R package installation on ',

system('hostname -s', intern = TRUE), '.')" > installRpkgs.R

for node in $nodes; do

gcutil push $node installRpkgs.R . &

done

Now we’ll invoke R and run installRpkgs.R on each node to install the packages:

for node in $nodes; do

gcutil ssh $node "sudo R CMD BATCH --no-save installRpkgs.R

install.Rpkgs.log.$node" &

done

You can monitor progress as you did for the Ubuntu package installation above.

5

2.3 Creating your own image

Rather than adding the software to Google’s base image, you can create your own image by using
Google’s image, adding software and then saving the result. You need access to Google cloud
storage to save the image.

If you’re using scf-gvm0, you can save the image on the disk space associated with the project
(see code.google.com/apis/console)

If you’re not using scf-gvm0, you’ll need to set up Google cloud storage (and billing) for your
project.

Now ssh to your instance. and do the following within the instance.

1. Add the software you want to your running instance (e.g., vm0 above).

2. sudo python /usr/share/imagebundle/image_bundle.py -r / -o /tmp/

--log_file=/tmp/image.log

3. If you are NOT using scf-gvm0, do the following, choosing a name for your ’share’ in the
cloud storage and wait a few minutes for the account to be activated.

gsutil config

follow the instructions for authentication

gsutil mb gs://<nameOfShare>

4. Now add the image (created in step 2) to the share, where <file> is based on the file name
of the .tar.gz file created in /tmp. <nameOfShare> is either the name you chose above or
scf-gs0 in the event you are using scf-gvm0. <imageName> is the name you choose for the
image.

gsutil cp /tmp/<file>.image.tar.gz

gcutil addimage <imageName> gs://nameOfShare/<file>.image.tar.gz

You should now be set to use <imageName> as the argument to –image when using gcutil addin-
stance.

3 Getting files to and from GCE and disk usage

Note that the most basic machine types only have 10 Gb of disk space and this space disappears
when the instance is shut down. Such disk is called ephemeral disk. Furthermore, files on one
instance are not available to another instance.

6

http://code.google.com/apis/console

3.1 Transferring files

You can copy files to and from an instance using gcutil (here I just copy to vm0, but you could
wrap it in a loop to copy to all the nodes, as I’ve done above.

gcutil push vm0 path/to/file/on/SCF/filename path/to/file/on/node/.

gcutil pull vm0 path/to/file/on/node/filename path/to/file/on/SCF/.

3.2 Additional ephemeral disk space

If you want more than 10 Gb of disk space, but are fine with ephemeral space, you can choose one
of the machine types with “-d” in the name of the machine type; just invoke

gcutil listmachinetypes

Now start your instances. You might start one instance that will be the master node with extra
storage and the other nodes with just the basic storage, e.g., if your code writes output only from
the master process while the slave nodes just do processing and send results directly from memory
back to the master process.

Once you’ve started your instances, do the following (these instructions are taken from
https://developers.google.com/compute/docs/disks#additional).

The instructions that follow assume that you only need extra space on your primary node, but
if all your nodes have additional space, you could embed the instructions in a loop over nodes.

You’ll need to choose the directory (by setting mount below) at which to mount your disk. This
might be /data, /scratch, ~/data, etc., where the latter would place it in your home directory.

mount=/data

gcutil ssh vm0 "sudo mkdir $mount"
gcutil ssh vm0 "ls -l /dev/disk/by-id/google-ephemeral-disk-*"

Check that the result of the previous command is /dev/disk/by-id/google-ephemeral-disk-0, in
which case that can be used in the next command:

gcutil ssh vm0 "sudo /usr/share/google/safe_format_and_mount

-m ’mkfs.ext4 -F’ /dev/disk/by-id/google-ephemeral-disk-0 $mount"
You can check that it is mounted and available for use and has the expected disk space with:

gcutil ssh vm0 "mount | grep ’sd.’"
gcutil ssh vm0 "df -h $mount"

3.3 Persistent disk space

By default, the disk space associated with your instance is removed when you delete the in-
stance. This is fine if you’re careful about getting your results back before deleting. However,

7

https://developers.google.com/compute/docs/disks#additional

if you have results (or input data) that persist between instances, you’ll need to create a persistent
disk. https://developers.google.com/compute/docs/disks#persistentdisks has the details on how to
do this.

Note that a persistent disk must be attached to an instance when the instance is created. You
can attach a persistent disk to more than one instance, but if you do, it is attached read-only, so this
is useful only for reading in data and not for writing output. For writing output, you would need to
attach the disk just to the master node and only write results from this node.

Also, the persistent disk needs to be in the same zone as the instances that you launch.

4 Running jobs

Note that once you use gcutil to ssh to a node, you can ssh to another node simply by using ssh (not
gcutil ssh) and the name of the node (vm0, vm1, etc. in our naming convention from before). One
could also copy files between nodes simply using scp. This may save data transfer costs, though I
haven’t investigated this.

4.1 Single node (shared memory) jobs

For the most part, the steps you need to follow are described in the SCF tutorial on shared memory
parallel programming, also available on Chris Paciorek’s website.

Suppose that you have an R code file, testShared.R, you want to run (the same basic approach
should work for Matlab code or a shell script). Also suppose that the R code produces the test-

Shared.RData file as output. We can run the job remotely as follows:
gcutil push vm0 testShared.R . # copy R file to node

gcutil ssh vm0 "R CMD BATCH --no-save testShared.R testShared.Rout"

copy results back:

gcutil pull vm0 testShared.Rout .

gcutil pull vm0 testShared.RData .

4.2 Multiple node (distributed memory) jobs

For the most part, the steps you need to follow are described in the SCF tutorial in the SCF tutorial
on distributed memory parallel programming, also available on Chris Paciorek’s website.

First, you’ll need a file that lists the names of the nodes on which the distributed job will be
processed. You can automate creation of a hostfile (following our creation of the $nodes variable
above), which I call .hosts here:

8

https://developers.google.com/compute/docs/disks#persistentdisks
http://www.stat.berkeley.edu/1031
http://www.stat.berkeley.edu/1031
http://www.stat.berkeley.edu/~paciorek/statComputing/statComputing.html
http://www.stat.berkeley.edu/1031
http://www.stat.berkeley.edu/1031
http://www.stat.berkeley.edu/~paciorek/statComputing/statComputing.html

echo $nodes > .hosts; sed -i ’s/ /\n/g’ .hosts

To choose the number of processes to assign per node, you can do:

numProcsPerNode=2

for ((i=0; i <$numNodes; i++)); do

echo vm$i slots=$numProcsPerNode >> .hosts

done

What follows is an example for R, but analogous commands should work for non-R jobs.
Suppose you have a file of R code, testDistrib.R, that implements a distributed job, such as by

using the Rmpi package. The R file should specify the number of cores being used. E.g., if you
have two nodes with two cores per node in your cloud cluster for 4 total cores, you would want
to have startMPIcluster(3) in your R code file, leaving one core for the master R process.
Obviously you would adjust this based on how many nodes you have and how many virtual cores
are in your instance type. You may want to use fewer than the number of virtual cores on a machine
to allow for threaded calculations to use multiple cores.

You’ll need to push the R code file and the .hosts file to your master node.
gcutil push vm0 testDistrib.R .

gcutil push vm0 .hosts .

Now run the R job by invoking mpirun with the .hosts file so that Rmpi knows what nodes to
distribute the work to:

gcutil ssh vm0 "mpirun -hostfile .hosts -np 1 R CMD BATCH --no-save

testDistrib.R testDistrib.Rout"

Assuming that the R code in testDistrib.R writes output to testDistrib.RData (on the master
only) and writes text to testDistrib.Rlog, we need to get these files back from the nodes. Note that
if the directory containing testDistrib.Rlog is not shared amongst the nodes, then there will be one
testDistrib.Rlog file on each node.

for node in $nodes; do

gcutil pull $node testDistrib.Rlog ./testDistrib.Rlog.$node

done

gcutil pull vm0 testDistrib.RData .

gcutil pull vm0 testDistrib.Rout .

4.3 Threaded computations

Note that the installation above includes openBLAS, a threaded BLAS, as the default BLAS.
Any code that uses the BLAS, including R linear algebra functionality, will use as many cores

9

as possible on a given node to do the calculations. In some cases (e.g., small matrix problems),
threaded BLAS calculations might actually take longer than unthreaded, and there are cases of
conflicts between threaded BLAS and other software. So in some cases you may want to fix
the number of threads used by threaded programs that use the openMP protocol, which includes
openBLAS. You can do this by setting the OMP_NUM_THREADS environment variable, e.g.,
export OMP_NUM_THREADS=1, as described in more detail, in the links in the above subsec-
tions.

5 Terminating instances

You will be billed for the entire time an instance is running, regardless of whether you are running
any jobs on it. So make sure to terminate the instance when you are done. You can manually
terminate instances as follows:

gcutil deleteinstance -f $nodes

If you want to do this automatically after your job is finished, you could write a shell script
that submits your job via gcutil ssh, copies the output back and then deletes the instances. As an
example with a single node (and using R in this example, though this should work more generally),
put the following in a file, say, testStop.sh (and assuming you have a file of R code you want to run,
test.R, that saves output in test.RData). The crux of the shell code below is to check if the output
file, test.RData, exists on the SCF machine, as a test for whether the job has completed and written
output files back to the SCF machine, in which case it should be safe to shut down the cluster.

begin testStop.sh

$gceuser = $USER

gcutil push vm0 test.R . # copy R file to node

if [-f test.RData]; then # does test.RData exist already?

if so, move any existing file aside, since we'll test

for its existence to check that job completes ok

before deleting the instance

mv test.RData test.RData-

fi

run job in foreground, waiting until done

gcutil ssh vm0 "R CMD BATCH --no-save test.R test.out"

gcutil pull vm0 test.out . # copy results back

gcutil pull vm0 test.RData .

if [-f test.RData]; then # has key file been transferred back

10

gcutil deleteinstance -f vm0 # if so, delete instance

echo "test.RData successfully copied back from node(s);

instances are being shut down."

echo "test.RData successfully copied back from node(s);

instances are being shut down." | mailx -s "job succeeded"

$gceuser@stat.berkeley.edu # automatic email notification

else

echo "test.RData not copied back from node(s);

instances are NOT being shut down"

echo "test.RData not copied back from node(s);

instances are NOT being shut down." | mailx -s "job failed"

$gceuser@stat.berkeley.edu # automatic email notification

fi

end testStop.sh

Now do
chmod u+x testStop.sh

./testStop.sh >& job.out &

You can then monitor job.out to see the progress of your job. Note that testStop.sh runs in the
background (note the & at the end of the line above) so you can log out of the SCF machine. But
the contents of testStop.sh run “in the foreground” in the sense that they run sequentially, so the
copying of results back should only occur after the computation has finished.

11

	Getting an account and setting up payment
	Starting a compute instance in the cloud
	Getting set up
	Starting an instance and installing software
	Starting an instance
	Putting software on your instance

	Creating your own image

	Getting files to and from GCE and disk usage
	Transferring files
	Additional ephemeral disk space
	Persistent disk space

	Running jobs
	Single node (shared memory) jobs
	Multiple node (distributed memory) jobs
	Threaded computations

	Terminating instances

