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Statistics and Biological Data

Long and fruitful history of joint development between statistics
and biology, with data at the core.

6 / 91



Statistics and Biological Data: 19th Century

Figure 1: G. J. Mendel (1822–1884).
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Statistics and Biological Data: 19th Century

Gregor Johann Mendel (1822–1884).

• Founding father of genetics: Mendel (1866),
www.mendelweb.org.

• Mendel’s laws of heredity were entirely based on statistical
inference applied to data from carefully designed experiments.

• Statistical analyses allowed Mendel to make the bold leap
from experimental results to theoretical conclusions.

• He reverse-engineered the Punnett square: He only observed
phenotypes, but inferred genotypes.

• We now know that Mendel’s hypothetical factors are genes,
i.e., segments of DNA that code for proteins.

• Experimental confirmation came much later.
I Genes lie on chromosomes (Sutton, 1903; Morgan, 1910).
I DNA is the genetic material (Avery et al., 1944; Hershey and

Chase, 1952).

8 / 91

http://www.mendelweb.org


Statistics and Biological Data: 19th Century

I Double helical structure of DNA (Watson and Crick, 1953).
I Genetic code (Nirenberg, 1961).
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Statistics and Biological Data: Early 20th Century

Figure 2: R. A. Fisher (1890–1962).
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Statistics and Biological Data: Early 20th Century

Fisher (1952). Statistical methods in genetics. Heredity, 6:1–12.

• “Genetics and Statistics have in common that they are both
characteristic products of the twentieth century.”

• “... connection between our two subjects ...the “factorial”
method of experimentation ... derives its structure, and its
name, from the simultaneous inheritance of Mendelian
factors.”

• “Its [Genetics’s] characteristic frequencies are a constant
stimulus to statistical inquiry.”

• “... beautifully randomized by the meiotic process.”

• “Quite suddenly in the intellectual history of mankind it has
become possible to think coherently and confidently about
variation ...”
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Statistics and Biological Data: Early 20th Century

• “Experimental design has become an intelligible subject for
discussion ...”

• “It is not, I believe, sufficiently realized that this need for
absolute realism is particularly required in statistical work
when applied to genetic purposes. It is in general the
statisticians task to bring theory into a truly organic
coherence with objective and verifiable observations.”

• “Direct contact with what is actually done in experimentation
helps the statistician in another very essential way, by leading
him to consider variations in procedure, and the reasons why
one method is to be preferred to others. The whole wide
subject of experimental design is opened out by this
consideration.”
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Statistics and Biological Data: Today

... 2018: The reign of -omic data. Today’s statistical inference
problems in biology and medicine are truly multivariate and involve
the joint analysis of multiple, diverse, and high-dimensional
datasets.

• Genome/Epigenome/Transcriptome. High-throughput
microarray and sequencing measures for

I identity-by-descent (IBD) states (GMS);
I single nucleotide polymorphisms (SNP);
I DNA copy numbers (CGH DNA-Chip/DNA-Seq);
I transcript (mRNA) levels (RNA-Chip/RNA-Seq);
I protein-nucleic acid interactions, e.g., transcription factor

binding, histone modification (ChIP-Chip/ChIP-Seq);
I DNA methylation status (methyl-Chip/methyl-Seq).

• Proteome. E.g. Mass spectrometry and protein microarrays.
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Statistics and Biological Data: Today

• Metagenome. High-throughput abundance measures for
thousands of bacteria in human or environmental samples.
E.g. 16S rRNA sequencing.

• Exposome. High-throughput adductomic and metabolomic
exhaustive and untargeted measures of chemicals in human
biospecimens that can be used in exposome-wide association
studies (EWAS).

• Covariates. E.g. Age, sex, environmental exposure, treatment,
dose, time.

• Phenotypes. Biological and clinical outcomes, e.g., cell
type/state, affectedness/unaffectedness, quantitative trait,
(censored) survival time, response to treatment.

• Biological annotation metadata. In-house or WWW, e.g.,
Gene Ontology (GO), pathway (KEGG), protein structure
(PDB), literature (PubMed).
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Statistics and Biological Data: Today

Data complexity.

• Dimensionality.
I “Small n, large p”, e.g., microarrays.
I “Large n, large p”, e.g., 10x Genomics scRNA-Seq.

• Multiple types. Quantitative (continuous, discrete),
qualitative, text, graph, image.

• Censored, erroneous, missing, sparse (cf. zero inflation).

• Various levels of processing. E.g. Microarray and sequencing
data.

• Dynamic and evolving. E.g. DNA sequence (GenBank), Gene
Ontology (GO), literature (PubMed).

• Multiple sources and locations. In-house, WWW.

No longer just numerical data or Xn×p!
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Statistics and Biological Data: Today

Figure 3: Biological and medical -omic data.
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Olfactory Stem Cells and Neural Regeneration

Fletcher et al. (2017). Stem cell differentiation in the mouse
olfactory epithelium.

• Adult olfactory stem cells support the replacement of olfactory
sensory neurons and non-neuronal supporting cells (e.g.,
sustentacular) over postnatal life and can reconstitute the
entire olfactory epithelium (OE) following injury.

• The horizontal basal cell (HBC) is an adult tissue stem cell.

• The p63 protein (tumor protein p63, TP63) promotes
self-renewal of HBC by blocking differentiation.

• When p63 is down-regulated, this “brake” is removed,
allowing differentiation to proceed at the expense of
self-renewal. Thus, p63 can be viewed as a “molecular
switch” that decides between the alternate stem cell fates of
self-renewal vs. differentiation.
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Olfactory Stem Cells and Neural Regeneration

• In order to investigate the differentiation of HBC, single-cell
transcriptome sequencing (scRNA-Seq) was performed for
wild-type (WT) and p63 knock-out (KO) mice, at five
timepoints following tamoxifen treatment.

• By combining single-cell extraction and high-throughput
sequencing capabilities, single-cell RNA-Seq allows the
transcriptome of large numbers of individual cells to be
assayed efficiently.
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Olfactory Stem Cells and Neural Regeneration

Figure 4: Mouse olfactory epithelium.
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Olfactory Stem Cells and Neural Regeneration

Figure 5: Olfactory epithelium cell types. Sus: sustentacular cell, ORN:
olfactory receptor neuron, GBC: globose basal cell, HBC: horizontal basal
cell, OEC: olfactory ensheathing cell, BG: Bowman gland.
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Single-Cell RNA-Seq

Figure 6: Single-cell RNA-Seq. Fluidigm C1 Single-Cell Auto Prep
System.
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Single-Cell RNA-Seq

Figure 7: RNA-Seq.
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Olfactory Epithelium p63 Dataset
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Figure 8: OE dataset: Experimental design. Number of cells per batch
(C1 run), color-coded by biological condition (WT/KO, timepoint).
Batch effects are nested within biological effects.

23 / 91



Zero Inflation

Proportion of genes with zero count, pre gene filtering
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Figure 9: Zero inflation. Per-cell proportion of genes with zero count,
color-coded by batch.
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Sample-Level QC
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Figure 10: Sample-level QC. Boxplots of QC measures, by batch.
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Sample-Level QC
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Figure 11: Sample-level QC. Boxplots of QC measures, by batch.
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Sample-Level QC
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Gene-Level Counts
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Quality Assessment/Control
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Figure 14: QA/QC: Mislabeled species, yeast bulk RNA-Seq dataset.
Boxplots of per-sample unnormalized log(count+1), color-coded by
species, green: S. cerevisiae, cyan: S. paradoxus, blue: S. mikatae, red:
S. bayanus.
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Exploratory Data Analysis: Summary

• It is essential to look at data to identify the main features of a
dataset and for quality assessment/control – Garbage in,
garbage out.

• Zero inflation.
I Single-cell RNA-Seq data have many more genes with zero

read counts than bulk RNA-Seq data.
I This zero inflation could occur for biological reasons (i.e., the

gene is simply not expressed, transcriptional bursting) or
technical reasons (e.g., low mRNA capture efficiency,
dropouts).

I Most RNA-Seq normalization methods involve scaling or
ranking and perform poorly when many genes have zero
counts.
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Exploratory Data Analysis: Summary

I In particular, the global-scaling method of Anders and Huber
(2010), implemented in the Bioconductor R package DESeq,
discards any gene having zero count in at least one sample. In
practice, the scaling factors are therefore estimated based on
only a handful of genes, e.g., 5/22,054 genes for OE dataset.

I Full-quantile (FQ) normalization also doesn’t behave properly
due to ties from the large number of zeros.

I Zero-count gene filtering is advisable before normalization and
downstream analyses.

I We apply the following zero-count gene filtering to the OE
dataset: Retain only the genes with at least nr = 20 reads, in
at least ns = 40 cells.
This yields 9,133/22,054 genes.

• Sample-level QC measures.
I The distribution of QC measures can vary substantially within

and between batches.
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Exploratory Data Analysis: Summary

I Some QC measures clearly point to low-quality samples, e.g.,
low percentage of mapped reads (RALIGN).

I There can be a strong association between QC measures and
read counts (cf. PCA).

I Filtering samples based on QC measures is advisable, as
normalization procedures may not be able to adjust for QC
and some samples simply have low quality.

I Normalization procedures based on QC measures (e.g.,
regression on first few PC of QC measures) should also be
considered.

• Normalization.
I After gene and sample filtering and before normalization, there

are large differences in gene-level count distributions within
and between batches (cf. RLE, housekeeping genes).

I The counts are still zero-inflated.
I There can be substantial association of counts and

sample-level QC measures.
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Normalization: Motivation

• The goal of normalization is to adjust read counts for
gene-level (e.g., length, GC-content) and sample-level (e.g.,
sequencing depth, batch, QC) unwanted technical effects, in
order to allow meaningful comparison of expression measures
between genes or samples.

• Normalization is essential before any clustering or differential
expression analysis, to ensure that observed differences in
expression measures between genes or samples are truly due to
the biological effects of interest and not technical artifacts.

• Normalization is even more important for single-cell RNA-Seq
than bulk RNA-Seq due to increased technical noise and zero
inflation.
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Normalization: Motivation

• A variety of normalization procedures have been proposed,
most being adaptations of methods for bulk RNA-Seq and
microarrays, ranging from simple global-scaling methods to
regression on known and unknown gene and sample-level
covariates.

• However, widely-used bulk RNA-Seq methods are not
well-suited for handling the increased technical noise and zero
inflation of scRNA-Seq data (Vallejos et al., 2017).

• It is still common to only scale gene-level counts by total read
count, e.g., counts per million (CPM), reads per million
(RPM), and reads per kilobase of exon model per million
mapped reads (RPKM). In many cases, however, one needs
more aggressive normalization that accounts for more complex
features of the genomic regions and experimental design.
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Normalization: Motivation

• Does normalization matter? Yes!
The choice of normalization method can have a greater
impact on the results than the choice of downstream method
for inferring differential expression (Bullard et al., 2010).

• Which method is best? Not obvious, depends on dataset.
Need a data-driven approach for selecting a suitable
normalization procedure – scone.
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Normalization: scone

scone. A general framework for the normalization of scRNA-Seq
data (and other data).

• Implementation of a range of normalization methods.
I Global-scaling, e.g., DESeq, TMM, upper-quartile (UQ).
I Full-quantile (FQ).
I Regression on known factors of unwanted variation

(supervised): E.g. QC PC, batch.
I Regression on unknown factors of unwanted variation

(unsupervised): Remove unwanted variation (RUV) (Risso
et al., 2014a,b).

• Normalization performance metrics.

• Numerical and graphical summaries of normalized read counts
and metrics.

• Shiny app.

• Bioconductor R package scone:
www.bioconductor.org/packages/release/bioc/html/scone.html.
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Normalization: scone
a.

b.

c.

d.

e.

Figure 15: scone. Shiny app, report browser.
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Normalization: scone

= +g(E[Y| X, U, W]) W
α

X
β

J genes

n samples n

k

k

J

n

p

p

J

Unobserved
Random Variable

Observed
Random Variable

Unknown
Parameter

Unknown
Parameter

Hidden Unwanted FactorsBiological Factors

+ U
γ

n

b

b

J

Observed
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Unknown
Parameter

Known Unwanted Factors

Figure 16: scone. Regression model for supervised and unsupervised
normalization based on, respectively, known and unknown factors of
unwanted variation.
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Normalization: scone

Normalization performance metrics. Capture trade-offs between
ability to remove unwanted variation and ability to preserve
biological variation of interest.
Green: Good when high; Red: Good when low.

• Clustering of samples according to factors of wanted and
unwanted variation.

I BIO SIL: Average silhouette width by biological condition of
interest.

I BATCH SIL: Average silhouette width by batch.
I PAM SIL: Maximum average silhouette width for partitioning

around medoids (PAM) clusterings, for a range of
user-supplied numbers of clusters.

• Association of expression measures with factors of wanted and
unwanted variation.

39 / 91



Normalization: scone

I EXP WV COR: Based on coefficient of determination (R2) for
regression of count PCs on factors of wanted variation (derived
from positive control genes).

I EXP UV COR: Based on coefficient of determination (R2) for
regression of count PCs on factors of unwanted variation
(derived from negative control genes, preferably distinct from
those used in RUV).

I EXP QC COR: Based on coefficient of determination (R2) for
regression of count PCs on QC measures.

• Between-sample distribution of expression measures.
I RLE MED: Mean squared median relative log expression

(RLE).
I RLE IQR: Variance of inter-quartile range (IQR) of RLE.

• Select a normalization procedure based on (a function of) the
performance metrics.
E.g. Average metric or average metric rank.
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Normalization: scone

• User can define and add other metrics, depending on
application. We’ve adapted and applied scone to normalize
adductomic and metabolomic data.
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Normalization: scone

Application to OE p63 dataset.

• Apply and evaluate 172 normalization procedures using main
scone function.

I scaling method: None, DESeq, TMM, FQ.
I uv factors: None, RUVg k = 1, · · · , 5, QC PC k = 1, · · · , 5.
I adjust biology: Yes/no.
I adjust batch: Yes/no.

• Among best performing methods:
none,fq,qc k=4,bio,no batch,
none,fq,qc k=2,no bio,no batch.
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Normalization: scone
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Normalization: scone
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Normalization: scone
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Figure 19: scone. Gene-level relative log expression (RLE = log-ratio of
read count to median read count across samples), color-coded by batch,
none,fq,qc k=2,no bio,no batch.
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Normalization: scone
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Normalization: scone

FQ + RUVg(HK, k=1): W by batch
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Figure 21: scone. Association of RUVg unwanted factor W and QC
measures, color-coded by batch, none,fq,ruv k=1,no bio,no batch.
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Normalization: Summary

• Unnormalized gene-level counts exhibit large differences in
distributions within and between batches and association with
sample-level QC measures.

• Different normalization methods vary in performance
according to scone metrics and lead to different distributions
of gene-level counts, hence downstream clustering and
differential expression results.

• Global-scaling normalization. Not aggressive enough to handle
potentially large batch effects and association of counts and
QC measures. Biological effects are dominated by nuisance
technical effects. Additionally, for DESeq, the scaling factors
are computed based on only a handful of genes with non-zero
counts in all cells (5/22,054).
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Normalization: Summary

• Batch effect normalization. Adjusting for batch effects
without properly accounting for the nesting of batch within
biological effects (no bio,batch) in the regression model is
problematic, as this removes the biological effects of interest
(e.g., empirical Bayes framework of ComBat).

• FQ followed by QC-based or RUVg normalization. Seems
effective: Similar RLE distributions between samples, lower
association of counts and QC measures. The first unwanted
factor of RUVg is correlated with the first QC PC.

• Interpretation of performance metrics. Some metrics tend to
favor certain methods over others, e.g., EXP UV COR
(correlation between count PCs and factors of unwanted
variation) naturally favors RUVg, especially when the same set
of negative controls are used for normalization and evaluation.
Hence, a careful, global interpretation of the metrics is
recommended.
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Normalization: Summary

• Negative controls. The selection of proper, distinct sets of
negative controls is important, as these are used for both
normalization (RUVg) and assessment of normalization results
(EXP UV COR).
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Expression Quantitation: ZINB-WaVE

Risso et al. (2017). Zero-inflated negative binomial-based wanted
variation extraction (ZINB-WaVE).

• General and flexible zero-inflated negative binomial (ZINB)
regression framework to account for zero inflation,
over-dispersion, and experimental design.

• With a suitable parameterization of the negative binomial
(NB) mean and zero inflation (ZI) probability, one can
perform normalization (for known and unknown factors of
unwanted variation), dimensionality reduction, and differential
expression (DE) analysis within the same framework.
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Expression Quantitation: ZINB-WaVE
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Figure 22: ZINB-WaVE model. Parameterization of NB mean and ZI
probability. X : Variation of interest (e.g., cell type) or unwanted
variation (e.g., batch) – Known. W : Variation of interest (cf. clustering)
or unwanted variation (cf. RUV normalization) – Unknown.
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Expression Quantitation: ZINB-WaVE

ZINB-WaVE framework.

• Experimental design. Accommodate different experimental
designs through X , e.g., use of contrasts for nesting of batch
effects within biological effects.

• Normalization. Supervised and unsupervised normalization for
gene and sample-specific unwanted effects through matrices
X , V , and W (cf. RUV of Risso et al. (2014a,b)).

• Dimensionality reduction. Achieved through W . Useful for
visualization and input to clustering procedures.

• Differential expression. (Very simple) Use weights based on
ZINB-WaVE posterior probabilities to “unlock” standard bulk
RNA-Seq methods.
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Expression Quantitation: ZINB-WaVE

• Differential expression. (More complex) Likelihood-based tests
of DE for both the negative binomial mean and the zero
inflation probability, reflecting, respectively, a continuum in
DE and on/off DE patterns.

• Bioconductor R package zinbwave:
www.bioconductor.org/packages/release/bioc/html/zinbwave.html.
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Expression Quantitation: ZINB-WaVE

Van den Berge et al. (2018). Using ZINB-WaVE weights to unlock
bulk RNA-Seq DE methods.

• The posterior probability that a zero count arises from the NB
count component is given by Bayes’ rule

Wij = Pr(Zij = 0|Yij = 0) =
(1− πij)fNB(0;µij , φj)

fZINB(0;µij , φj , πij)
. (1)

• We propose to use the ZINB-WaVE posterior probabilities as
weights in standard bulk RNA-Seq DE analysis methods, such
as those implemented in the Bioconductor R packages edgeR,
DESeq2, and limma (limma-voom method with voom

function).

• Standard bulk DE methods are based on the methodology of
generalized linear models (GLM), which readily accommodates
inference based on observation-level weights.
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Expression Quantitation: ZINB-WaVE

• We have found, on real and simulated data, that using
ZINB-WaVE weights in bulk RNA-Seq DE methods
outperforms both state-of-the-art scRNA-Seq methods as well
as unweighted bulk RNA-Seq methods.
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Expression Quantitation: ZINB-WaVE
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Figure 23: zinbwave: Dimensionality reduction, Glioblastoma dataset. (a,
b) PCA (on TC-normalized counts). (c, d) ZIFA (on TC-normalized
counts). (e, f) ZINB-WaVE W (no normalization needed). Cells
color-coded by patient.

57 / 91



Expression Quantitation: ZINB-WaVE
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Expression Quantitation: ZINB-WaVE

Figure 25: zinbwave: Comparison of DE methods, simulated scRNA-Seq
data. Scatterplots of true positive rate (TPR) vs. false discovery
proportion (FDP). Simulation based on (a) Islam et al. (2011) (n = 90)
and (b) Trapnell et al. (2013) (n = 150) datasets.

59 / 91



Cluster Analysis: Motivation

• Robustness to choice of samples. Both hierarchical and
partitioning methods tend to be sensitive to the choice of
samples to be clustered. Outlying cells/clusters of cells (e.g.,
glia) are common in scRNA-Seq and mask interesting
substructure in the data, often requiring the successive pruning
out of dominating clusters to get to the finer structure.

• Robustness to pre-processing and clustering algorithm.
Clustering results can be sensitive to pre-processing steps such
as normalization and dimensionality reduction, as well as to
the choice of clustering algorithm and associated tuning
parameters (e.g., distance function, number of clusters).
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Cluster Analysis: Motivation

• Not focusing on the number of clusters. A major tuning
parameter of partitioning methods, such as partitioning
around medoids (PAM) and k-means, is the number of
clusters K . Methods for selecting K (e.g., silhouette width)
can be sensitive to the choice of samples, normalization, and
other tuning parameters. They tend to be conservative (low
K ) in scRNA-Seq applications, i.e., capture only the coarse
clustering structure and mask interesting substructure in the
data. Importantly, the number of clusters K is often not of
primary interest.
E.g. PAM and silhouette width criterion identify only K = 2
clusters for the OE p63 dataset.
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Cluster Analysis: Motivation

• Not forcing samples into clusters. Some samples may be
outliers, that do not really belong to any clusters. Leaving
them out can improve the quality and interpretability of the
clustering as well as downstream analyses (e.g., identification
of cluster marker genes).

• Gene expression signatures for clusters. Common differential
expression statistics are not well-suited for finding marker
genes for the clusters, especially for the finer structure in a
hierarchy.

• Goal. Provide a general and flexible framework that enables
researchers to easily apply and compare a variety of different
clustering algorithms and associated tuning parameters (e.g.,
k-means with a range of values for the number of clusters)
and generate a stable consensus clustering from these many
candidate clusterings.
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Cluster Analysis: RSEC

• We have developed a resampling-based sequential ensemble
clustering (RSEC) approach, with the aim of obtaining stable
and tight clusters.

• Ensemble clustering, i.e., aggregating multiple clusterings
obtained from different algorithms or applications of a given
algorithm to resampled versions of the learning set, is a
general approach for improving stability. This can be viewed
as the unsupervised analog of ensemble methods in supervised
learning, e.g., bagging, boosting, random forests.

• Bioconductor R package clusterExperiment:
www.bioconductor.org/packages/release/bioc/html/clusterExperiment.html.
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Cluster Analysis: RSEC

Resampling-based sequential ensemble clustering.

• Given a base clustering algorithm (e.g., PAM, k-means) and
associated tuning parameters (e.g., number of principal
components, number of clusters, distance matrix), generate a
single candidate clustering, optionally using

I resampling-based clustering and/or
I sequential clustering (Tseng and Wong, 2005).

• Generate a collection of candidate clusterings by repeating the
above procedure for different base clustering algorithms and
tuning parameters.

• Identify a single consensus clustering over the different
candidate clusterings based on the co-clustering matrix.

• Merge non-differential clusters by creating a hierarchy of
clusters, working up the tree, testing for differential expression
between sister nodes, and collapsing nodes with insufficient
DE.
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Cluster Analysis: RSEC

• Find cluster signatures by testing for differential expression
between selected subsets of clusters. E.g. Contrasts based on
hierarchy of clusters.

• Visualization. Comparison of multiple clusterings of the same
samples, pseudo-color images of co-clustering matrices,
pseudo-color images with hierarchical clustering of genes
and/or samples.
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Cluster Analysis: RSEC

Gene expression signatures for clusters.

• Find cluster marker genes by testing for differential expression
between selected subsets of clusters.

• Standard F -statistic. Tests for any difference between
clusters. Sensitive to outlying samples/clusters. Non-specific,
i.e., not useful for interpreting differences between clusters.

• Clustering-specific contrasts. Standard solution is to consider
contrasts between groups of clusters. By relying on the
(generalized) linear model machinery, we use all of the
samples in testing these contrasts, rather than just those
samples involved in the corresponding clusters.

I All pairwise. All pairwise comparisons between clusters.
I One against all. Compare each cluster to union of remaining

clusters.
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Cluster Analysis: RSEC

I Dendrogram. Create a hierarchy of clusters, work up the tree,
test for DE between sister nodes (as in approach used for
merging clusters).

• For each contrast, one can then test for DE using a variety of
methods.
E.g. Negative binomial GLM in edgeR and DESeq (with
ZINB-WaVE weights), limma linear model with voom weights
to account for over-dispersion.
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Cluster Analysis: RSEC

Figure 26: clusterExperiment. Comparison of clusterMany and
combineMany clusterings (plotClusters).
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Cluster Analysis: RSEC

Figure 27: clusterExperiment. Pseudo-color image of co-clustering matrix
for clusterMany clusterings, used to create combineMany clustering
(plotHeatmap).
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Cluster Analysis: RSEC

Figure 28: clusterExperiment. Dendrogram of combineMany clusters
(makeDengrogram). Similar clusters in sister nodes are merged using
mergeClusters (dashed lines).
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Cluster Analysis: RSEC

Figure 29: clusterExperiment. Pseudo-color image of log-counts for DE
genes based on F -statistics (top 472; getBestFeatures).
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Cluster Analysis: RSEC

Figure 30: clusterExperiment. Pseudo-color image of log-counts for DE
genes using dendrogram contrasts (472 genes, top 50 genes for each
node; getBestFeatures).
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Cluster Analysis: RSEC

Application to OE p63 dataset. The clusters identified by RSEC
correspond to a variety of states in the differentiation process of
stem cells into neurons and sustentacular cells:

• horizontal basal cells (HBC),

• globose basal cells (GBC),

• microvillous cells (MV),

• immediate neuronal precursors (INP),

• immature and mature olfactory sensory neurons (iOSN,
mOSN),

• immature and mature sustentacular cells (iSus, mSus).
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Inference of Cell Lineages and Pseudotimes: Slingshot

• Mapping transcriptional progression from stem cells to
specialized cell types is essential for properly understanding
the mechanisms regulating cell and tissue differentiation.

• Often, there is no clear distinction between states, but rather
a smooth transition, with individual cells undergoing gradual
transcriptional changes and existing on a continuum between
states.

• The relationship between states can be represented as a
continuous lineage dependent upon an underlying spatial or
temporal variable. This representation, referred to as
pseudotemporal ordering, can help us understand how cells
differentiate and how cell fate decisions are made.

• We have developed slingshot as a flexible and robust
framework for inferring cell lineages and pseudotimes.
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Inference of Cell Lineages and Pseudotimes: Slingshot

• Slingshot allows the identification of any number of novel
lineages, with the option of incorporating subject-matter
knowledge to supervise parts of the inference process (e.g.,
known terminal states).

• R package slingshot: github.com/kstreet13/slingshot.
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Inference of Cell Lineages and Pseudotimes: Slingshot

• Input/Output.
I Input. Reduced-dimensional representation of normalized gene

expression measures; cell clustering.
I Output. Cell lineages, i.e., ordered subsets of cell clusters.

Cell pseudotimes (and weights) for each lineage.

• Semi-supervised inference of global lineage structure.
I Minimum spanning tree (MST) over cell clusters, with

between-cluster distance based on covariance-scaled Euclidean
distance between cluster means.

I Root and leaf nodes. Either pre-specified or automatically
selected.
Root node. If not pre-specified, selected based on parsimony
(i.e., set of lineages with maximal number of clusters shared
between them).
Leaf nodes. If pre-specified, constrained MST.

76 / 91



Inference of Cell Lineages and Pseudotimes: Slingshot

I Outlying clusters. Identified using granularity parameter ω that
limits maximum edge weight in the tree. Specifically, build
MST using an artificial cluster Ω, with distance ω from other
clusters (a fraction of maximum pairwise distance between
clusters), and then remove Ω.

I A lineage is then defined as any unique path coming out of the
root node and ending in a leaf node.

I Constructing the MST on clusters (Ji and Ji, 2016; Shin et al.,
2015, TSCAN,Waterfall) vs. cells (Trapnell et al., 2014,
Monocle) offers greater stability and computational efficiency,
less complex lineages, and easier determination of directionality
and branching.

• Inferring cell pseudotimes along each lineage.
I Simultaneous principal curves. Iterative procedure based on

principal curves algorithm of Hastie and Stuetzle (1989)
(principal.curve function in princurve package).
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Inference of Cell Lineages and Pseudotimes: Slingshot

I In the case of branching lineages, a shrinkage step is included
at each iteration, shifting the curves to a consensus path in
areas where lineages share many common cells, but allowing
the curves to separate as lineages share fewer and fewer cells.
This ensures smooth bifurcations of the paths.

I Pseudotimes are derived by orthogonal projection onto the
curves.

I Cells belonging to clusters that are included in multiple
lineages have multiple, similar pseudotimes.

I We find that principal curves provide discerning power not
found in piecewise linear trajectories, while also adding stability
over a range of dimensionality reduction and clustering
methods.

• Slingshot is robust to pre-processing steps implicit in virtually
all lineage inference methods: normalization, dimensionality
reduction, clustering.
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Inference of Cell Lineages and Pseudotimes: Slingshot

• Differential gene expression within and between lineages.
Regression of gene expression measures on pseudotime, e.g.,
generalized additive models (GAM) (Ji and Ji, 2016,
TSCAN); dynamic time warping (DTW).

• Visualization. Two- and three-dimensional plots of cell
lineages and pseudotimes, gene-level trajectories, pseudo-color
images for DE genes.
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Inference of Cell Lineages and Pseudotimes: Slingshot

Application to OE p63 dataset.

• Cell clusters. We use the RSEC clustering to define
intermediate states in the differentiation of HBC to neuronal
and sustentacular cells.

• Leaf-node supervision. Known terminal states: Mature
sustentacular cells (mSus), microvillous cells (MV), and
mature olfactory sensory neurons (mOSN) (only the first had
an effect).

• Slingshot identifies three lineages: HBC–mSus,
HBC–GBC–MV, HBC–GBC–mOSN.
In the first lineage, sustentacular cells are produced via direct
conversion of HCB (without cell division). By contrast, in the
second and third lineages, microvillous and neuronal cells are
produced via an intermediate, proliferative state (GBC).
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• Without leaf-node supervision, we draw the (known) false
conclusion that sustentacular cells may develop into GBC.

• Slingshot and subsequent DE analysis along lineages reveal
that olfactory stem cells use divergent strategies to generate
the major cell types of the epithelium. There are numerous
step-like transitions in the neuronal lineage, but fewer gradual
changes in the sustentacular lineage.

81 / 91



Inference of Cell Lineages and Pseudotimes: Slingshot

●

●

●

●

●

●

●

●

●

●

●

●

●

HBC
.
GBC
mSus
.
.
.
.
.
.
mOSN
.
MV

HBC 

●

●

●

●

●

●

●

●

●

●

●

●

●

HBC
.
GBC
mSus
.
.
.
.
.
.
mOSN
.
MV

GBC 

●

●

●

●

●

●

●

●

●

●

●

●

●

HBC
.
GBC
mSus
.
.
.
.
.
.
mOSN
.
MV

mSus 
●

●

●

●

●

.

.
mOSN
.
MV

mOSN 

●

●

●

●

●

.

.
mOSN
.
MVMV 

● ● ●

●

●

PC 1 

PC
 3

 

PC 1 

PC
 3

 

PC 1 

PC
 3

 

Step 0 Step 1 Step 2 Step 3 

Step 0 Step 1 Step 2 

●

●

●

●

●

●

●

HBC
Transitioning HBC
GBC
Immature OSN
Mature OSN
Mature Sus
Microvillous

Figure 31: slingshot. MST on cell clusters and simultaneous principal
curves. Slingshot identifies three lineages: HBC–mSus, HBC–GBC–MV,
HBC–GBC–mOSN.
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Figure 32: slingshot. Pseudo-color image of top 100 DE genes for
neuronal lineage (GAM).
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Discussion

• Experimental design. Applying basic design principles could
easily avoid glaring problems such as confounding of biological
effects of interest with nuisance technical effects.

• Validation. Need control genes and samples.

• Computational reproducibility. Still far from being the norm.
And confusion with biological reproducibility.

• Notes to self.
I Look at data: Garbage in/garbage out.
I Don’t reinvent the wheel.
I “Why do it the easy way when you can do it the hard way?”
I Beware of hammers looking for nails: Start from the biological

question and data.
I Beware of models and assumptions: Results should be driven

by data, not models.
I Interpretation of probabilities: Source of randomness?

Sampling units?
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Discussion

Figure 33: Les devises Shadok.
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Software

• R Project: www.r-project.org.

• Bioconductor Project: www.bioconductor.org.

• clusterExperiment: Resampling-based sequential ensemble
clustering (RSEC).
www.bioconductor.org/packages/release/bioc/html/clusterExperiment.html.

• EDASeq: Exploratory data analysis and normalization for
RNA-Seq.
www.bioconductor.org/packages/release/bioc/html/EDASeq.html.

• RUVSeq: Remove unwanted variation for RNA-Seq.
www.bioconductor.org/packages/release/bioc/html/RUVSeq.html.

• scone: Normalization procedures and performance assessment.
www.bioconductor.org/packages/release/bioc/html/scone.html.

• slingshot: Cell lineage and pseudotime inference.
github.com/kstreet13/slingshot.
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Software

• zinbwave: Zero-inflated negative binomial-based wanted
variation extraction (ZINB-WaVE).
www.bioconductor.org/packages/release/bioc/html/zinbwave.html.

• Other packages listed at:
www.bioconductor.org/docs/workflows/htpsequencing.

• F1000 Bioconductor workflow (Perraudeau et al., 2017):
f1000research.com/articles/6-1158/.

See www.stat.berkeley.edu/~sandrine for publications,
presentations, and software.
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