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Eukaryotic Gene Regulation

e Transcription is regulated by regulatory proteins (transcription fac-
tors) binding to elements (motifs) of upstream regions (or promoter
regions).

Dot Seduence-speCific
tra nscripkion factors -

DNA

Eukaryotic promoter TFAD

GOAL: Finding motifs (binding sites) from a set of potentially co-
regulated genes.

e Some ways of determining potentially co-regulated genes are using
(a) scientific knowledge (b) gene expression profiles (¢) cross-species
comparisons.
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N unalignéd sequences 72 = (Xm, x '7Xi,Lz'>' 1=1,---,N, where L; is
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If we knew the start positions: Motif Representation

e Example of an aligned motif: ABF1 (from SCPD)

TCTCTCGCAACG
TCTCTCGCAACG
TCACGTCACACG
TCACCGCGAACG
TCATAAAGCACG
TCACTAAAGACG
TCAAAATTAACG
TCACTGTACACG
TCACTAACGACG
TCCCCATTAACG
TCACGATACACG
TCATGCGCTACG
TCATGCGCTACG
TCAAATAACAGA

e Assume that each position (1) is independent and (2) has a multi-
nomial distribution with P, w=1,---,W.

e Position specific probability matrix with motif width W = 12.

1 2 3 4 5 6 7 8 9 10 11 12
0.79 0.14 0.21 0.50 0.21 0.36 0.36 1 0.00 0.07
0.14 0.07 0.43 0.14 0.50 0.21 0.00 O 0.00 0.00
0.00 0.00 0.14 0.21 0.07 0.14 0.21 O 0.07 0.93
0.07 0.79 0.21 0.14 0.21 0.29 0.43 O 0.93 0.00
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One motif per sequence model

(Lawrence and Reily (1990); OOPS model of Bailey and Elkan’s MEME (1994))

Assumptions

e Sites are distributed independently With
Py = (po1,---,poa) For background site
for position w in the motif, w € {1,---, W}.

Pw — (pwla T 7pw4>
e Unknown start site.
{ 1 if motif starts at position [ in sequence ¢
Yi=10 o.wW

where [ € {1,---,L;, — 14+ W}. Allow only one motif per sequence %;Y; = 1.

e Uniform start site distribution.
PYy=1)=1/(L; =W +1).

Full data Ig-likelihood

4 W 4
Z Z ](Sn,h — CL) 1nga0 + Z Z ]<Xz',l—|—w—1 — CL) logpaw )

w=1 a=1

N L,—-W+1
> X IYu=1)|logp(Yy=1)+
i=1 =1 heT,, a=1

where T, ={1,--- . L;} —{l,l+1,--- I+ W -1}, l e {l,--- . L, — W + 1}.

Parameter estimation is done with EM algorithm or Gibbs Sampling.




How do methods based on this model perform??

e Pretty good if the motif is well represented in the data in terms
of its

— Frequency,
— Information content: [C(w) = 2 — Entropy at position w.
Entropy(w) = H(w) = —Z;L:l Puwijlog puj. IC(w) measures how con-

served that position of the motif is.
e Not very successful otherwise (Pevzner & Sze, 2001).

e [ hey also fail when there are other uninteresting competing mo-

tifs.

—» Example of a weak sighal motif:
2_

=1
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TC GGATCGCGGA
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—

e Anything interesting about this entropy structure?




Structured (Regular) Motifs

Mirny & Gelfand (2002):

¢ “Base pairs that are have more interaction with the protein are more con-
served.”

o “If a protein-DNA complex is available but the recognition motif.is unknown,
one can compute the number of contacts per base pair and predict the most

conserved ones” —> Rough idea about the entropy structure!
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Finding Structured (Regular) Motifs

e Define the regular motif as the motif following a structured en-
tropy. Entropy at position w of the motif equals

4
H(w) = — leaw log paw-
a=

e We assume a model H(w;0) for H(w), w=1,---, W.

e Different entropy curves define different motif structures e.g.
H(w)

"Low information in the middle, and higher
information towards the ends”

H(@l, (92;21}) = (91 — |w — w*| tangQ

W = 17 cee i




C.OOPS: M-step of the EM

e Define
G =Pr(Yy;=1]X;),
L;—W+41 . .
N fo\ilzlelw 1Cil]<Xi,l+w—1:])a if w=1---,W,
wy i—W+ N
AR GitZhery (X =17), it w=0.
e M-step for the motif parameters is
W 4
max > X Nyjlogpy;
w=1j=1
S.L.

4 \
— 1pwj 1ngwj m— 91 — 5(w, w*) tall 927 w = 17 R 14 (1)

a=
pr]: 3 w:17°”7W
Pwj =0 a=1-- 4Lw=1--- W
where (w, w™) = |w — w*|.
e Constraint (1) is a entropy structure specific constraint. Maxi-

L — . . .
mization w.r.t P,---, Py, 07 and 6y is done with a nonlinear con-
straint optimization method (Augmented Lagrange Multipliers).



Extended Model: Zero or one motif per sequence
(ZOOPS model of MEME)

e Introducing another hiden variable. Let

7. _ 1 if sequence i has a copy of the motif,
boLo 0.W.

e Uniform conditional start site distribution,
P(Yy=1[Z;=1)=1/(L; =W +1).

e Full data log-likelihood equals

N L; 4 , N
,le(ZZ- =0) |log (1 —7) + 121 'Zl ](XZ-J = j)log poj| + 'Zl I(Z;=1)logm
1= =17= 1=
N L,—W+1
+ X ¥ IZi=1Y,; =1 ¥ 2I(X;;=a)logpy,
=1 I=1 ’ heTy j ’
W 4 ,
+ X2 (X -1 =) log puj Hlog PV =11 Z; = 1),
=19=

where m = P(Z = 1).



Simulations

e PART 1: Performance in finding the weak regular motif as its
frequency varies. Weak Signal.

e PART 2: Performance in finding the regular motif in the existence
of a competing irregular motif. Irregular motif is obtained by
permuting columns of the regular motif. Model Misspecification.

e PART 3: Bias and relative efficiency comparisons in various sce-
narios.



PART 1: Findingd Weak Regular Motifs

N = 30 sequences generated from an i.i.d. background model and an instance of
the weak motif is inserted in varying percentage of the sequences (L = 100). Let

e K; = {set of true motif sites in sample i}

o K, = {set of predicted motif sites in sample i}
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PART II: Performance in the Presence of Competind
Irregular Motif

e NV =23 sequences are generated from an i.i.d. background model. All sequences
have an irfegular motif and a known ABF1 site (L = 100).

Results
— OOPS and ZOOPS models perform the same.

— C.OOPS and C.ZOOPS converge to the regular motif almost all the time,
OOPS and ZOOPS converge to the regular motif only 50% of the time.

Percentage of correct prediction on 23 ABF1 sites
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PART III: Relative Efficiency Comparison

e N = 50 sequences are generated from an i.i.d. background model. An instance
of the regular motif is inserted in a varying percentage of the sequences (L =100).

e Estimated relative efficiencies based on 400 data sets are reported at each (w, )
of the motif matrix at £ = 50%.
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Starting values for EM Algorithm

e Strategy I (I.k): Compute initial likelihood for al starting values
constructed from length W oligass. Then, run EM till convergence

for k of them with the highest initial likelihood.

e Strategy II (OS.k): Run EM one step for all starting values con-
structed from length W oliges. Then, run EM till convergence

for k of them with the highest one-step likelihood.

Summary of performances of these two strategies on 10 data sets:

I.1.5 [.LIRGO 1.100 0S.1 OS5 0S5.10 0OSs5.20
# data sets 1 3 5 9 10 10 6 8 8 10
time required | 15,16 22.57 31.24 52.42 119.79 231.28 | 151.33 157.59 165.45 181.33

# datasets: # of data sets for which global maximum is found (out of 10!).



Conclusion

e Constraint entropy motif model

—improves performance when the signal is weak.
— improves performance when there is a competingd irregular mo-
tif.
—results in more efficient motif estimate.
—results in more robust motif estimate.

e Extensions we are working oOn

— Higher order Markov Chain for the background model.

— Handling multiple occurrences of the same motif: Iterative Cut-
ting Procedure.

— Deletion of the high frequency irregular motif to improve accu-
racy of the regular motif estimate.
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