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Selective inference - introduction



Selective inference

e Statistical inference - target of inference, generative model

Confirmatory paradigm: target and model known before looking at data

Exploratory paradigm : target and model chosen after data snooping

e Selective inference bridges the gap between the two paradigms

Selection -  look for interesting inferential questions
decide/change existing beliefs on a generative model

Inference -  retain some guarantees post data exploration



Selective guarantees

Simultaneous coverage - Berk et al. 2013

e Conditional coverage - Lee et al. 2013; Fithian et al. 2014;
Loftus and Taylor 2015

e Asymptotic coverage and consistency - Tian and Taylor 2015

FDR control - Barber and Candes 2014; Candes et al. 2016;
Li and Barber 2016; Lei and Fithian 2016



Reproducibility in GWAS

Nature editorial: Over the past year, Nature has published a string of articles
that highlight failures in the reliability and reproducibility of published research.

e Analyst starts with an exhaustive pool of explanatory variables that
affect an outcome/ disease/ phenotype

e She reports the strongest associations suggested by the data

e FDR is a well-accepted global error criterion over reported discoveries

Prior works -Peterson et al. 2016; Stell and Sabatti 2016; Brzyski et al. 2017

How to measure the strengths of interesting effects post a
genome-wide search over the space of predictors/models?



Conditional framework of inference

Inferential guarantees

e Selective Type-l error

e Consistency of estimates conditional on selection
Data-splitting (e.g. Cox 1975) is common wisdom

e Conditional regime is a generalization of data-splitting

e More powerful than data-splitting: uses left-over information from
selection

e Small sample settings: data splitting suffers from low screening and
inferential powers



Talk today

e Selection and inference in one-go : describe methods that allow geneticist
to identify interesting effects and infer about them using a single data-set

e Higher inferential power : than an ad-hoc hold-out method

e New selective inference tools : optimization-based methods that
approximate an intractable reference measure in selection-adjusted law

e Estimates : provide a useful point estimate that is consistent and
selection-adjusted intervals that empirically have target coverage



GTEx - a multi-phenotype study



A cis-eQTL study

eQTL (Expression quantitative trait locus) studies: identify regions of the
genome that influence whether and how much a gene is expressed

Cis-eQTL mapping - associations between

e gene expression - the response

e local genetic variations (SNPs in this data) - predictors

restricted within 1MB of the transcription start site of each gene



Overview of GTEx data set

https://www.gtexportal.org/home/

44 Human Tissues, 449 Donors

GTEx data - Gene expression data for genes in various tissues
Genotypic information for donors.

Tissues - Liver (97 samples), Brain (72 samples), Stomach (170
samples)


https://www.gtexportal.org/home/

Multi-phenotype analysis

Gene expression data (RNA-seq) for G genes that correspond to Liver

Each gene g has its own predictor matrix of local variants.

(y(l)’X(l))’ (y(z)X(2))7 ) (y(G)’X(G))

y(g) c R97X1,X(g) = R97X Vg

G ~ 22K, V, varies between 3000 — 25000



Selection- eGenes and eVariants



A hierarchical selection

Selection of regulatory variants is modeled as a 2-stage selection

e eGenes - select genes with >= 1 signal from G genes
Consortium et al. 2015; Ongen et al. 2015; Carithers et al. 2015 identify
eQTLs (eGenes)

e eVariants: From V, variants, select regulatory variants

Aguet et al. 2016 conduct secondary analysis for eGenes to further
identify multiple regulatory variants



Randomized screenings

For data (y, X), a convex constrained (randomized) query:

minimizeg £(y, X; 8) + P(8)
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Randomized screenings

For data (y, X), a convex constrained (randomized) query:

minimizeg £(y, X; 8) + PA(B) —w' B, w ~ N(0,72])

e Randomization : preserves more left-over information for inference
e Randomized queries introduced in Tian et al. 2016

e Computational advantage with randomization : simplify support of
selective density through a change of measure
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Marginal screening of eGenes

eGene screening: for every gene

e Compute p-values {p1, p2,--- , py, } based on marginal T-stats

G (Xj(g),y(g))/ 21— g2 (xj(gﬁy(g))
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Marginal screening of eGenes

eGene screening: for every gene

e Compute p-values {p1, p2,--- , py, } based on marginal T-stats
(&) (e)
p X%y
E(g):\/n—Q- ( ’ ) + wj, wj ~ N(0,7?)

\/1 — 2 <Xj(g)_‘y(g))

V,
e Bonferroni-adjusted V; min p; or Simes-adjusted - min —,gp(,')
i I 1

e Pass all G Simes p-values through BH-q sieve
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eVariant screening

eVariant screening: for each eGene, identify promising variants

e A multivariate regression to explain polygenic nature of the
phenotype

e Aguet et al. 2016: A forward-backward with an adaptive threshold

e Employ a (randomized) LASSO

L 1
minimizeg §||y — X85+ MBIl
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eVariant screening

eVariant screening: for each eGene, identify promising variants

e A multivariate regression to explain polygenic nature of the
phenotype

e Aguet et al. 2016: A forward-backward with an adaptive threshold

e Employ a (randomized) LASSO

L. 1
minimizeg EHY *XBH% + A8l — ¢TB, ¢ NN(O,T2/p)
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Adaptive target & GWAS model




Target post selection

Post selection of eGene g and eVariants E

Adaptive target : bg = arg min E|Y® — x©p|3.

Unadjusted inference for eijE is based on
e Point estimate - Z = ¢] (XOx©)1x® " y®

e Intervals - [Z — zi_ay2 - 0(XE Xe); 5 Z + z1—ay2 - 0(XE Xe);

No guarantees on unadjusted inference!

13



GWAS generative model

e Saturated model framework - Lee et al. 2013
Y©) = 4 &) &) N N(0,021)
e Selected model framework - Fithian et al. 2014

y® = xE)ge + @, & "0 Ar(0,021)
e Other selection guided model - E function of E

Y©® = x5z + &, (& 2 N(0,021)

Like in classical regime, there is always the possibility of mis-specification!
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Conditional density

Selection modifies a generative model - conditioning on the selection event.
Conditional density relies on an explicit description of selection event
Selection applied is a function of outcome and randomization {(y€,w(€))}

{E(é’) — E£@ for g € G}, G = set of egenes

=
Recall : Target statistic Z(&) = T (X' X))~ 1x® " y(©

Recall : Target parameter b = eijE

Joint density (Z©), Q®) at {(z&),w®)}; QE ~ G with density g

Hexp(—(z("’) - b)2/20j2) X g(w(g)) X 1@ —F® for g6}
g
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Separable and convex selection region

Selection probability decouples into eGenes with a convex region C,

P(E® = E® for g € G) = MyecP((y®,w'®)) € ;) x Py

e independent GWAS structure across genes

e some additional conditioning beyond selected eGenes and eVariants

Joint density (Z(&8), Q(®)) at {(2(8),w(®))}; Q&) ~ G with density g

HGXP 28 — b)?/207) x g(w'®) x 1y, wie ))eKs}

Decoupled selection-adjusted law across all eGenes - focus on 1 eGene.
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Surrogate - (soft) truncated
likelihood



Randomized selective pivot

e Joint density (Z,w) at (z,w)

exp(—(z — b)*/20%) x g(w) X 1z wyex
e Selective density of Z| E(Z,w) = E

exp(—(z — b)?/20?) x P(w € Ko|Z = 2)

J7os exp(—(z — b)?/25?) dz

Selective pivot - ~£
e Selective pivo f_oc xp(—(z — b)?/207) -
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Approximate pivot

Jzax exp(—(z = b)?/20°) dz
ffooo exp(—(z — b)?/202) dz
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Approximate pivot

> exp(—(z - b)*/20?)

z€G:z>Z0bs

> exp(—(z — b)?/20?)

zeG

Theorem (Panigrahi et al. 2017)
With inversion map from K.K.T. conditions as

w=AgZ + BeO + ¢,

log ,E’(w € Kol|Z = z) = —infriei 505 0{N(Acz + Beo + ce) — log H(z)}

for a convex, compact Kq

E {Iogﬁ’(w € KolZ =2)—log P(w € KolZ = z)} — 0 as n— occ.
n
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Selection-adjusted density

Z ~N(-1,1), w ~ N(0,0.5); Selection: Z+ w > 2

— approx density — true density

0.006
0.004

0.002 1

0.000 A




Selective MLE

e Log-partition function
o0

b?/20° + log / exp(—(z — b)?/20?) dz

— 00
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Selective MLE

e Log-partition function

b?/20° +log Y _ exp(—(z — b)?/20?)
zeG

e The approximate selective MLE objective is convex

Theorem (Panigrahi et al. 2016)
For a convex selection region and Gaussian data, randomization, the

selective MLE is consistent for non-local sequences of parameters.

x2

Simple thresholding example: w(x) = 1+ + b(x)

b= (1+7)V(w(l+ 7%z — 72b)
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Adjusted inference in eQTL




A GWAS generative model

vy = Z X,Eg)ﬁk + €& &) ~ N(0,5°1).
keS(e)

|5(g)| €{0,1,2,---,9}, s(e) {1,2,--, Vg }.

Signal amplitude |Bx| = 2.5~ /2logp

Probability distribution of signals is as below:

[ofr[2]s[a]5 67 |8[0]
[60% [ 8% [ 7% | 6% | 5.5% | 4.5% | 3.5% | 2.5% [ 2% [ 1% |
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Screening powers of randomized versus non-randomized

Randomized screening - 1770 eGenes; non-randomized - 795 eGenes.

Comparison of power and FDR for eGene discoveries

Method FDR | Power

Randomized screening 11.24 | 21.33

Non-randomized screening | 1.65 10.51

22



Screening quality - randomized LASSO

. randomized . nonrandomized

75-

50-

S

0- 1 [ [ [ 1 1 1 1 [
1 2 3 4 5 6 7 8 9

Overall screening: randomized LASSO - 39%, non-randomized LASSO - 42%.

23



Effect sizes of eVariants

Compare coverages and lengths of intervals, risks of the point estimates

e Adjusted estimates based on our “approximation” methods

Unadjusted estimates post randomized screenings

Unadjusted estimates post nonrandomized screenings

Unadjusted estimates post Aguet et al. 2016

e Lee et al. 2013 estimates adjusted for LASSO
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Comparison of coverages

M adjusted [l exact(Lee) [l unad(R) lll unad(NR) [l unad(Aguet)

75 1
50
il
L
0 1 2 3 4 5 6 7 8

Coverage of adjusted intervals is close to target 90%, others fall short of target
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Comparison of risks

-o- adjusted -o- unad(R) -¢- unad(NR) -®- unad(Aguet)

Adjusted MLE strictly dominates in risk when number of signals less than 5,
risks become comparable in other regimes
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Comparison of lengths

-o- adjusted -o- exact(Lee) -¢- unad(R) -®- unad(NR) -#- unad(Aguet)

0.0 1

Selection-adjusted intervals pay a price in length; though are only 1.50 longer
with randomization in comparison to unadjusted intervals
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Effect size estimates in GTEx




Summary statistics

e Screen 2218 eGenes with an average of 5500 eVariants

e Screen for each eGene 11 eVariants on an average

Comparison with GTEx paper:

Aguet et al. 2016 reports 5 eVariants on an average for 1500 eGenes.
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Comparison of inference

75
50 1
il | I
:

unad unad NR) unad unad unad NR) unad

O =~ N w B~ o
P T TR T T

Proportion of effects that are significant and comparison of lengths of intervals

29



Concluding remarks

e Inference post (randomized) selection: choose target and model

e Power boost in inferential stage due to randomized selection

Scope of applying methods to other problems: effect sizes in RVA

Use prior information to give Bayesian inference: Panigrahi et al.
2016

30
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