Selection-adjusted estimation of effect sizes

with an application in eQTL studies

Snigdha Panigrahi 19 October, 2017

Stanford University

Selective inference - introduction

• Statistical inference - target of inference, generative model

Confirmatory paradigm: target and model known before looking at data **Exploratory paradigm** : target and model chosen after *data snooping*

- Selective inference bridges the gap between the two paradigms
 - Selection look for interesting inferential questions decide/change existing beliefs on a generative model
 - Inference retain some guarantees post data exploration

- Simultaneous coverage Berk et al. 2013
- Conditional coverage Lee et al. 2013; Fithian et al. 2014; Loftus and Taylor 2015
- Asymptotic coverage and consistency Tian and Taylor 2015
- FDR control Barber and Candes 2014; Candes et al. 2016; Li and Barber 2016; Lei and Fithian 2016

Nature editorial: Over the past year, Nature has published a string of articles that highlight failures in the reliability and reproducibility of published research.

- Analyst starts with an exhaustive pool of explanatory variables that affect an outcome/ disease/ phenotype
- She reports the strongest associations suggested by the data
- FDR is a well-accepted global error criterion over reported discoveries Prior works -Peterson et al. 2016; Stell and Sabatti 2016; Brzyski et al. 2017

How to measure the strengths of interesting effects post a genome-wide search over the space of predictors/models?

Inferential guarantees

- Selective Type-I error
- Consistency of estimates conditional on selection

Data-splitting (e.g. Cox 1975) is common wisdom

- Conditional regime is a generalization of data-splitting
- More powerful than data-splitting: uses left-over information from selection
- Small sample settings: data splitting suffers from low screening and inferential powers

- Selection and inference in one-go : describe methods that allow geneticist to identify interesting effects and infer about them using a single data-set
- Higher inferential power : than an ad-hoc hold-out method
- New selective inference tools : optimization-based methods that approximate an intractable reference measure in selection-adjusted law
- Estimates : provide a useful point estimate that is consistent and selection-adjusted intervals that empirically have target coverage

GTEx - a multi-phenotype study

eQTL (Expression quantitative trait locus) studies: identify regions of the genome that influence whether and how much a gene is expressed

Cis-eQTL mapping - associations between

- gene expression the response
- local genetic variations (SNPs in this data) predictors restricted within 1MB of the transcription start site of each gene

https://www.gtexportal.org/home/

44 Human Tissues, 449 Donors

GTEx data - Gene expression data for genes in various tissues Genotypic information for donors.

Tissues - Liver (97 samples), Brain (72 samples), Stomach (170 samples)

Gene expression data (RNA-seq) for G genes that correspond to Liver Each gene g has its own predictor matrix of local variants.

$$(y^{(1)}, X^{(1)}), (y^{(2)}, X^{(2)}), \cdots, (y^{(G)}, X^{(G)})$$

$$y^{(g)} \in \mathbb{R}^{97 imes 1}, X^{(g)} \in \mathbb{R}^{97 imes V_g}$$

 $G \approx 22K, V_g$ varies between $3000 - 25000$

Selection- eGenes and eVariants

Selection of regulatory variants is modeled as a 2-stage selection

• eGenes - select genes with >= 1 signal from G genes

Consortium et al. 2015; Ongen et al. 2015; Carithers et al. 2015 identify eQTLs (eGenes)

• eVariants: From Vg variants, select regulatory variants

Aguet et al. 2016 conduct secondary analysis for eGenes to further identify multiple regulatory variants

For data (y, X), a convex constrained (randomized) query:

minimize_{β} $\ell(y, X; \beta) + \mathcal{P}_{\lambda}(\beta)$

For data (y, X), a convex constrained (randomized) query:

minimize_{$$\beta$$} $\ell(y, X; \beta) + \mathcal{P}_{\lambda}(\beta) - \omega^{T}\beta, \ \omega \sim \mathcal{N}(0, \tau^{2}I)$

- Randomization : preserves more left-over information for inference
- Randomized queries introduced in Tian et al. 2016
- Computational advantage with randomization : simplify support of selective density through a change of measure

Marginal screening of eGenes

eGene screening: for every gene

• Compute p-values $\{p_1, p_2, \cdots, p_{V_g}\}$ based on marginal T-stats

$$T_{j}^{(g)} = \sqrt{n-2} \cdot \rho\left(X_{j}^{(g)}, y^{(g)}\right) / \sqrt{1 - \rho^{2}\left(X_{j}^{(g)}, y^{(g)}\right)}$$

Marginal screening of eGenes

eGene screening: for every gene

• Compute p-values $\{p_1, p_2, \cdots, p_{V_g}\}$ based on marginal T-stats

$$T_j^{(g)} = \sqrt{n-2} \cdot \frac{\rho\left(X_j^{(g)}, y^{(g)}\right)}{\sqrt{1 - \rho^2\left(X_j^{(g)}, y^{(g)}\right)}} + \omega_j, \ \omega_j \sim \mathcal{N}(0, \gamma^2)$$

- **Bonferroni**-adjusted $V_g \min_i p_i$ or **Simes**-adjusted $\min_i \frac{V_g}{i} p_{(i)}$
- Pass all G Simes p-values through BH-q sieve

eVariant screening: for each eGene, identify promising variants

- A multivariate regression to explain polygenic nature of the phenotype
- Aguet et al. 2016: A forward-backward with an adaptive threshold
- Employ a (randomized) LASSO

$$\mathsf{minimize}_{\beta} \ \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

eVariant screening: for each eGene, identify promising variants

- A multivariate regression to explain polygenic nature of the phenotype
- Aguet et al. 2016: A forward-backward with an adaptive threshold
- Employ a (randomized) LASSO

minimize_{$$\beta$$} $\frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 - \zeta^T \beta, \ \zeta \sim \mathcal{N}(0, \tau^2 I_p)$

Adaptive target & GWAS model

Post selection of eGene g and eVariants \boldsymbol{E}

Adaptive target
$$: b_{\boldsymbol{E}} = \arg\min_{b} \mathbb{E} \|Y^{(g)} - X^{(g)}_{\boldsymbol{E}}b\|_{2}^{2}.$$

Unadjusted inference for $e_i^T b_E$ is based on

- Point estimate $Z = e_j^T (X_E^{(g)} X_E^{(g)})^{-1} X_E^{(g)} Y^{(g)}$
- Intervals $[Z z_{1-\alpha/2} \cdot \sigma(X_{\boldsymbol{E}}^T X_{\boldsymbol{E}})_{j,j}^{-1}, Z + z_{1-\alpha/2} \cdot \sigma(X_{\boldsymbol{E}}^T X_{\boldsymbol{E}})_{j,j}^{-1}]$

No guarantees on unadjusted inference!

GWAS generative model

• Saturated model framework - Lee et al. 2013

$$Y^{(g)} = \mu + \epsilon^{(g)}, \ \epsilon^{(g)} \stackrel{\text{IND}}{\sim} \mathcal{N}(0, \sigma^2 I)$$

• Selected model framework - Fithian et al. 2014

$$Y^{(g)} = X_{\boldsymbol{E}}^{(g)} \beta_{\boldsymbol{E}} + \epsilon^{(g)}, \ \epsilon^{(g)} \stackrel{\text{IND}}{\sim} \mathcal{N}(0, \sigma^2 I)$$

• Other selection guided model - \bar{E} function of E

$$Y^{(g)} = X^{(g)}_{\bar{E}} \beta_{\bar{E}} + \epsilon^{(g)}, \ \epsilon^{(g)} \stackrel{\text{IND}}{\sim} \mathcal{N}(0, \sigma^2 I)$$

Like in classical regime, there is always the possibility of mis-specification!

Selection modifies a generative model - conditioning on the selection event. Conditional density relies on an explicit description of selection event Selection applied is a function of outcome and randomization $\{(y^{(g)}, \omega^{(g)})\}$

$$\{\hat{E}^{(g)} = E^{(g)} \text{ for } g \in G\}, \ G = \text{set of egenes}$$

Recall : Target statistic $Z^{(g)} = e_j^T (X_E^{(g)} X_E^{(g)})^{-1} X_E^{(g)T} Y^{(g)}$

Recall : Target parameter $b = e_j^T b_E$

Joint density $(Z^{(g)}, \Omega^{(g)})$ at $\{(z^{(g)}, \omega^{(g)})\}; \quad \Omega^{(g)} \sim G$ with density g $\prod_{g} \exp(-(z^{(g)} - b)^2/2\sigma_j^2) \times g(\omega^{(g)}) \times 1_{\{\hat{E}^{(g)} = E^{(g)} \text{ for } g \in G\}}$

Selection probability decouples into eGenes with a convex region \mathcal{K}_g

$$P(\hat{E}^{(g)} = E^{(g)} ext{ for } g \in G) = \Pi_{g \in G} P((y^{(g)}, \omega^{(g)}) \in \mathcal{K}_g) imes P_0.$$

- independent GWAS structure across genes
- some additional conditioning beyond selected eGenes and eVariants

Joint density $(Z^{(g)}, \Omega^{(g)})$ at $\{(z^{(g)}, \omega^{(g)})\}; \quad \Omega^{(g)} \sim G$ with density g

$$\prod_{g} \exp(-(z^{(g)}-b)^2/2\sigma_j^2) \times g(\omega^{(g)}) \times 1_{\{(z^{(g)},\omega^{(g)}) \in \mathcal{K}_g\}}$$

Decoupled selection-adjusted law across all eGenes - focus on 1 eGene.

Surrogate - (soft) truncated likelihood

Randomized selective pivot

• Joint density (Z, ω) at (z, w)

$$\exp(-(z-b)^2/2\sigma^2) \times g(w) \times \mathbb{1}_{(z,w) \in \mathcal{K}}$$

• Selective density of
$$Z|\hat{E}(Z,\omega) = E$$

$$\exp(-(z-b)^2/2\sigma^2) \times P(\omega \in \mathcal{K}_0|Z=z)$$

• Selective pivot -
$$\frac{\int_{Z^{obs}}^{\infty} \exp(-(z-b)^2/2\sigma^2) P(\omega \in \mathcal{K}_0 | Z = z) dz}{\int_{-\infty}^{\infty} \exp(-(z-b)^2/2\sigma^2) P(\omega \in \mathcal{K}_0 | Z = z) dz}$$

Approximate pivot

$$\frac{\int_{Z^{obs}}^{\infty} \exp(-(z-b)^2/2\sigma^2) P(\omega \in \mathcal{K}_0 | Z = z) dz}{\int_{-\infty}^{\infty} \exp(-(z-b)^2/2\sigma^2) P(\omega \in \mathcal{K}_0 | Z = z) dz}$$

Approximate pivot

$$\frac{\sum\limits_{z \in G: z \ge Z^{\text{obs}}} \exp(-(z-b)^2/2\sigma^2) \hat{P}(\omega \in \mathcal{K}_0 | Z = z)}{\sum\limits_{z \in G} \exp(-(z-b)^2/2\sigma^2) \hat{P}(\omega \in \mathcal{K}_0 | Z = z)}$$

Theorem (Panigrahi et al. 2017) With inversion map from K.K.T. conditions as

$$\omega = A_E Z + B_E O + c_E,$$

 $\log \hat{P}(\omega \in \mathcal{K}_0 | Z = z) = -\inf_{\mathbb{R}^{|\mathcal{E}|} \ni o > 0} \{\Lambda^*_G(A_E z + B_E o + c_E) - \log H(z)\}$

for a convex, compact \mathcal{K}_0

$$\frac{1}{n}\left\{\log \hat{P}(\omega \in \mathcal{K}_0 | Z = z) - \log P(\omega \in \mathcal{K}_0 | Z = z)\right\} \to 0 \text{ as } n \to \infty.$$

Selection-adjusted density

$$Z \sim \mathcal{N}(-1,1), \ \omega \sim \mathcal{N}(0,0.5)$$
; Selection: $Z + w > 2$

• Log-partition function

$$b^2/2\sigma^2 + \log \int_{-\infty}^{\infty} \exp(-(z-b)^2/2\sigma^2) P(\omega \in \mathcal{K}_0 | Z = z) dz$$

• Log-partition function

$$b^2/2\sigma^2 + \log \sum_{z \in G} \exp(-(z-b)^2/2\sigma^2) \hat{P}(\omega \in \mathcal{K}_0 | Z = z)$$

The approximate selective MLE objective is convex

Theorem (Panigrahi et al. 2016)

For a convex selection region and Gaussian data, randomization, the selective MLE is consistent for non-local sequences of parameters.

Simple thresholding example: $w(x) = \frac{x^2}{2(1 + \tau^2)} + b(x)$

$$\hat{b}=(1+ au^2)
abla(w(1+ au^2)z- au^2\hat{b})$$

Adjusted inference in eQTL

A GWAS generative model

$$Y^{(g)} = \sum_{k \in S^{(g)}} X_k^{(g)} \beta_k + \epsilon^{(g)}, \ \epsilon^{(g)} \sim \mathcal{N}(0, \sigma^2 I).$$
$$|S^{(g)}| \in \{0, 1, 2, \cdots, 9\}, \ S^{(g)} \subset \{1, 2, \cdots, V_g\}.$$

Signal amplitude $|\beta_k| = 2.5 \approx \sqrt{2 \log p}$

Probability distribution of signals is as below:

0	1	2	3	4	5	6	7	8	9
60%	8%	7%	6%	5.5%	4.5%	3.5%	2.5%	2%	1%

Randomized screening - 1770 eGenes; non-randomized - 795 eGenes.

Comparison of power and FDR for eGene discoveries

Method	FDR	Power	
Randomized screening	11.24	21.33	
Non-randomized screening	1.65	10.51	

Screening quality - randomized LASSO

Overall screening: randomized LASSO - 39%, non-randomized LASSO - 42%.

Compare coverages and lengths of intervals, risks of the point estimates

- Adjusted estimates based on our "approximation" methods
- Unadjusted estimates post randomized screenings
- Unadjusted estimates post nonrandomized screenings
- Unadjusted estimates post Aguet et al. 2016
- Lee et al. 2013 estimates adjusted for LASSO

Comparison of coverages

Coverage of adjusted intervals is close to target 90%, others fall short of target

Comparison of risks

Adjusted MLE strictly dominates in risk when number of signals less than 5, risks become comparable in other regimes

Comparison of lengths

Selection-adjusted intervals pay a price in length; though are only 1.5σ longer with randomization in comparison to unadjusted intervals

Effect size estimates in GTEx

- Screen 2218 eGenes with an average of 5500 eVariants
- $\bullet\,$ Screen for each eGene 11 eVariants on an average

Comparison with GTEx paper:

Aguet et al. 2016 reports 5 eVariants on an average for 1500 eGenes.

Comparison of inference

Proportion of effects that are significant and comparison of lengths of intervals

- Inference post (randomized) selection: choose target and model
- Power boost in inferential stage due to randomized selection
- Scope of applying methods to other problems: effect sizes in RVA
- Use prior information to give Bayesian inference: Panigrahi et al. 2016

References

Francois Aguet et al. "Local genetic effects on gene expression across 44 human tissues". In: BiorXiv (2016), p. 074450.

Rina Barber and Emmanuel Candes. "Controlling the false discovery rate via knockoffs". In: arXiv preprint arXiv:1404.5609 (2014).

Rina Foygel Barber and Aaditya Ramdas. "The p-filter: multi-layer FDR control for grouped hypotheses". In: arXiv preprint arXiv:1512.03397 (2015).

Richard Berk et al. "Valid post-selection inference". In: The Annals of Statistics 41.2 (2013), pp. 802-837.

Damian Brzyski et al. "Controlling the rate of GWAS false discoveries". In: Genetics 205.1 (2017), pp. 61-75.

Emmanuel Candes et al. "Panning for gold: Model-free knockoffs for high-dimensional controlled variable selection". In: arXiv preprint arXiv:1610.02351 (2016).

Latarsha J Carithers et al. "A novel approach to high-quality postmortem tissue procurement: the GTEx project". In: Biopreservation and biobanking 13.5 (2015), pp. 311–319.

GTEx Consortium et al. "The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans". In: Science 348.6235 (2015), pp. 648–660.

DR Cox. "A note on data-splitting for the evaluation of significance levels". In: Biometrika 62.2 (1975), pp. 441-444.

William Fithian et al. "Optimal inference after model selection". In: arXiv preprint arXiv:1410.2597 (2014).

Jason D Lee et al. "Exact post-selection inference with the lasso". In: arXiv preprint arXiv:1311.6238 (2013).

Lihua Lei and William Fithian. "AdaPT: An interactive procedure for multiple testing with side information". In: arXiv preprint arXiv:1609.06035 (2016).

Ang Li and Rina Foygel Barber. "Multiple testing with the structure adaptive Benjamini-Hochberg algorithm". In: arXiv preprint arXiv:1606.07926 (2016).

Joshua R Loftus and Jonathan E Taylor. "Selective inference in regression models with groups of variables". In: arXiv preprint arXiv:1511.01478 (2015).

Halit Ongen et al. "Fast and efficient QTL mapper for thousands of molecular phenotypes". In: *Bioinformatics* 32.10 (2015), pp. 1479–1485.

Snigdha Panigrahi et al. "An MCMC free approach to post-selective inference". In: arXiv preprint arXiv:1703.06154 (2017).

Snigdha Panigrahi et al. "Bayesian Post-Selection Inference in the Linear Model". In: arXiv preprint arXiv:1605.08824 (2016).

Christine B Peterson et al. "Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies". In: Genetic epidemiology 40.1 (2016), pp. 45–56.

Laurel Stell and Chiara Sabatti. "Genetic variant selection: learning across traits and sites". In: Genetics 202.2 (2016), pp. 439–455.

Xiaoying Tian and Jonathan E Taylor. "Selective inference with a randomized response". In: arXiv preprint arXiv:1507.06739 (2015).

Xiaoying Tian et al. "Selective sampling after solving a convex problem". In: arXiv preprint arXiv:1609.05609 (2016).