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Selective inference - introduction



Selective inference

• Statistical inference - target of inference, generative model

Confirmatory paradigm: target and model known before looking at data

Exploratory paradigm : target and model chosen after data snooping

• Selective inference bridges the gap between the two paradigms

Selection - look for interesting inferential questions

decide/change existing beliefs on a generative model

Inference - retain some guarantees post data exploration
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Selective guarantees

• Simultaneous coverage - Berk et al. 2013

• Conditional coverage - Lee et al. 2013; Fithian et al. 2014;

Loftus and Taylor 2015

• Asymptotic coverage and consistency - Tian and Taylor 2015

• FDR control - Barber and Candes 2014; Candes et al. 2016;

Li and Barber 2016; Lei and Fithian 2016
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Reproducibility in GWAS

Nature editorial: Over the past year, Nature has published a string of articles

that highlight failures in the reliability and reproducibility of published research.

• Analyst starts with an exhaustive pool of explanatory variables that

affect an outcome/ disease/ phenotype

• She reports the strongest associations suggested by the data

• FDR is a well-accepted global error criterion over reported discoveries

Prior works -Peterson et al. 2016; Stell and Sabatti 2016; Brzyski et al. 2017

How to measure the strengths of interesting effects post a

genome-wide search over the space of predictors/models?
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Conditional framework of inference

Inferential guarantees

• Selective Type-I error

• Consistency of estimates conditional on selection

Data-splitting (e.g. Cox 1975) is common wisdom

• Conditional regime is a generalization of data-splitting

• More powerful than data-splitting: uses left-over information from

selection

• Small sample settings: data splitting suffers from low screening and

inferential powers
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Talk today

• Selection and inference in one-go : describe methods that allow geneticist

to identify interesting effects and infer about them using a single data-set

• Higher inferential power : than an ad-hoc hold-out method

• New selective inference tools : optimization-based methods that

approximate an intractable reference measure in selection-adjusted law

• Estimates : provide a useful point estimate that is consistent and

selection-adjusted intervals that empirically have target coverage
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GTEx - a multi-phenotype study



A cis-eQTL study

eQTL (Expression quantitative trait locus) studies: identify regions of the

genome that influence whether and how much a gene is expressed

Cis-eQTL mapping - associations between

• gene expression - the response

• local genetic variations (SNPs in this data) - predictors

restricted within 1MB of the transcription start site of each gene
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Overview of GTEx data set

https://www.gtexportal.org/home/

44 Human Tissues, 449 Donors

GTEx data - Gene expression data for genes in various tissues

Genotypic information for donors.

Tissues - Liver (97 samples), Brain (72 samples), Stomach (170

samples)

7

https://www.gtexportal.org/home/


Multi-phenotype analysis

Gene expression data (RNA-seq) for G genes that correspond to Liver

Each gene g has its own predictor matrix of local variants.

(y (1),X (1)), (y (2),X (2)), · · · , (y (G),X (G))

y (g) ∈ R97×1,X (g) ∈ R97×Vg

G ≈ 22K , Vg varies between 3000− 25000
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Selection- eGenes and eVariants



A hierarchical selection

Selection of regulatory variants is modeled as a 2-stage selection

• eGenes - select genes with >= 1 signal from G genes

Consortium et al. 2015; Ongen et al. 2015; Carithers et al. 2015 identify

eQTLs (eGenes)

• eVariants: From Vg variants, select regulatory variants

Aguet et al. 2016 conduct secondary analysis for eGenes to further

identify multiple regulatory variants
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Randomized screenings

For data (y ,X ), a convex constrained (randomized) query:

minimizeβ `(y ,X ;β) + Pλ(β)

• Randomization : preserves more left-over information for inference

• Randomized queries introduced in Tian et al. 2016

• Computational advantage with randomization : simplify support of

selective density through a change of measure
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Randomized screenings

For data (y ,X ), a convex constrained (randomized) query:

minimizeβ `(y ,X ;β) + Pλ(β)− ωTβ, ω ∼ N (0, τ 2I )

• Randomization : preserves more left-over information for inference

• Randomized queries introduced in Tian et al. 2016

• Computational advantage with randomization : simplify support of

selective density through a change of measure
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Marginal screening of eGenes

eGene screening: for every gene

• Compute p-values {p1, p2, · · · , pVg } based on marginal T-stats

T
(g)
j =

√
n − 2 · ρ

(
X

(g)
j , y (g)

)/√
1− ρ2

(
X

(g)
j , y (g)

)

• Bonferroni-adjusted Vg min
i

pi or Simes-adjusted - min
i

Vg

i
p(i)

• Pass all G Simes p-values through BH-q sieve
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eVariant screening

eVariant screening: for each eGene, identify promising variants

• A multivariate regression to explain polygenic nature of the

phenotype

• Aguet et al. 2016: A forward-backward with an adaptive threshold

• Employ a (randomized) LASSO

minimizeβ
1

2
‖y − Xβ‖2

2 + λ‖β‖1
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eVariant screening

eVariant screening: for each eGene, identify promising variants

• A multivariate regression to explain polygenic nature of the

phenotype

• Aguet et al. 2016: A forward-backward with an adaptive threshold

• Employ a (randomized) LASSO

minimizeβ
1

2
‖y − Xβ‖2

2 + λ‖β‖1 − ζTβ, ζ ∼ N (0, τ 2Ip)
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Adaptive target & GWAS model



Target post selection

Post selection of eGene g and eVariants E

Adaptive target : bE = arg min
b

E‖Y (g) − X
(g)
E b‖2

2.

Unadjusted inference for eTj bE is based on

• Point estimate - Z = eTj (X
(g)
E X

(g)
E )−1X

(g)
E

T
Y (g)

• Intervals - [Z − z1−α/2 · σ(XT
E XE )−1

j, j ,Z + z1−α/2 · σ(XT
E XE )−1

j, j ]

No guarantees on unadjusted inference!

13



GWAS generative model

• Saturated model framework - Lee et al. 2013

Y (g) = µ+ ε(g), ε(g) IND∼ N (0, σ2I )

• Selected model framework - Fithian et al. 2014

Y (g) = X
(g)
E βE + ε(g), ε(g) IND∼ N (0, σ2I )

• Other selection guided model - Ē function of E

Y (g) = X
(g)

Ē βĒ + ε(g), ε(g) IND∼ N (0, σ2I )

Like in classical regime, there is always the possibility of mis-specification!
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Conditional density

Selection modifies a generative model - conditioning on the selection event.

Conditional density relies on an explicit description of selection event

Selection applied is a function of outcome and randomization {(y (g), ω(g))}

{Ê (g) = E (g) for g ∈ G}, G = set of egenes

Recall : Target statistic Z (g) = eTj (X
(g)
E X

(g)
E )−1X

(g)
E

T
Y (g)

Recall : Target parameter b = eTj bE

Joint density (Z (g),Ω(g)) at {(z (g), ω(g))}; Ω(g) ∼ G with density g∏
g

exp(−(z (g) − b)2/2σ2
j )× g(ω(g))× 1{Ê (g)=E (g) for g∈G}
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Separable and convex selection region

Selection probability decouples into eGenes with a convex region Kg

P(Ê (g) = E (g) for g ∈ G ) = Πg∈GP((y (g), ω(g)) ∈ Kg )× P0.

• independent GWAS structure across genes

• some additional conditioning beyond selected eGenes and eVariants

Joint density (Z (g),Ω(g)) at {(z (g), ω(g))}; Ω(g) ∼ G with density g∏
g

exp(−(z (g) − b)2/2σ2
j )× g(ω(g))× 1{(z(g),ω(g))∈Kg}

Decoupled selection-adjusted law across all eGenes - focus on 1 eGene.
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Surrogate - (soft) truncated

likelihood



Randomized selective pivot

• Joint density (Z , ω) at (z ,w)

exp(−(z − b)2/2σ2)× g(w)× 1(z,w)∈K

• Selective density of Z | Ê (Z , ω) = E

exp(−(z − b)2/2σ2)× P(ω ∈ K0|Z = z)

• Selective pivot -

∫∞
Z obs exp(−(z − b)2/2σ2)P(ω ∈ K0|Z = z)dz∫∞
−∞ exp(−(z − b)2/2σ2)P(ω ∈ K0|Z = z)dz
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Approximate pivot

∫∞
Z obs exp(−(z − b)2/2σ2)P(ω ∈ K0|Z = z)dz∫∞
−∞ exp(−(z − b)2/2σ2)P(ω ∈ K0|Z = z)dz

Theorem (Panigrahi et al. 2017)

With inversion map from K.K.T. conditions as

ω = AEZ + BEO + cE ,

log P̂(ω ∈ K0|Z = z) = − infR|E|3o>0{Λ∗G (AE z + BEo + cE )− logH(z)}

for a convex, compact K0

1

n

{
log P̂(ω ∈ K0|Z = z)− logP(ω ∈ K0|Z = z)

}
→ 0 as n→∞.
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Approximate pivot

∑
z∈G :z≥Z obs

exp(−(z − b)2/2σ2)P̂(ω ∈ K0|Z = z)∑
z∈G

exp(−(z − b)2/2σ2)P̂(ω ∈ K0|Z = z)

Theorem (Panigrahi et al. 2017)

With inversion map from K.K.T. conditions as

ω = AEZ + BEO + cE ,

log P̂(ω ∈ K0|Z = z) = − infR|E|3o>0{Λ∗G (AE z + BEo + cE )− logH(z)}

for a convex, compact K0

1

n

{
log P̂(ω ∈ K0|Z = z)− logP(ω ∈ K0|Z = z)

}
→ 0 as n→∞.
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Selection-adjusted density

Z ∼ N (−1, 1), ω ∼ N (0, 0.5); Selection: Z + w > 2
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Selective MLE

• Log-partition function

b2/2σ2 + log

∫ ∞
−∞

exp(−(z − b)2/2σ2)P(ω ∈ K0|Z = z)dz

• The approximate selective MLE objective is convex

Theorem (Panigrahi et al. 2016)

For a convex selection region and Gaussian data, randomization, the

selective MLE is consistent for non-local sequences of parameters.

Simple thresholding example: w(x) =
x2

2(1 + τ 2)
+ b(x)

b̂ = (1 + τ 2)∇(w(1 + τ 2)z − τ 2b̂)
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Adjusted inference in eQTL



A GWAS generative model

Y (g) =
∑

k∈S(g)

X
(g)
k βk + ε(g), ε(g) ∼ N (0, σ2I ).

|S (g)| ∈ {0, 1, 2, · · · , 9}, S (g) ⊂ {1, 2, · · · ,Vg}.

Signal amplitude |βk | = 2.5 ≈
√

2 log p

Probability distribution of signals is as below:

0 1 2 3 4 5 6 7 8 9

60% 8% 7% 6% 5.5% 4.5% 3.5% 2.5% 2% 1%
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Screening powers of randomized versus non-randomized

Randomized screening - 1770 eGenes; non-randomized - 795 eGenes.

Comparison of power and FDR for eGene discoveries

Method FDR Power

Randomized screening 11.24 21.33

Non-randomized screening 1.65 10.51
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Screening quality - randomized LASSO

Overall screening: randomized LASSO - 39%, non-randomized LASSO - 42%.
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Effect sizes of eVariants

Compare coverages and lengths of intervals, risks of the point estimates

• Adjusted estimates based on our “approximation” methods

• Unadjusted estimates post randomized screenings

• Unadjusted estimates post nonrandomized screenings

• Unadjusted estimates post Aguet et al. 2016

• Lee et al. 2013 estimates adjusted for LASSO
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Comparison of coverages

Coverage of adjusted intervals is close to target 90%, others fall short of target
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Comparison of risks

Adjusted MLE strictly dominates in risk when number of signals less than 5,

risks become comparable in other regimes

26



Comparison of lengths

Selection-adjusted intervals pay a price in length; though are only 1.5σ longer

with randomization in comparison to unadjusted intervals
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Effect size estimates in GTEx



Summary statistics

• Screen 2218 eGenes with an average of 5500 eVariants

• Screen for each eGene 11 eVariants on an average

Comparison with GTEx paper:

Aguet et al. 2016 reports 5 eVariants on an average for 1500 eGenes.
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Comparison of inference

Proportion of effects that are significant and comparison of lengths of intervals
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Concluding remarks

• Inference post (randomized) selection: choose target and model

• Power boost in inferential stage due to randomized selection

• Scope of applying methods to other problems: effect sizes in RVA

• Use prior information to give Bayesian inference: Panigrahi et al.

2016
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