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Abstract

Dropout events in single-cell transcriptome sequencing (scRNA-seq) cause many transcripts to go undetected
and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis.
This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent
evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to tradi-
tional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial
(ZINB) model, that identifies excess zero counts and generates gene and cell-specific weights to unlock bulk
RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.
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Background

Transcriptomics has become one of the standard tools in modern biology to unravel the molecular basis of
biological processes and diseases. One of the most common applications of transcriptome profiling is the
discovery of differentially expressed (DE) genes, which exhibit changes in expression levels across conditions
[Love et al., 2014, Robinson et al., 2010, Law et al., 2014]. Over the last decade, transcriptome sequencing
(RNA-seq) has become the standard technology for transcriptome profiling, enabling researchers to study
average gene expression over bulks of thousands of cells [Wang et al., 2009, Goodwin et al., 2016]. The advent
of single-cell RNA-seq (scRNA-seq) enables high-throughput transcriptome profiling at the resolution of single
cells and allows, among other things, research on cell developmental trajectories, cell-to-cell heterogeneity, and
the discovery of novel cell types [Lönnberg et al., 2017, Buettner et al., 2015, Patel et al., 2014, Kolodziejczyk
et al., 2015a, Li et al., 2017, Usoskin et al., 2014].

In scRNA-seq, individual cells are first captured, their RNA is then reverse-transcribed into cDNA, which
is greatly amplified from the minute amount of starting material, and the resulting library is finally sequenced
[Kolodziejczyk et al., 2015b]. Transcript abundances are typically estimated by counts, which represent the
number of sequencing reads mapping to an exon, transcript, or gene. Many scRNA-seq protocols have
been published to conduct such core steps [Nakamura et al., 2015, Wu et al., 2013, Islam et al., 2013,
2011, Picelli et al., 2014, Hashimshony et al., 2016], but despite these advances, scRNA-seq data remain
inherently noisy. Dropout events cause many transcripts to go undetected for technical reasons, such as
inefficient cDNA polymerization, amplification bias, or low sequencing depth, leading to an excess of zero
read counts as compared to bulk RNA-seq data [Hashimshony et al., 2016, Finak et al., 2015]. In addition,
excess zeros can also occur for biological reasons, such as transcriptional bursting [Raj and van Oudenaarden,
2008]. There are therefore two types of zeros in scRNA-seq data: biological zeros, when a gene is simply
not expressed in the cell, and technical zeros (i.e., dropouts), when a gene is expressed in the cell but not
detected. Zero inflation, i.e., excess zeros compared to standard count distributions (e.g., negative binomial)
used in bulk RNA-seq, occurs for both biological and technical reasons and disentangling the two sources is
non-trivial. In addition, scRNA-seq counts are inherently more variable than bulk RNA-seq counts because
the transcriptional signal is not averaged across thousands of individual cells (Additional File 1: Figure S1),
making cell-to-cell heterogeneity, cell type mixtures, and stochastic expression bursts important contributors
to between-sample variability [Raj et al., 2006, Buettner et al., 2015].

Typical scRNA-seq data analysis workflows often involve identifying cell types in silico using tailored
clustering algorithms [Pierson and Yau, 2015, Risso et al., 2017] or ordering cells along developmental tra-
jectories, where cell types are defined as terminal states of the developmental process [Setty et al., 2016, Qiu
et al., 2017, Lönnberg et al., 2017, Street et al., 2017]. A natural subsequent step is the discovery of marker
genes for the defined cell types by assessing differential gene expression between these groups. Another com-
mon setting is the identification of marker genes for a priori known cell types. Differential expression analysis
between homogeneous cell populations as in the aforementioned scRNA-seq applications is the use case for
our method.

Popular bulk RNA-seq DE tools, such as those implemented in the Bioconductor R packages edgeR
[Robinson et al., 2010] and DESeq2 [Love et al., 2014], assume a negative binomial (NB) count distribution
across biological replicates, while limma-voom [Law et al., 2014] uses linear models for log-transformed
counts and observation-level weights to account for the mean-variance relationship of the transformed count
data. Such tools can also be applied for scRNA-seq DE analysis [Lun et al., 2016]. However, dropouts,
transcriptional bursting, and high variability in scRNA-seq data raise concerns about their validity. This has
triggered the development of novel dedicated tools, which typically introduce an additional model component
to account for the excess of zeros through, for example, zero-inflated (SCDE, Kharchenko et al. [2014]) or
hurdle (MAST, Finak et al. [2015]) models. However, Jaakkola et al. [2016] and Soneson and Robinson [2017a]
have recently shown that these bespoke tools do not provide systematic benefits over standard bulk RNA-seq
tools in scRNA-seq applications.

We argue that standard bulk RNA-seq tools, however, still suffer in performance due to zero inflation with
respect to the negative binomial distribution. We illustrate this using biological coefficient of variation (BCV)
plots [McCarthy et al., 2012a], which represent the mean-variance relationship of the counts. Note that the
BCV plots of scRNA-seq data exhibit striped patterns (Figure 1a-b and Additional File 1: Figure S2 for
scRNA-seq datasets subsampled to ten cells) that are indicative of genes with few positive counts (Additional
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File 1: Figure S3) and very high dispersion estimates. Randomly adding zeros to bulk RNA-seq data, likewise
consisting of ten samples, also results in similar striped patterns (Figure 1c-d). Negative binomial models,
as implemented in DESeq2 and edgeR, will thus accommodate excess zeros by overestimating the dispersion
parameter, which jeopardizes the power to infer differential expression. However, by correctly identifying the
excess zeros and downweighting them in the dispersion estimation and model-fitting, one reconstructs the
original mean-variance relationship (Figure 1e), thus recovering the power to detect differential expression
(Figure 1f). Hence, identifying and downweighting excess zeros provides the key to unlocking bulk RNA-seq
tools for scRNA-seq differential expression analysis. Note that methods based on a zero-inflated negative
binomial (ZINB) model naturally implement such an approach: Excess zeros are attributed weights through
the zero inflation probability and inference can be focused on the mean of the negative binomial count
component.

We therefore propose a weighting strategy based on ZINB models to unlock bulk RNA-seq tools for
scRNA-seq DE analysis. In this manuscript, we build on the zero-inflated negative binomial-based wanted
variation extraction (ZINB-WaVE) method of Risso et al. [2017], designed specifically for scRNA-seq data.
ZINB-WaVE efficiently identifies excess zeros and provides gene and cell-specific weights to unlock bulk RNA-
seq pipelines for zero-inflated data. As most bulk RNA-seq DE methods are based on generalized linear
models (GLM), which readily accommodate observation-level weights, our approach seamlessly integrates
with standard pipelines (e.g., edgeR, DESeq2, limma). Our method is shown to outperform competing methods
on simulated bulk and single-cell RNA-seq datasets. We also illustrate our method on two publicly available
real datasets. As detailed in the “Software implementation” section, our approach is implemented in open-
source Bioconductor R packages and the code for reproducing the analyses presented in this manuscript is
provided in a GitHub repository.
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Figure 1: Zero inflation results in overestimated dispersion and jeopardizes power to discover differentially
expressed genes. (a–e) Scatterplots of estimated biological coefficient of variation (BCV, defined as the square
root of the negative binomial dispersion parameter φ) against average log count per million (CPM) computed
using edgeR. (a) BCV plot for the real Buettner et al. [2015] scRNA-seq dataset subsampled to n = 10 cells.
(b) BCV plot for the real Deng et al. [2014] scRNA-seq dataset subsampled to n = 10 cells. Both panels (a)
and (b) show striped patterns in the BCV plot, which significantly distort the mean-variance relationship, as
represented by the red curve. (c) BCV plot for a simulated bulk RNA-seq dataset (n = 10), obtained from
the Bottomly et al. [2011] dataset using the simulation framework of Zhou et al. [2014]. Dispersion estimates
generally decrease smoothly as gene expression increases. (d) BCV plot for a simulated zero-inflated bulk
RNA-seq dataset, obtained by randomly introducing 5% excess zero counts in the dataset from (c). Zero
inflation leads to overestimated dispersion for the genes with excess zeros, resulting in striped patterns, as
observed also for the real scRNA-seq data in panels (a) and (b). (e) BCV plot for simulated zero-inflated
bulk RNA-seq dataset from (d), where excess zeros are downweighted in dispersion estimation (i.e., weights
of 0 for excess zeros and 1 otherwise). Downweighting recovers the original mean-variance trend. (f) True
positive rate vs. false discovery proportion (FDP-TPR curves) for simulated zero-inflated dataset of (d).
The performance of edgeR (red curve) is deteriorated in a zero-inflated setting due to overestimation of the
dispersion parameter. However, assigning the excess zeros a weight of zero in the dispersion estimation and
model-fitting results in a dramatic performance boost (orange curve). Hence, downweighting excess zero
counts is the key to unlocking bulk RNA-seq tools for zero inflation.
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Results

ZINB-WaVE extends bulk RNA-seq tools to handle zero-inflated data

We argue that standard bulk RNA-seq methods for inferring differential gene expression suffer from zero
inflation with respect to the assumed negative binomial distribution when applied to scRNA-seq data. We
propose instead to model scRNA-seq data using a zero-inflated model and perform inference on the count
component of the model, which is equivalent to standard NB regression where excess zeros are downweighted
based on posterior probabilities (weights) inferred from a ZINB model. Such weights play a central role in
many estimation approaches for ZINB models (e.g., [A. and Trivedi, 2013]). In this contribution, we show that
the weights can effectively unlock bulk RNA-seq methods for zero-inflated data, allowing us, in particular, to
borrow strength across genes to estimate dispersion parameters. Here, we use weights derived from the zero-
inflated negative binomial-based wanted variation extraction (ZINB-WaVE) method of Risso et al. [2017],
which is a general and flexible framework for the extraction of low-dimensional signal from scRNA-seq read
counts, accounting for zero inflation (i.e., dropouts, bursting), over-dispersion, and the discrete nature of
the data. Note that although we focus on ZINB-WaVE weights, our weighted DE approach is generic and
researchers might choose to adopt their own weights.

A zero-inflated negative binomial (ZINB) distribution is a two-component mixture between a point mass
at zero and a negative binomial distribution. Specifically, the density function for the ZINB-WaVE model is

fZINB(yij ;µij , θj , πij) = πijδ0(yij) + (1− πij)fNB(yij ;µij , θj), (1)

where yij denotes the read count for cell i and gene j, πij the mixture probability for zero inflation,
fNB(·;µij , θj) the negative binomial probability mass function with mean µij and dispersion θj , and δ0
the Dirac delta function (see Equations (3) and (4)).

The ZINB-WaVE parameterization of the NB mean µ and ZI probability π in Equation (4) allows adjusting
for both known (e.g., treatment, batch, quality control measures) and unknown (RUV) [Gagnon-Bartsch
and Speed, 2012, Risso et al., 2014] cell-level covariates, i.e., supervised and unsupervised normalization,
respectively. It also allows adjusting for known gene-level covariates (e.g., length, GC-content). The ZINB-
WaVE model and its associated penalized maximum likelihood estimation procedure are described more fully
in the “Methods” section and in Risso et al. [2017].

From the ZINB-WaVE density of Equation (1), one can readily derive the posterior probability that a
count yij was generated from the negative binomial count component

wij =
(1− πij)fNB(yij ;µij , θj)

fZINB(yij ;µij , θj , πij)
. (2)

We propose to use these probabilities as weights in bulk RNA-seq DE analysis methods, such as those
implemented in the Bioconductor R packages edgeR, DESeq2, and limma (limma-voom method with voom

function). All of these methods are based on the methodology of generalized linear models, which readily
accommodates inference based on observation-level weights. Note that although the ZINB-WaVE weights
are gene and cell-specific, the GLMs are fit gene by gene; hence, for a given gene, the cell-specific weights are
used as observation-specific weights in the GLMs. The implementation of the weighting strategy for edgeR,
DESeq2, and limma-voom is described in greater detail in the “Methods” section.

Impact of zero inflation on mean-variance relationship

We have already noted that adding zeros to bulk RNA-seq data results in an overestimation of the dispersion
parameter. This leads to striped patterns in the BCV plot (Figure 2a), which are indicative of genes with
many zeros (Additional File 1: Figure S3) and very high dispersion estimates. Our ZINB-WaVE method,
however, identifies many of the introduced excess zeros as such (Figure 2a-b), by classifying them in the
zero-inflated component of the ZINB mixture distribution. Using our posterior probabilities as observation-
level weights in edgeR recovers the original BCV plot and mean-variance trend (Figure 2c), illustrating the
ability of our method to account for zero inflation. Hence, observation weights provide the key to unlocking
standard bulk RNA-seq tools for zero-inflated data.
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The BCV plot for the Islam et al. [2011] scRNA-seq dataset (Figure 2d) shows similar striped patterns as
for zero-inflated bulk RNA-seq data. Such patterns are observed in many single-cell datasets (Additional File
1: Figure S2). ZINB-WaVE identifies many zeros to be excess for the Islam dataset. It also provides good
classification power for excess zeros for data simulated from the Islam dataset (Figure 2e). Incorporating the
ZINB-WaVE weights in an edgeR analysis removes the striped patterns and yields a BCV plot that is similar
to that for bulk RNA-seq data (Figure 2f), suggesting that zero inflation was indeed present and accounted
for.
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Figure 2: Impact of zero inflation on mean-variance relationship for simulated bulk RNA-seq and Islam
scRNA-seq datasets. Zero inflation distorts the mean-variance trend in (sc)RNA-seq data, but is correctly
identified by the ZINB-WaVE method. The top panels represent simulated data based on the Bottomly
et al. [2011] bulk RNA-seq dataset (as in Figure 1), for a two-group comparison with five samples in each
group, where 5% of the counts were randomly replaced by zeros. The bottom panels represent the scRNA-
seq dataset from Islam et al. [2011]. (a) The BCV plot shows that randomly replacing 5% of the read
counts with zeros induces zero inflation and distorts the mean-variance trend by leading to overestimated
dispersion parameters. Points are color-coded according to the average ZINB-WaVE posterior probability
for all zeros for a given gene and the blue line represents the mean-variance trend estimated with edgeR.
(b) Receiver operating characteristic (ROC) curve for the identification of excess zeros by the ZINB-WaVE
method. A very good classification precision is obtained. (c) Downweighting excess zeros using the ZINB-
WaVE posterior probabilities recovers the original mean-variance trend (as indicated with the red line) and
inference on the negative binomial count component will now no longer be biased because of zero inflation.
The light blue line represents the estimated mean-variance trend for ZINB-WaVE-weighted edgeR. The blue
line is the trend estimated by unweighted edgeR on zero-inflated data as in panel (a). (d) The BCV plot for
the Islam et al. [2011] dataset illustrates the higher variability of scRNA-seq data as compared to bulk RNA-
seq data (note the difference in y-axis scales between (a) and (d)). As in (a), zero inflation induces striped
patterns leading to an overestimation of the NB dispersion parameter. (e) ROC curve for the identification
of excess zeros by the ZINB-WaVE method for scRNA-seq data simulated from the Islam dataset using
the simulation framework described in “Methods”. A good classification precision is obtained, but note the
difference with bulk RNA-seq data: The noisier scRNA-seq dataset makes excess zero identification harder.
(f) Using the ZINB-WaVE posterior probabilities as observation weights results in lower estimates of the
dispersion parameter, unlocking powerful differential expression analysis with standard bulk RNA-seq DE
methods. Note that since many zeros are identified as excess, the scale of the BCV plot is now similar to
that of a standard bulk RNA-seq dataset. The red line is the mean-variance trend for unweighted edgeR, as
in panel (d), and the light blue line is the mean-variance trend for ZINB-WaVE-weighted edgeR. A similar
pattern is observed for the simulated Islam dataset (Additional File 1: Figure S26).

High power and false positive control on simulated (sc)RNA-seq data

We provide a scRNA-seq data simulation paradigm that retains gene-specific characteristics as well as global
associations across all genes (see “Methods” for details). More specifically, we first estimate dataset-specific
associations between zero abundance, sequencing depth, and average log counts per million (CPM), and next
explicitly account for these associations in our simulation model (Additional File 1: Figures S4–S5).
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The scRNA-seq simulation study is based on three datasets: the Islam et al. [2011] dataset, comparing 48
embryonic stem cells to 44 embryonic fibroblasts in the mouse; a subset of the Trapnell et al. [2013] dataset,
comparing differentiating human myoblasts at the 48h (85 cells) and 72h (64 cells) timepoints; and a 10x
Genomics peripheral blood mononuclear cells (PBMC) dataset (see “Real datasets” section in “Methods” for
details). The datasets differ in throughput, sequencing depth, and extent of zero inflation, e.g., Additional
File 1: Figure S6 shows a higher proportion of excess zeros in the Islam dataset as compared to the Trapnell
dataset, an observation further supported by the fact that the Islam and Trapnell datasets contain ∼ 65% and
∼ 48% zeros, respectively. 10x Genomics datasets are known to contain even more zeros; the evaluated subset
of the PBMC dataset contains ∼ 87% zeros. The simulated datasets successfully mimic the characteristics of
the original datasets, as evaluated with the R package countsimQC [Soneson and Robinson, 2017b] (Additional
Files 2–4). This diverse range of datasets is therefore representative of scRNA-seq datasets that occur in
practice and a suitable basis for method evaluation and comparison.

We evaluate method performance in terms of sensitivity and false positive control using false discovery
proportion - true positive rate (FDP-TPR) curves. Figure 3 (Additional File 1: Figure S7) illustrates that
many methods break down on the simulated Islam dataset due to a high degree of zero inflation. Surprisingly,
even methods specifically developed to deal with excess zeros, like SCDE and metagenomeSeq, suffer from poor
performances, with MAST being a notable exception. The DESeq2 methods, however, are able to cope with
the high degree of zero inflation. Note that, in general, it is a good strategy to disable the outlier imputation
step in DESeq2, since it deteriorates performance on scRNA-seq data (Additional File 1: Figure S8). Seurat,
limma-voom, and SCDE have very low sensitivity. The methods based on ZINB-WaVE weights dominate
all competitors in terms of sensitivity and specificity, providing high power, good false discovery rate (FDR)
control, and sensible p-value distributions (Additional File 1: Figure S9). Note that the remaining methods
also suffer from poor FDR control.

Since zero inflation is fairly modest for the Trapnell dataset, most methods perform better than for
the Islam simulation (Figure 3). The ZINB-WaVE-based methods and DESeq2 outperform the remaining
methods in terms of sensitivity and provide good FDR control. edgeR is their closest competitor and the
remaining methods provide much lower sensitivity and/or very liberal FDR control. Note how bespoke
scRNA-seq methods seem to break down on datasets with a lower degree of zero inflation, often providing
too liberal or too conservative p-value distributions, while ZINB-WaVE-based methods in general show a
reasonable p-value distribution, with an enrichment of low p-values and approximately uniformly distributed
larger p-values (Additional File 1: Figure S10).

Typical 10x Genomics datasets contain a high number of cells with shallow sequencing depth, due to
the extreme multiplexing of libraries. As a result, counts and hence estimated NB means are lower, making
zeros more plausible according to the NB distribution and excess zeros thus harder to identify. This is
picked up by the simulation framework, where only ∼ 8% of the genes were simulated to have at least one
excess zero in n = 1, 200 samples. Bulk RNA-seq methods can hence be expected to be among the top
performers. Figure 4 shows FDP-TPR curves for the 10x Genomics simulation study, demonstrating a good
performance of bulk RNA-seq methods edgeR and DESeq2. ZINB-WaVE edgeR and ZINB-WaVE DESeq2 are
among the top performers, having comparable or slightly lower performance as compared to their unweighted
counterparts. MAST is their closest competitor, providing good sensitivity and FDR control. SCDE, NODES,
metagenomeSeq, and limma-voom have lower sensitivity and/or very liberal FDR control as compared to
the dominating methods. These results suggest that, in a scenario of low counts or low degree of zero
inflation, ZINB-WaVE-weighted edgeR/DESeq2 reduce to standard unweighted edgeR/DESeq2, while other
bespoke scRNA-seq tools may deteriorate in performance. This notion is further supported by results on
simulated bulk RNA-seq data, where ZINB-WaVE-weighted edgeR/DESeq2 have a similar performance as
standard unweighted edgeR/DESeq2 in the absence of zero inflation (Additional File 1: Figure S11). Hence,
adopting ZINB-WaVE-based DE methods provides a performance boost in zero-inflated applications, while
performance is similar in the absence of zero inflation.

All analyses performed in this work are based on estimating one common dispersion parameter across
all genes for the ZINB-WaVE model. ZINB-WaVE allows the estimation of genewise dispersion parameters,
however, this approach is much more computationally intensive and can be an order of magnitude slower.
Additional File 1: Figures S7 and S12 show that estimating genewise dispersion parameters does not seem to
be required for calculating the ZINB-WaVE weights, since no gain in performance is achieved when doing so.
Note that genewise dispersions are still estimated by edgeR and DESeq2 in the final DE inference procedure.
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Figure 3: Comparison of DE methods on simulated scRNA-seq data. (a) scRNA-seq data simulated from
Islam et al. [2011] dataset (n = 90). (b) scRNA-seq data simulated from Trapnell et al. [2013] dataset
(n = 150). DE methods are compared based on scatterplots of the true positive rate (TPR) vs. the
false discovery proportion (FDP); zoomed versions of the FDP-TPR curves are shown here, full curves are
displayed in Additional File 1: Figure S7. Circles represent working points on a nominal 5% FDR level
and are filled if the empirical FDR (i.e., FDP) is below the nominal FDR. Methods based on ZINB-WaVE
weights clearly outperform other methods for both simulated datasets. Note that the methods differ in
performance between datasets, possibly because of a higher degree of zero inflation in the Islam dataset. The
SCDE and metagenomeSeq methods, specifically developed to deal with excess zeros, are outperformed in
both simulations by ZINB-WaVE-based methods and by DESeq2. The DESeq2 curve in panel (a) is cut off
due to NA adjusted p-values resulting from independent filtering. The behavior in the lower half of the curve
for MAST in (b) is due to a smooth increase in true positives with an identical number of false positives over
a range of low FDR cut-offs. The curve for NODES is not visible on this figure, only in the full FDP-TPR
curves.
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Figure 4: Comparison of DE methods on simulated scRNA-seq datasets. DE methods are compared based
on FDP-TPR curves for data simulated from a 10x Genomics PBMC scRNA-seq dataset (n = 1, 200);
zoomed versions of the FDP-TPR curves are shown here, full curves are displayed in Additional File 1:
Figure S12. Circles represent working points on a nominal 5% FDR level and are filled if the empirical FDR
(i.e., FDP) is below the nominal FDR. 10x Genomics sequencing typically involves high-throughput and
massive multiplexing, resulting in very shallow sequencing depths and thus low counts, making it extremely
difficult to identify excess zeros. Unweighted and ZINB-WaVE-weighted edgeR are tied for best performance,
followed by ZINB-WaVE-weighted DESeq2. In general, bulk RNA-seq methods are performing well in this
simulation, probably because the extremely high zero abundance in combination with low counts can be
reasonably accommodated by the negative binomial distribution. The behavior in the lower half of the curve
for NODES is due to a smooth increase in true positives with an identical number of false positives over a
range of low FDR cut-offs.

False positive rate control

We compared our ZINB-WaVE-weight-based method to commonly-used DE methods for mock compar-
isons based on two publicly available real scRNA-seq datasets. We assessed performance based on the
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per-comparison error rate (PCER), defined as the proportion of false positives (i.e., Type I errors) among all
genes being considered for DE, where a gene is declared DE if its nominal unadjusted p-value is less than or
equal to 0.05.

The first dataset, referred to as Usoskin [Usoskin et al., 2014] dataset, concerns 622 mouse neuronal cells
from the dorsal root ganglion, classified in eleven categories. The authors acknowledge the existence of a
batch effect related to the picking session for the cells. We find that the batch effect is not only associated
with expression measures, but also influences the relationship between sequencing depth and zero abundance
(Figure 5a) [Hicks et al., 2015]. The large differences in sequencing depths between batches attenuate the
overall association with zero abundance when cells are pooled across batches (Figure 5a). We therefore added
a covariate to account for the batch effect in both the negative binomial mean (µ) and the zero inflation
probability (π) of the ZINB-WaVE model used to produce the weights for DE analysis. Adjusting for batch
yields weights with a slightly higher mode near zero, suggesting a more informative discrimination between
excess and NB zeros (Figure 5b). Although the batch effect is small in terms of the weights, this illustrates
the generality and flexibility of our ZINB-WaVE weighting approach: through a suitable parameterization of
both the NB mean and ZI probability one can adjust for effects that can bias the weights and hence the DE
results.

For the Usoskin dataset, we assessed false positive control by comparing the actual vs. the nominal PCER
for mock null datasets where none of the genes are expected to be differentially expressed. Specifically, we
generated 30 mock datasets where, for each dataset, two groups of 45 cells each were created by sampling 15
cells at random, without replacement from each of the three picking sessions. Sampling cells within batch
allows to control for potential confounding by the batch variable. For each of the 30 mock datasets, we
considered seven methods to identify genes that are DE between the two groups and declared a gene DE if its
nominal unadjusted p-value was less than or equal to 0.05. For these mock datasets, any gene declared DE
between the two groups is a false positive. Thus, for each method, the nominal PCER of 0.05 is compared
to the actual PCER which is simply the proportion of genes declared DE (Figure 5c–d).

The seven methods considered are: unweighted and ZINB-WaVE-weighted edgeR, unweighted and ZINB-
WaVE-weighted DESeq2, unweighted limma-voom (ZINB-WaVE-weighted limma-voom was found to perform
poorly in the simulation study and hence is not considered here), MAST, and SCDE (see “Methods” for
details). edgeR and DESeq2 with ZINB-WaVE weights and unweighted edgeR controlled the PCER close
to its nominal level (Figure 5c). The unweighted versions of DESeq2, MAST, and SCDE tended to be
conservative, whereas limma-voom tended to be anti-conservative. In addition, the weighted versions of
edgeR and DESeq2 and unweighted edgeR yielded near uniform p-value distributions (as expected under this
complete null scenario), while unweighted DESeq2, MAST, and SCDE tended to yield conservative p-values
(mode near 1) and limma-voom anti-conservative p-values (mode near 0) (Figure 5d).

We also replicated the original analysis of Usoskin et al. [2014], by performing one-against-all tests of DE
for each cell type (Additional File 1: Figure S13). limma-voom found a high number of DE genes, confirming
our results from the mock evaluations where it was too liberal. The ZINB-WaVE methods tended to find
a high number of DE genes, which is promising combined with the good PCER control seen in the mock
comparisons. While introducing ZINB-WaVE weights in DESeq2 lead to a higher number of significant genes
on average, the effect is less clear with edgeR and seems to depend on the contrast.

Similar results were observed for a 10x Genomics PBMC dataset comprising 2, 700 single cells sequenced
on the Illumina NextSeq 500 (Additional File 1: Figure S14), with the distinction that we found a conservative
p-value distribution for ZINB-WaVE-weighted DESeq2. Since no information was provided about potential
batch effects, we did not consider batch covariates for this dataset.

Additionally, we examined the PCER and p-value distributions on mock comparisons while varying the
regularization parameter (ε) for the ZINB-WaVE estimation procedure. Not surprisingly, we observed that
the PCER decreases with increasing ε, i.e., as the parameters of the ZINB-WaVE model are subjected to
more “shrinking” (Additional File 1: Figures S15 and S16 for Usoskin and 10x Genomics PBMC datasets,
respectively).
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Figure 5: False positive control on mock null Usoskin datasets (n = 622 cells). (a) The scatterplot and
GLM fits (R glm function with family=binomial), color-coded by batch (i.e., picking sessions Cold, RT-1,
and RT-2), illustrate the association of zero abundance with sequencing depth. The three batches differ
in their sequencing depths, causing an attenuated global relationship when pooling cells across batches
(blue curve). Adjusting for the batch effect in the ZINB-WaVE model allows to properly account for the
relationship between sequencing depth and zero abundance. (b) Histogram of ZINB-WaVE weights for zero
counts for original Usoskin dataset, with (white) and without (green) including batch as a covariate in the
ZINB-WaVE model. The higher mode near zero for batch adjustment indicates that more counts are being
classified as dropouts, suggesting more informative discrimination between excess and NB zeros. (c) Boxplot
of per-comparison error rate (PCER) for 30 mock null datasets for each of seven DE methods; ZINB-WaVE-
weighted methods are highlighted in blue. (d) Histogram of unadjusted p-values for one of the datasets in
(c). ZINB-WaVE was fit with intercept, cell type covariate (actual or mock), and batch covariate (unless
specified otherwise) in X, V = 1J , K = 0 for W , common dispersion, and ε = 1012.

Biologically meaningful clustering and differential expression results

To analyze the 2, 700 cells from the 10x Genomics PBMC dataset (see “Methods”), we followed the tutorial
available at http://satijalab.org/seurat/pbmc3k_tutorial.html and used the R package Seurat [Butler
and Satija, 2017]. The major steps of the pipeline were quality control, data filtering, identification of high-
variance genes, dimensionality reduction using the first ten components from principal component analysis
(PCA), and graph-based clustering. The final step of the pipeline was to identify genes that are differentially
expressed between clusters, in order to derive cell type signatures. Two different parameterizations were used
for the Seurat clustering. With one parameterization, a single cluster was identified for CD4+ T-cells, while
with another, two CD4+ T-cell subclusters were identified, corresponding to CD4+ naive T-cells and CD4+
memory T-cells (gold and red clusters in Figure 6a, respectively). At the end of the tutorial, the authors
concluded that the memory/naive split was weak and more cells would be needed to have a better separation
between the two CD4+ T-cell subclusters.

In order to find DE genes between the two CD4+ T-cell subclusters, we used Seurat, unweighted edgeR,
ZINB-WaVE-weighted edgeR, MAST, and limma-voom. We then sought to identify cell types using gene set
enrichment analysis (GSEA), with the function fgsea from the Bioconductor R package fgsea [Sergushichev,
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2016] and gene sets for 64 immune and stroma cell types from the R package xCell [Aran et al., 2017]. While
unweighted edgeR found that one cluster was enriched in both CD4+ memory and naive T-cells compared to
the other cluster, our weighted-edgeR method as well as Seurat, and limma-voom found that the cluster was
enriched in CD4+ T-effector memory, CD4+ T-central memory, and CD4+ memory T-cells, and depleted in
CD4+ naive T-cells. MAST found that the cluster was depleted in CD4+ memory T-cells and CD4+ naive
T-cells, but enriched in CD4+ T-effector memory and CD4+ T-central memory T-cells (see Figure 6b and
Additional File 1: Figure S17). This suggests that our ZINB-WaVE weights can successfully unlock edgeR
for zero-inflated data, leading to biologically meaningful DE genes.

While ZINB-WaVE can be used to compute weights in a supervised setting with a priori known cell types,
it can also be used to perform dimensionality reduction in an unsupervised setting. To demonstrate the ability
of our method to find biologically relevant clusters and DE genes, we performed dimensionality reduction
using ZINB-WaVE with K = 20 unknown covariates (matrix W , see “Methods”), where K = 20 was chosen
using the Akaike information criterion (AIC) (Additional File 1: Figure S18). We then used W , instead of
the first 10 components of PCA as in the Seurat tutorial, to cluster the cells using the Seurat graph-based
clustering. We found similar clusters as the Seurat clusters, except for the NK-cell and B-cell clusters which
were partitioned differently and the cluster with CD4+ T-cells (Additional File 1: Figure S19). Using this
new clustering, GSEA showed a better separation between CD4+ naive T-cells and CD4+ memory T-cells for
all the methods, suggesting a biological meaningful clustering using ZINB-WaVE dimensionality reduction
instead of PCA. The CD4+ T-effector memory, CD4+ T-central memory, and CD4+ memory cell types were
enriched using limma-voom, unweighted edgeR, MAST, and Seurat, but only the CD4+ T-central memory cell
type was depleted using our weighted edgeR method (Figure 6c and Additional File 1: Figure S17). As we
do not have prior knowledge about the cells in the different clusters, we are unable to say whether the cluster
is more representative of the CD4+ T-effector memory cell type or if our method missed the enrichment in
the CD4+ T-central memory cell type. However, it is interesting that using ZINB-WaVE to account for zero
inflation in the clustering allowed edgeR to find results that seem more biologically meaningful than without
accounting for zero inflation.

Finally, using a Benjamini and Hochberg [1995] adjusted p-value cut-off of 0.05, limma-voom declared 433
and 194 DE genes and weighted-edgeR 371 and 151, for clustering based on, respectively, the first 10 PCs
and W from ZINB-WaVE. We additionally showed on mock comparisons for the same 10x Genomics PBMC
dataset that limma-voom had a greater actual PCER than weighted edgeR (Additional File 1: Figure S14),
suggesting that some of the DE genes found by limma-voom are likely to be false positives. This belief is
reinforced by the skewed distribution of limma-voom p-values (Additional File 1: Figure S20).

Figure 6: Biologically meaningful DE results for 10x Genomics PBMC dataset. (a) Scatterplot of the first
two t-SNE dimensions obtained from the first 10 principal components. Cells are color-coded by clusters
found using the Seurat graph-based clustering method on the first 10 principal components. Pseudo-color
images on the right display normalized enrichment scores (NES) after gene set enrichment analysis (GSEA)
for cell types related to CD4+ T-cells (see “Methods”), for clustering based on (b) the first 10 principal
components and (c) W from ZINB-WaVE with K = 20. For dimensionality reduction, ZINB-WaVE was fit
with X = 1n, V = 1J , K = 20 for W (based on AIC), common dispersion, and ε = 1012. To compute the
weights for DE analysis, ZINB-WaVE was fit with intercept and cell type covariate in X, V = 1J , K = 0 for
W , common dispersion, and ε = 1012. NES for more cell types are shown in Additional File 1: Figure S17.
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Alternative approaches to weight estimation

ZINB-WaVE is one particular approach to fit a ZINB model to single-cell RNA-seq data. However, our
proposed data analysis strategy to unlock conventional RNA-seq tools with ZINB observation-level weights
is not restricted to ZINB-WaVE-based workflows. In particular, we illustrate the use of weights estimated
by the zingeR method, an expectation-maximization (EM) algorithm which we developed earlier and that
builds upon edgeR for estimating the NB parameters of the ZINB model [Van den Berge et al., 2017]. The
ZINB-WaVE and zingeR approaches differ in the following respects. The zingeR weights are based on a
constant cell-specific excess zero probability πi for each cell i, while the ZINB-WaVE excess zero probability
πij is both cell and gene-specific, a strategy that was also advocated in recent methods [Pierson and Yau,
2015, Finak et al., 2015]. Secondly, the ZINB-WaVE negative binomial mean µ and zero inflation probability
π are modeled in terms of both wanted and unwanted cell and gene-level covariates, allowing normalization
for a variety of nuisance technical effects. Thirdly, different parameter estimation strategies are adopted:
parameters from the zingeR model are estimated with an EM algorithm, whereas those from the ZINB-
WaVE model are estimated using a penalized maximum likelihood approach. Finally, methods based on
zingeR weights have the property of converging to their unweighted counterparts in the absence of zero
inflation.

In terms of performance, based on the simulation study on full-length protocols, zingeR workflows dom-
inate both bulk RNA-seq and dedicated scRNA-seq methods, but were found to be inferior in terms of
sensitivity to ZINB-WaVE workflows (Additional File 1: Figure S21). However, for the Usoskin dataset,
zingeR seems to find a higher number of DE genes than ZINB-WaVE and than its bulk RNA-seq coun-
terparts (Additional File 1: Figure S22), while also controlling the PCER in mock evaluations (Additional
File 1: Figure S23). Due to the computational burden of the zingeR method we were unable to apply it to
large-scale datasets, such as those from the 10x Genomics platform, thus limiting our comparison.

Computational time

The better performance of our ZINB-WaVE-weighted DE method comes at a computational cost, since we
first fit ZINB-WaVE to the entire cells-by-genes matrix of read counts to compute the weights and then use
a weighted version of DESeq2 or edgeR for inferring DE. To give the reader an idea of how different methods
scale in terms of computation time, we benchmarked three different datasets: the Islam dataset (92 cells),
one of the mock null Usoskin datasets used in Figure 5 (90 cells), and the CD4+ T-cell cluster of the 10x
Genomics PBMC dataset (1, 151 cells). For each dataset, 10, 000 genes were sampled at random and the two
cell types were used as covariates. For the Usoskin dataset, batch was added as a covariate for all methods.
For all datasets, the fastest method was limma-voom followed by edgeR (Additional File 1: Figure S24).
As DESeq2 was slower than edgeR, not surprisingly weighted-DESeq2 was also slower than weighted-edgeR,
especially for the 10x Genomics PBMC dataset.

Discussion

This manuscript focused on adapting standard bulk RNA-seq differential expression tools to handle the severe
zero inflation present in single-cell RNA-seq data. We proposed a simple and general approach that integrates
seamlessly with a range of popular DE software packages, such as edgeR and DESeq2. The main idea is to use
weights for zero inflation in the negative binomial model underlying bulk RNA-seq methods. In particular,
the weights are based on the ZINB-WaVE method of Risso et al. [2017]. The general and flexible ZINB-
WaVE framework allows to extract low-dimensional signal from scRNA-seq read counts, accounting for zero
inflation (e.g., dropouts), over-dispersion, and the discrete nature of the data. In particular, the ZINB-WaVE
model allows for read count normalization through an appropriate parameterization of the negative binomial
means and zero inflation probabilities in terms of both gene and cell-level covariates.

Our results complement the findings of Jaakkola et al. [2016] and Soneson and Robinson [2017a], that be-
spoke scRNA-seq tools do not systematically improve upon bulk RNA-seq tools. Although MAST, metagenome-
Seq, and SCDE were explicitly developed to handle excess zeros, they suffer from poor performance in a high
zero inflation setting, as demonstrated in the simulation study.
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The value of our method was demonstrated for scRNA-seq protocols relying on both standard (Islam,
Usoskin, and Trapnell datasets) and unique molecular identifier (UMI) (10x Genomics PBMC dataset) read
counting. UMIs were recently proposed to reduce measurement variability across samples [Islam et al., 2013].
In UMI-based protocols, transcripts are labeled with a small random UMI barcode prior to amplification.
After amplification and sequencing, one enumerates the unique UMIs found for every transcript, which
correspond to individual sequenced UMI-labeled transcripts. There is some evidence in the literature that
zero inflation is less of a problem for UMI-based than for full-length protocols and that UMI read counts could
follow a negative binomial distribution [Grün et al., 2014, Ziegenhain et al., 2017]. Hence, our method also
provides good results for UMI-based data with limited zero inflation, demonstrating its broad applicability.

In the simulation study, power to detect DE was generally lower for 10x Genomics UMI datasets (Figure
4) than for full-length protocol datasets (Figure 3). While the 10x Genomics platform has the advantage
of an extremely high throughput, allowing many cells to be characterized, the resulting datasets often have
the disadvantage of low library sizes, a logical consequence of UMI counting and of the trade-off between
sequencing depth and number of cells to be sequenced in one sequencing run. As a result, the sequencing
depth of these datasets is much lower than that of bulk RNA-seq datasets, making it harder to identify
excess zeros and assess differential expression, even in large sample size settings. Although the 10x Genomics
platform may be well suited for hypothesis generation, e.g., through cell type discovery or lineage trajectory
studies, full-length protocols may be more appropriate for discovering marker genes between inferred cell
types or trajectories, an approach that has also been adopted in previous studies [Pal et al., 2017].

We have used ZINB-WaVE in conjunction with either edgeR or DESeq2. However, the ZINB-WaVE
posterior probabilities could be used as weights to unlock other standard RNA-seq workflows in zero inflation
situations. Additional File 1: Figure S7 shows that ZINB-WaVE weights combined with heteroscedastic
weights in limma-voom also increase power in a scRNA-seq context, although this may be at the expense of
Type I error control.

The ZINB-WaVE method penalizes the L2 norm of the parameter estimates for regularization purposes.
It requires a penalty parameter, ε, that is rescaled differently for gene-specific parameters, cell-specific pa-
rameters, and dispersion parameters [Risso et al., 2017]. All analyses in this manuscript were performed with
ε = 1012, to provide consistently comparable results. However, the optimal value of ε is dataset-specific and
further research is needed to provide a data-driven approach for selecting an optimal ε. Indeed, based on our
simulations, the value of the penalty parameter can have a profound influence on results (Additional File 1:
Figure S25), but we found ε = 1012 to have generally good performance.

ZINB-WaVE allows the option to infer latent variables W , which may correspond to either unmeasured
confounding covariates or unmeasured covariates of interest. The observational weights were computed with
the number of unknown covariates K = 0, i.e., no latent variables were inferred. For clustering of the real
datasets, we inferred an optimal choice of K using the AIC (Additional File 1: Figure S18). However, further
investigation is needed to confirm that the AIC is appropriate for selecting K.

In principle, our proposed ZINB-WaVE model could also be used to identify DE genes both in terms
of the negative binomial mean and the zero inflation probability, reflecting, respectively, a continuum in
DE and a more binary (i.e., presence/absence) DE pattern. In this context, the parameters of interest are
regression coefficients β corresponding to known sample-level covariates in the matrix X used in either µ or
π (Equation (4)). Differentially expressed genes may be identified via likelihood ratio tests or Wald tests,
with the standard errors of estimators of β obtained from the inverse of the Hessian matrix of the likelihood
function. However, both types of tests would be computationally costly, as likelihood ratio tests would require
refitting the entire model for each gene and Wald tests would require the Hessian matrix to be computed and
inverted.

In this contribution, we have proposed to estimate the weights using ZINB-WaVE, but other approaches
are possible. It is important to note that while methods such as ZINB-WaVE and zingeR can successfully
identify excess zeros, they cannot however readily discriminate between their underlying causes, i.e., between
technical (e.g., dropout) and biological (e.g., bursting) zeros. Although we cannot make this distinction with
the weights, an increase in bursting rates between cell types, characterized by higher counts and more zeros
[Fujita et al., 2016], can however be picked up by the count component of the ZINB model.
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Conclusions

In summary, we provide a realistic simulation framework for single-cell RNA-seq data and use the well-
tested ZINB-WaVE method to successfully identify excess zeros and yield gene and cell-specific weights for
differential expression analysis in scRNA-seq experiments. The tools we have developed allow an integrated
workflow for normalization, dimensionality reduction, cell type discovery, and the identification of cell type
marker genes. We confirmed that state-of-the-art scRNA-seq tools do not improve upon common bulk RNA-
seq tools for differential expression analysis based on scRNA-seq data. Our workflow, however, outperforms
current methods and has the merit of not deteriorating in performance in the absence of zero inflation.
Inference of DE is focused on the count component of the ZINB model and our method produces posterior
probabilities that can be used as observation-level weights by bulk RNA-seq tools. Hence, our approach
unlocks widely-used bulk RNA-seq DE workflows for zero-inflated data and will assist researchers, data
analysts, and developers in improving power to detect DE in the presence of excess zeros. The framework is
general and applicable beyond scRNA-seq, to zero-inflated count data structures arising in applications such
as metagenomics [Paulson et al., 2013, Xu et al., 2015].

Methods

ZINB-WaVE: Zero-inflated negative binomial-based wanted variation extraction

Zero-inflated distributions. A major difference between single-cell and bulk RNA-seq data is arguably
the high abundance of zero counts in the former. Traditionally, excess zeros are dealt with by the use of
hurdle or zero-inflated models, as recently proposed by Finak et al. [2015], Kharchenko et al. [2014], and
Paulson et al. [2013]. A zero-inflated count distribution is a two-component mixture distribution between a
point mass at zero and a count distribution, in our case, the negative binomial distribution which has been
used successfully for bulk RNA-seq [Love et al., 2014, Robinson et al., 2010, Law et al., 2014, McCarthy
et al., 2012b].

The probability mass function (PMF) fZINB for the zero-inflated negative binomial (ZINB) distribution
is given by

fZINB(y;µ, θ, π) = πδ0(y) + (1− π)fNB(y;µ, θ), ∀y ∈ N, (3)

where π ∈ [0, 1] denotes the mixture probability for zero inflation, fNB(·;µ, θ) the negative binomial (NB)
PMF with mean µ and dispersion θ = 1/φ, and δ0(·) the Dirac function (δ0(y) = +∞ when y = 0 and 0
otherwise and δ0 integrates to one over R, i.e., has cumulative distribution function equal to I(y ≥ 0)). Here,
π can be interpreted as the probability of an excess zero, i.e., inflated zero count, with respect to the NB
distribution.

Under a ZINB model, the posterior probability that a given count y arises from the NB count component
is given by Bayes’ rule

w =
(1− π)fNB(y;µ, θ)

fZINB(y;µ, θ, π)
.

As described below, such posterior probabilities can be used as weights in standard bulk RNA-seq workflows,
for a suitable parameterization of the ZI probability and NB mean.

ZINB-WaVE model. Given n observations (typically, n single cells) and J features (typically, J genes)
that can be counted for each observation, let Yij denote the count of feature j (j = 1, . . . , J) for observation
i (i = 1, . . . , n). To account for various technical and biological effects frequent in single-cell sequencing
technologies, we model Yij as a random variable following a ZINB distribution with parameters µij , θij , and
πij , and consider the following regression models for these parameters:

ln(µij) =
(
Xβµ + (V γµ)> +Wαµ +Oµ

)
ij
, (4)

logit(πij) =
(
Xβπ + (V γπ)> +Wαπ +Oπ

)
ij
,

ln(θij) = ζj .
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Both the NB mean expression level µ and the ZI probability π are modeled in terms of observed sample-
level and gene-level covariates (X and V , respectively), as well as unobserved sample-level covariates (W )
that need to be inferred from the data. Oµ and Oπ are known matrices of offsets. The matrix X can include
covariates that induce variation of interest, such as cell types, or covariates that induce unwanted variation,
such as batch or quality control (QC) measures. It can also include a constant column of ones for an intercept
that accounts for gene-specific global differences in mean expression level or dropout rate. The matrix V
can include gene-level covariates, such as length or GC-content. It can also accommodate an intercept to
account for cell-specific global effects, such as size factors representing differences in library sizes (i.e., total
number of reads per sample). The unobserved matrix W contains unknown sample-level covariates, which
could correspond to unwanted variation as in RUV [Gagnon-Bartsch and Speed, 2012, Risso et al., 2014]
(e.g., a priori unknown batch effects) or could be of interest as in cluster analysis (e.g., a priori unknown
cell types). The model extends the RUV framework to the ZINB distribution (thus far, RUV had only been
implemented for linear [Gagnon-Bartsch and Speed, 2012] and log-linear regression [Risso et al., 2014]). It
differs, however, in interpretation from RUV in the Wα term, which is not necessarily considered unwanted
and generally refers to unknown low-dimensional variation. It is important to note that although W is the
same, the matrices X and V could differ in the modeling of µ and π, if we assume that some known factors
do not affect both.

As detailed in Risso et al. [2017], the model is fit using a penalized maximum likelihood estimation
procedure.

Using ZINB-WaVE weights in DE inference methods

We only consider statistical inference on the count component of the mixture distribution, that is, we are
concerned with identifying genes whose expression levels are associated with covariates of interest as param-
eterized in the mean µ of the negative binomial component. Most popular bulk RNA-seq methods are based
on the methodology of generalized linear models (GLM), which readily accommodates inference based on
observation-level weights (R function glm), e.g., negative binomial model in Bioconductor R packages edgeR
and DESeq2. Note that although the ZINB-WaVE weights are gene and cell-specific, the GLMs are fit gene
by gene; hence, for given gene, the cell-specific weights are used as observation-specific weights in the GLMs.

edgeR. We extended the edgeR package [Robinson et al., 2010, McCarthy et al., 2012b] by fitting a neg-
ative binomial model genewise, with ZINB-WaVE posterior probabilities as observation-level weights in the
weights slot of an object of class DGEList, and estimating the dispersion parameter by the usual approxi-
mate empirical Bayes shrinkage. Downweighting is accounted for by adjusting the degrees of freedom of the
null distribution of the test statistics. Specifically, we reintroduced the moderated F -test from a previous
version of edgeR, where the denominator residual degrees of freedom dfj for a particular gene j are adjusted
by the extent of zero inflation identified for this gene, i.e., dfj =

∑
i wij − p, where wij is the ZINB-WaVE

weight for gene j in cell i and p the number of parameters estimated in the NB generalized linear model. This
weighted F -test is implemented in the function glmWeightedF from the Bioconductor R package zinbwave.

DESeq2. We extended the DESeq2 package [Love et al., 2014] to accommodate zero inflation by providing
the option to use observation-level weights in the parameter estimation steps. In this case, the ZINB-WaVE
weights are supplied in the weight slot of an object of class DESeqDataSet.

DESeq2’s default normalization procedure is based on geometric means of counts, which are zero for genes
with at least one zero count. This greatly limits the number of genes that can be used for normalization
in scRNA-seq applications [Vallejos et al., 2017]. We therefore use the normalization method suggested in
the phyloseq package [McMurdie and Holmes, 2013], which calculates the geometric mean for a gene by only
using its positive counts, so that genes with zero counts could still be used for normalization purposes. The
phyloseq normalization procedure can now be applied by setting the argument type equal to poscounts in
the DESeq2 function estimateSizeFactors. For single-cell UMI data, for which the expected counts may
be very low, the likelihood ratio test implemented in nbinomLRT should be used. For other protocols (i.e.,
non-UMI), the Wald test in nbinomWaldTest can be used, with null distribution a t-distribution with degrees
of freedom corrected for downweighting. In both cases, we recommend the minimum expected count to be
set to a small value (minmu=1e-6). The Wald test in DESeq2 allows for testing contrasts of the coefficients.
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limma-voom. For the limma-voom approach [Law et al., 2014], implemented in the voom function from
the limma package, heteroscedastic weights are estimated based on the mean-variance relationship of the
log-transformed counts. We adapt limma-voom to zero-inflated situations by multiplying the heteroscedastic
weights by the ZINB-WaVE weights and using the resulting weights in weighted linear regression. To account
for the downweighting of zeros, the residual degrees of freedom of the linear model are adjusted as with edgeR
before the empirical Bayes variance shrinkage and are therefore also propagated to the moderated statistical
tests. Both the standard and ZINB-WaVE-weighted versions of limma-voom were considered in the simulation
study; the latter was not considered for the real datasets, due to its poor performance in the simulation study.

Multiple testing. For the simulation study, in order to reduce the number of tests performed [Bourgon
et al., 2010], we apply the independent filtering procedure implemented in the genefilter package and used in
DESeq2 [Love et al., 2014]. As in DESeq2, we exclude from the multiple testing correction any gene whose
average expression strength (i.e., average of fitted values) is below a threshold chosen to maximize the number
of differentially expressed genes. Note that the filtering procedure can affect each method differently, due to
differences in fitted values and p-value distributions.

Unless specified otherwise, the p-values for all methods are then adjusted using the Benjamini and
Hochberg [1995] procedure for controlling the false discovery rate (FDR).

Performance assessment. We assess performance based on scatterplots of the true positive rate (TPR)
vs. the false discovery proportion (FDP), as well as receiver operating characteristic (ROC) curves of the
true positive rate (TPR) vs. the false positive rate (FPR), according to the following definitions

FDP =
FP

max(1, FP + TP )

FPR =
FP

FP + TN

TPR =
TP

TP + FN
,

where FN , FP , TN , and TP denote, respectively, the numbers of false negative, false positives, true nega-
tives, and true positives. FDP-TPR curves and ROC curves are implemented in the Bioconductor R package
iCOBRA [Soneson and Robinson, 2016].

DE method comparison. We compared our weighted DE approach to state-of-the-art bulk RNA-seq
methods implemented in the packages edgeR (v3.20.1) [Robinson et al., 2010, McCarthy et al., 2012b], DESeq2
(v1.19.8) [Love et al., 2014], and limma (v3.34.0) [Law et al., 2014]. We also considered dedicated scRNA-
seq tools from the packages scde (v2.6.0) [Kharchenko et al., 2014], MAST (v1.4.0) [Finak et al., 2015],
and NODES (v0.0.0.9010) [Sengupta et al., 2016], as well as metagenomeSeq (v1.18.0) [Paulson et al., 2013]
developed to account for zero inflation in metagenomics applications. A ZINB model is also implemented in
ShrinkBayes [van de Wiel et al., 2014], but the method does not scale to the typical sample sizes encountered
in scRNA-seq and has many tuning parameters, which lead us to not include it in our comparison. In DESeq2,
we disable the outlier imputation step and allow for shrinkage of fold-changes by default. In addition, for
large 3′-end sequencing datasets like the Usoskin and 10x Genomics PBMC datasets, we set the minimum
expected count estimated by DESeq2 to 10−6, allowing the method to cope with large sample sizes and low
counts. We use the recommended gene filtering procedures for NODES and MAST, except for computing time
benchmarking, where no genes are filtered out to allow a fair comparison. For all other methods, arguments
were set to their default values.

scRNA-seq data simulation

We extended the framework of Zhou et al. [2014] towards scRNA-seq applications and provide user-friendly
R code to simulate scRNA-seq read counts in the GitHub repository linked to this manuscript (https:
//github.com/statOmics/zinbwaveZinger). The user can input a real scRNA-seq dataset to infer gene-
level parameters for the read count distributions. Library sizes for the simulated samples are by default
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resampled from the real dataset, but can also be user-specified. The simulation paradigm randomly resamples
parameters estimated from the original dataset, where all parameters of a given gene are resampled jointly
in order to retain gene-specific characteristics present in the original dataset.

In scRNA-seq, dropouts and bursting lead to bias in parameter estimation. Our simulation framework
alleviates this problem by using zero-truncated negative binomial (ZTNB) method-of-moments estimators
[Moore, 1986, McCullagh and Nelder, 1989] on the positive counts to estimate the expression fraction λj =
E[Yij/Ni], with Ni =

∑
j Yij the sequencing depth of cell i, and the negative binomial dispersion θj = 1/φj .

Specifically, initial NB-based estimators are iteratively updated according to the ZTNB-based estimators
provided by

λ̂newj =

∑
i Yij

(
1− fNB(0; λ̂jNi, θ̂j)

)
∑
iNi

, (5)

θ̂newj =

∑
i(λ̂jNi)

2∑
i Y

2
ij

(
1− fNB(0; λ̂jNi, θ̂j)

)
−
∑
i(λ̂jNi)

2 −
∑
i(λ̂jNi)

.

Note that, when Yij is zero, it does not contribute to the estimators of λj and θj . These estimates are
then used to simulate counts according to a negative binomial distribution.

We additionally simulate excess zeros by modeling the empirical zero abundance pij = I(Yij = 0) as a
function of an interaction between the gene-specific expression intensity, measured as average log count per
million (CPM)

Âj ≈ log2

106

n

n∑
i=1

Yij
Ni

(as calculated using the aveLogCPM function from edgeR), and the cell-specific sequencing depth Ni, using a
semi-parametric additive logistic regression model,

pij ∼ B(ρij), (6)

ln

(
ρij

1− ρij

)
= s(Âj) + ln(Ni) + s(Âj)× ln(Ni),

where B(ρij) denotes the Bernoulli distribution with parameter ρij and s(·) a non-parametric thin-plate
spline [Wood, 2003]. We then compare, for every gene, the estimated probability of zero counts based on

the model in Equation (6) to the corresponding NB-based probability fNB(0; µ̂ij , θ̂j) with µ̂ij = λ̂jNi, and
randomly add excess zeros whenever the former probability is higher than the latter. The model in Equation
(6) is motivated by dataset-specific associations observed in real scRNA-seq datasets (Additional File 1:
Figures S4–S5).

This framework acknowledges both gene-specific characteristics as well as broad dataset-specific associa-
tions across all genes and provides realistic scRNA-seq data for method evaluation. We assessed performance
of various DE methods using data simulated based on the Islam et al. [2011] dataset, a subset of the Trapnell
et al. [2013] dataset, and a 10x Genomics PBMC dataset. See the “Real datasets” section for information on
these datasets.

Gene set enrichment analysis

To identify cell types corresponding to the two CD4+ T-cell subclusters of the 10x Genomics PBMC dataset,
we used gene set enrichment analysis (GSEA) with the function fgsea from the Bioconductor R package
fgsea (v1.4.0) [Sergushichev, 2016] and gene sets for 64 immune and stroma cell types from the R package
xCell (v1.1.0) [Aran et al., 2017]. For each DE method, the input to fgsea is a list of genes ranked by a test
statistic comparing expression in the two CD4+ T-cell subclusters.

To facilitate comparison between DE methods, the test statistic used here is a transformation of the
unadjusted p-values (p) with the sign of the log-fold-change (lfc): Φ−1(1 − p/2) ∗ sign(lfc), where Φ(·)
denotes the standard Gaussian cumulative distribution function. As suggested by fgsea, all genes were used
for the analysis. To assess the enrichment/depletion of one cluster compared to the other cluster, we used
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the normalized enrichment score (NES). The enrichment score (ES) is the same as in the Broad GSEA
implementation [Subramanian et al., 2005] and reflects the degree to which a gene set is overrepresented
at the top or bottom of a ranked list of genes. Briefly, the ES is calculated by walking down the ranked
list of genes, increasing a running-sum statistic when a gene is in the gene set and decreasing it when it is
not. A positive ES indicates enrichment at the top of the ranked list; a negative ES indicates enrichment at
the bottom of the ranked list. The enrichment score is then normalized by the mean enrichment of random
samples of genes, where genes are permuted from the original ranked list (10, 000 permutations were used).

Real datasets

Usoskin dataset. This dataset concerns mouse neuronal cells from the dorsal root ganglion, sequenced
on either an Illumina Genome Analyzer IIx or HiSeq 2000 [Usoskin et al., 2014]. The cells were robotically
picked in three separate sessions and the 5′-end of the transcripts sequenced. The expression measures were
downloaded from “Supplementary Data” accompanying the original manuscript (http://linnarssonlab.
org/drg/). After quality control and sample filtering (removal of non-single cells and non-neuronal cells),
the authors considered 622 cells which were classified into eleven neuronal cell type categories. Only the
genes with more than 20 non-zero counts were retained, for a total of 12, 132 genes.

The authors acknowledge the existence of a batch effect related to the picking session for the cells. For
differential expression analysis, the picking session was therefore included as a batch covariate in all models.

To mimic a null dataset with no differential expression, we created two groups of 45 cells each, where,
for each group, 15 cells were sampled at random, without replacement (over all cell types) from each picking
session. For each of 30 such mock null datasets, we considered seven methods to identify genes that are DE
between the two groups and declared a gene DE if its nominal unadjusted p-value was less than or equal to
0.05. For these mock datasets, any gene declared DE between the two groups is a false positive. Thus, the
nominal per-comparison error rate (PCER) of 0.05 for each method is compared to its actual PCER which
is simply the proportion of genes declared DE.

10x Genomics PBMC dataset. We analyzed a dataset of peripheral blood mononuclear cells (PBMC)
freely available from 10x Genomics (https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/pbmc3k). We downloaded the data from https://s3-us-west-2.amazonaws.com/10x.

files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz, which correspond to 2, 700
single cells sequenced on the Illumina NextSeq 500 using unique molecular identifiers (UMI). We clustered
cells following the tutorial available at http://satijalab.org/seurat/pbmc3k_tutorial.html and using
the R package Seurat (v2.1.0) [Butler and Satija, 2017]. The major steps of the pipeline are quality control,
data filtering, identification of high-variance genes, dimensionality reduction using the first ten components
from principal component analysis (PCA), and graph-based clustering. To identify cluster markers, we used
our ZINB-WaVE-weighted DE method instead of the method implemented in Seurat.

We created 30 mock null datasets and identified DE genes on these as for the Usoskin dataset, i.e., we
created two groups of 45 cells each, by sampling at random, without replacement from the 2, 700 cells of the
real dataset (no batch information available).

Islam dataset. The count table for the Islam et al. [2011] dataset was downloaded from the Gene Ex-
pression Omnibus (GEO) with accession number GSE29087. The Islam dataset represents 44 embryonic
fibroblasts and 48 embryonic stem cells in the mouse, sequenced on an Illumina Genome Analyzer II. Nega-
tive control wells were removed and only the 11, 796 genes with at least 5 positive counts were retained for
analysis. For the simulation, we generated datasets with 2 groups of 40 cells each.

Trapnell dataset. The dataset from Trapnell et al. [2013] was downloaded from the preprocessed single-cell
data repository conquer (http://imlspenticton.uzh.ch:3838/conquer). Cells were sequenced on either
an Illumina HiSeq 2000 or HiSeq 2500. We only used the subset of cells corresponding to the 48h and 72h
timepoints of differentiating human myoblasts in order to generate two-group comparisons. Wells that do
not contain one cell or that contain debris were removed. We used a more stringent gene filtering criterion
than for the Islam dataset and retained the 24, 576 genes with at least 10 positive counts. The simulated
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datasets contain two conditions with 75 cells in each condition, thereby replicating the sample sizes of the
Trapnell dataset.

Software implementation

An R software package for our novel scRNA-seq simulation framework is available on the GitHub repos-
itory for this manuscript (https://github.com/statOmics/zinbwaveZinger) and is soon to be submit-
ted to the Bioconductor project (http://www.bioconductor.org). The ZINB-WaVE weight computa-
tion is implemented in the computeObservationalWeights function of the Bioconductor R package zinb-
wave. ZINB-WaVE-weighted edgeR can be implemented using the glmWeightedF function from the zinb-
wave package, while ZINB-WaVE-weighted DESeq2 can be implemented using the native nbinomWaldTest

function from the DESeq2 package. More details on a ZINB-WaVE-weighted analysis can be found in the
zinbwave vignette (http://bioconductor.org/packages/zinbwave/). Additionally, all analyses and fig-
ures reported in the manuscript can be reproduced using code provided in the GitHub repository (https:
//github.com/statOmics/zinbwaveZinger).
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