
Preface

Current statistical inference problems in areas such as astronomy, genomics,
and marketing routinely involve the simultaneous test of thousands, or even
millions, of null hypotheses. These hypotheses concern a wide range of param-
eters, for high-dimensional multivariate distributions, with complex and un-
known dependence structures among variables.

Motivated by these applications and the limitations of existing multiple
testing methods, we have developed and implemented resampling-based single-
step and stepwise multiple testing procedures (MTP) for controlling a broad
class of Type I error rates, defined as tail probabilities and expected values
for arbitrary functions g(Vn, Rn) of the numbers of Type I errors Vn and re-
jected hypotheses Rn (Birkner et al., 2005a,b,c, 2006, 2007; Dudoit et al.,
2004a,b, 2006; Keleş et al., 2006; van der Laan et al., 2004a,b, 2005; van der
Laan and Hubbard, 2006; Pollard et al., 2005a,b; Pollard and van der Laan,
2004; Rubin et al., 2006). Our proposed procedures take into account the joint
distribution of the test statistics and provide Type I error control in testing
problems involving general data generating distributions (with arbitrary de-
pendence structures among variables), null hypotheses (defined in terms of
submodels for the data generating distribution), and test statistics (e.g., t-
statistics, χ2-statistics, F -statistics). A key ingredient of the procedures is the
null distribution used in place of the unknown joint distribution of the test
statistics. The results of a given MTP are reported in terms of rejection regions
(i.e., cut-offs) for the test statistics, confidence regions for the parameters of
interest, and adjusted p-values.

This book provides a detailed account of the theoretical foundations of our
multiple testing methodology and discusses its software implementation in R
(multtest package; Gentleman et al. (2004); Pollard et al. (2005b); R Develop-
ment Core Team (2006); www.bioconductor.org; www.r-project.org) and
SAS (www.sas.com). The proposed methods are applied to a range of testing
problems in biomedical and genomic research, including: the identification of
differentially expressed and co-expressed genes in high-throughput gene ex-
pression experiments, such as microarray experiments; tests of association be-
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tween gene expression measures and biological annotation metadata, such as
Gene Ontology (GO, www.geneontology.org) annotation; protein sequence
analysis; and the genetic mapping of complex traits using single nucleotide
polymorphisms (SNP).

Intended readership

Methodological Chapters 4–7 are intended for readers with advanced under-
graduate or graduate statistical training, whereas introductory Chapters 1–3
and applications Chapters 8–13 are also aimed at readers with biological back-
ground.

Some of the material discussed in this book was taught in the Division of
Biostatistics at the University of California, Berkeley: upper division under-
graduate course Introduction to Statistical Methods in Computational and
Genomic Biology (PB HLTH 143); MA/PhD graduate course Biostatistical
Methods: Applications of Statistics to Genetics and Molecular Biology (PB
HLTH 240D); and MA/PhD graduate course Multiple Testing and Loss Func-
tion Based Estimation: Applications in Biological Sciences (PB HLTH 246C).

Overview

Chapter 1 introduces a general statistical framework for multiple hypothesis
testing and discusses in turn the main ingredients of a multiple testing prob-
lem, including: the data generating distribution; the parameters of interest;
the null and alternative hypotheses; the test statistics; multiple testing pro-
cedures; rejection regions for the test statistics; errors in multiple hypothesis
testing: Type I, Type II, and Type III errors; Type I error rates; power;
unadjusted and adjusted p-values; and stepwise multiple testing procedures.

Chapter 2 concerns a key feature of our proposed multiple testing
methodology: the test statistics null distribution used to obtain rejection re-
gions for the test statistics, confidence regions for the parameters of interest,
and adjusted p-values. Indeed, whether testing single or multiple hypothe-
ses, one needs the (joint) distribution of the test statistics in order to derive
a procedure that probabilistically controls Type I errors. In practice, how-
ever, the true distribution of the test statistics is unknown and replaced by a
null distribution. The choice of a proper null distribution is crucial in order to
ensure that (finite sample or asymptotic) control of the Type I error rate under
the assumed null distribution does indeed provide the desired control under
the true distribution. This issue is particularly relevant for large-scale testing
problems, such as those described above in biomedical and genomic research,
which concern high-dimensional multivariate distributions, with complex and
unknown dependence structures among variables.
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Common approaches use a data generating distribution, such as a per-
mutation distribution, that satisfies the complete null hypothesis that all null
hypotheses are true. Procedures based on such a data generating null distribu-
tion typically rely on the subset pivotality assumption, stated in Westfall and
Young (1993, p. 42–43), to ensure that Type I error control under the data
generating null distribution leads to the desired control under the true data
generating distribution. However, subset pivotality is violated in many impor-
tant testing problems, because a data generating null distribution may result
in a joint distribution for the test statistics that has a different dependence
structure than their true distribution. In fact, in most problems, there does
not exist a data generating null distribution that correctly specifies the joint
distribution of the test statistics corresponding to the true null hypotheses.
Indeed, subset pivotality fails for two types of testing problems that are highly
relevant in biomedical and genomic data analysis: tests concerning correlation
coefficients and tests concerning regression coefficients (Chapter 8; Pollard
et al. (2005a); Pollard and van der Laan (2004)).

To address the shortcomings of existing approaches, we have formulated a
general characterization of a test statistics null distribution for which the mul-
tiple testing procedures of Chapters 3–7 provide proper Type I error control
(Section 2.2). Our general characterization is based on the intuitive notion of
null domination, whereby the number of Type I errors is stochastically greater
under the test statistics’ null distribution than under their true distribution.
Null domination conditions lead to the explicit construction of two main types
of test statistics null distributions. The first original proposal of Dudoit et al.
(2004b), van der Laan et al. (2004a), and Pollard and van der Laan (2004), de-
fines the null distribution as the asymptotic distribution of a vector of null shift
and scale-transformed test statistics, based on user-supplied upper bounds for
the means and variances of the test statistics for the true null hypotheses (Sec-
tion 2.3). The second and most recent proposal of van der Laan and Hubbard
(2006) defines the null distribution as the asymptotic distribution of a vector
of null quantile-transformed test statistics, based on user-supplied marginal
test statistics null distributions (Section 2.4).

Either test statistics null distribution (or consistent estimators thereof)
may be used in any of the multiple testing procedures proposed in Chapters
3–7, as they both satisfy the key property of joint null domination for the
test statistics corresponding to the true null hypotheses. The latest proposal
of van der Laan and Hubbard (2006) has the additional advantage that the
marginal test statistics null distributions may be set to the optimal (i.e.,
most powerful) null distributions one would use in single hypothesis testing
(e.g., permutation marginal null distributions, Gaussian or other parametric
marginal null distributions). Resampling procedures (e.g., non-parametric or
model-based bootstrap) are provided to conveniently obtain consistent esti-
mators of the null distribution and of the corresponding test statistic cut-offs,
parameter confidence regions, and adjusted p-values.
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We stress the generality of our proposed test statistics null distributions:
Type I error control does not rely on restrictive assumptions such as subset
pivotality and holds for general data generating distributions, null hypotheses,
and test statistics. In particular, the proposed null distributions allow one to
address testing problems that cannot be handled by existing approaches, such
as tests concerning correlation coefficients and parameters in general regres-
sion models (e.g., linear regression models where the covariates and error terms
are allowed to be dependent, logistic regression models, Cox proportional haz-
ards models).

As detailed in Section 2.8, the following two important points distinguish
our approach from existing approaches to Type I error control and the choice
of a null distribution. Firstly, we are only concerned with Type I error control
under the true data generating distribution. The notions of weak and strong
control (and associated subset pivotality) are therefore irrelevant for our meth-
ods. Secondly, we propose a null distribution for the test statistics, and not
a data generating null distribution. The latter practice does not necessarily
provide proper Type I error control, as a data generating null distribution
may result in a joint distribution for the test statistics that has a different
dependence structure than their true distribution.

The simulation studies of van der Laan and Hubbard (2006), Pollard
et al. (2005a), and Pollard and van der Laan (2004), demonstrate that the
choice of null distribution can have a substantial impact on the Type I error
and power properties of a given multiple testing procedure (Chapter 8). In
particular, Pollard et al. (2005a) show that procedures based on our general
non-parametric bootstrap null shift and scale-transformed test statistics null
distribution typically control the Type I error rate “on target” at the nominal
level. In contrast, comparable procedures, based on parameter-specific boot-
strap data generating null distributions, can be severely anti-conservative
(bootstrapping residuals for testing regression coefficients) or conservative
(independent bootstrap for testing correlation coefficients). van der Laan
and Hubbard (2006) further illustrate that, for finite samples, the new null
quantile-transformed test statistics null distribution provides more accurate
Type I error control and is more powerful than the original null shift and
scale-transformed null distribution.

Chapter 3 presents an overview of basic multiple testing procedures for
controlling the number of Type I errors (family-wise error rate and gener-
alized family-wise error rate, in Sections 3.2 and 3.3, respectively) and the
proportion of Type I errors among the rejected hypotheses (false discovery
rate and tail probabilities for the proportion of false positives, in Sections 3.4
and 3.5, respectively). The different procedures are stated in terms of adjusted
p-values as well as cut-offs for individual test statistics or unadjusted p-values.
Summary tables are provided in Appendix A.
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Chapter 4 proposes general joint single-step common-cut-off and
common-quantile procedures for controlling Type I error rates Θ(FVn

), defined
as arbitrary parameters of the distribution of the number of Type I errors
Vn (Section 4.2; Dudoit et al. (2004b); Pollard and van der Laan (2004)).
Such error rates include the generalized family-wise error rate (gFWER),
gFWER(k) = 1 − FVn

(k) = Pr(Vn > k), i.e., the chance of at least (k + 1)
Type I errors, and, in particular, the usual family-wise error rate (FWER),
FWER = gFWER(0) = 1 − FVn

(0) = Pr(Vn > 0). In the special case of
gFWER(k) control, the procedures are based on the (k + 1)st largest test
statistic and (k + 1)st smallest unadjusted p-value, respectively. For control
of the FWER, the procedures reduce to the single-step maxT and minP
procedures, based on the maximum test statistic and minimum unadjusted
p-value, respectively. Adjusted p-values are derived in Section 4.3. Single-
step common-cut-off and common-quantile procedures, based on consistent
estimators of the test statistics null distribution, are shown to provide asymp-
totic control of the Type I error rate Θ(FVn

). General bootstrap procedures
are supplied to conveniently obtain consistent estimators of the single-step
common cut-offs and common-quantile cut-offs and of the corresponding
adjusted p-values (Section 4.4). This chapter also establishes equivalence
results between Θ-specific single-step multiple testing procedures and param-
eter confidence regions (Section 4.6) and addresses the issue of test optimality,
i.e., the maximization of power subject to a Type I error constraint (Section
4.7; Rubin et al. (2006)).

Chapter 5 focuses on control of the family-wise error rate, FWER =
1−FVn

(0), and provides joint step-down common-cut-off maxT and common-
quantile minP procedures, based on maxima of test statistics and minima of
unadjusted p-values, respectively (Sections 5.2 and 5.3; van der Laan et al.
(2004a)). Two main types of results are derived concerning asymptotic con-
trol of the FWER. The more general theorems prove that the step-down
maxT and minP procedures provide asymptotic control of the FWER, under
general asymptotic null domination assumptions for the test statistics null
distribution. Exact asymptotic control results are obtained by making addi-
tional asymptotic separation assumptions for the test statistics for the true
and false null hypotheses. Step-up procedures are discussed in Section 5.4.
Step-down maxT and minP procedures, based on consistent estimators of the
test statistics null distribution, are shown to provide asymptotic control of
the FWER. General bootstrap procedures are supplied to conveniently obtain
consistent estimators of the step-down maxT and minP cut-offs and of the
corresponding adjusted p-values (Section 5.5).

Chapter 6 proposes a new general and flexible approach to multi-
ple hypothesis testing, the augmentation method, whereby a set of suit-
ably chosen null hypotheses are added to the set of hypotheses already
rejected by an initial MTP, in order to control a second target Type I



XII Preface

error rate (Dudoit et al., 2004a; van der Laan et al., 2004b). Specifi-
cally, given an initial gFWER-controlling procedure, this chapter provides
(marginal/joint single-step/stepwise) augmentation multiple testing proce-
dures (AMTP) for controlling generalized tail probability (gTP) error rates,
gTP (q, g) = Pr(g(Vn, Rn) > q), for arbitrary functions g(Vn, Rn) of the
numbers of false positives Vn and rejected hypotheses Rn (Section 6.5). Sim-
ple augmentations of FWER-controlling procedures are treated in detail,
for controlling tail probabilities for the number of false positives (gFWER),
with g(v, r) = v, and tail probabilities for the proportion of false positives
(TPPFP) among the rejected hypotheses, with g(v, r) = v/r (Sections 6.2
and 6.5.3 for gFWER; Sections 6.3 and 6.5.4 for TPPFP). As shown in
Section 6.5.2, the adjusted p-values for an augmentation multiple testing
procedure are simply shifted versions of the ordered adjusted p-values for the
initial MTP. Section 6.6 demonstrates that one can readily derive (conser-
vative) procedures controlling generalized expected value (gEV) error rates,
gEV (g) = E[g(Vn, Rn)], based on procedures controlling generalized tail
probability error rates, gTP (q, g) = Pr(g(Vn, Rn) > q). Control of the false
discovery rate (FDR), based on a TPPFP-controlling MTP, corresponds to
the special case g(v, r) = v/r (Section 6.4).

We stress the generality and important practical implications of the
augmentation approach to multiple testing: any gFWER-controlling MTP
immediately and trivially provides multiple testing procedures that control a
wide variety of error rates, defined as tail probabilities Pr(g(Vn, Rn) > q) for
arbitrary functions g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn. While existing approaches for controlling the proportion of
false positives (e.g., TPPFP and FDR) typically assume either independence
or specific dependence structures for the joint distribution of the test statis-
tics, augmentation procedures can be derived for general data generating
distributions (i.e., arbitrary joint distributions for the test statistics), null
hypotheses, and test statistics. One can therefore build on the large pool of
available FWER-controlling procedures to greatly expand the class of Type I
error rates one can control (e.g., single-step and step-down maxT and minP
procedures, summarized in overview Chapter 3 and discussed in detail in
Chapters 4 and 5).

Chapter 7 builds on van der Laan et al. (2005) and proposes new joint
resampling-based empirical Bayes procedures for controlling generalized tail
probability error rates, gTP (q, g) = Pr(g(Vn, Rn) > q). The approach involves
specifying: (i) a null distribution for vectors of null test statistics and (ii) a
distribution for random guessed sets of true null hypotheses. By randomly
sampling null test statistics and guessed sets of true null hypotheses, one
obtains a distribution for a guessed g-specific function of the numbers of false
positives and rejected hypotheses, for any given vector of cut-offs for the test
statistics. Cut-offs can then be chosen to control tail probabilities for this dis-
tribution at a user-supplied level. This chapter also discusses empirical Bayes
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q-value-based approaches to FDR control and connections to the frequentist
step-up Benjamini and Hochberg (1995) procedure.

Chapter 8 presents simulation studies assessing the performance of the
multiple testing procedures described in Chapters 1–7. The simulation studies
focus on the choice of a test statistics null distribution in testing problems con-
cerning correlation coefficients and regression coefficients in models where the
covariates and error terms are allowed to be dependent (Pollard et al., 2005a).

Chapters 9–12 apply the proposed methodology to the following mul-
tiple testing problems in biomedical and genomic research: the identification
of differentially expressed and co-expressed genes in high-throughput gene
expression experiments (Chapter 9); tests of association between gene ex-
pression measures and biological annotation metadata, e.g., Gene Ontology
annotation (Chapter 10); the identification of HIV-1 codon positions asso-
ciated with viral replication capacity (Chapter 11); the genetic mapping of
human obesity, based on tests of association between multilocus composite
SNP genotypes and obesity-related phenotypes (Chapter 12).

The above testing problems share the following general characteristics:
inference for high-dimensional multivariate distributions, with complex and
unknown dependence structures among variables; broad range of parameters
of interest, such as coefficients in general regression models relating possibly
censored biological and clinical covariates and outcomes to genome-wide ex-
pression measures and genotypes; many null hypotheses, in the thousands or
even millions; complex and unknown dependence structures among test statis-
tics (e.g., directed acyclic graph (DAG) structure of GO terms in Chapter 10,
Galois lattice for multilocus composite SNP genotypes in Chapter 12).

Due to their generality and flexibility, the multiple testing procedures of
Chapters 1–7 are well-suited to address these and other high-dimensional
testing problems arising in different areas of application of statistics. In par-
ticular, recall that the proposed procedures are designed to control a broad
range of Type I error rates, for: general multivariate data generating distri-
butions, with arbitrary dependence structures among variables; general null
hypotheses, defined in terms of submodels for the data generating distribu-
tion; general test statistics, such as, t-statistics for tests of means, correlation
coefficients, and coefficients in general regression models, and F -statistics for
testing multiple-parameter null hypotheses.

Chapter 13 discusses the software implementation of the proposed mul-
tiple testing procedures in the R package multtest, released as part of the
Bioconductor Project, an open-source software project for the analysis of
biomedical and genomic data (Section 13.1; Gentleman et al. (2004); Pollard
et al. (2005b); R Development Core Team (2006); www.bioconductor.org;
www.r-project.org). This chapter also illustrates the implementation in
SAS of a bootstrap-based single-step maxT procedure and gFWER- and
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TPPFP-controlling augmentation multiple testing procedures (Section 13.2;
Birkner et al. (2005b); SAS, Version 9, www.sas.com).

Appendix A contains summaries of basic definitions, notation, and mul-
tiple testing procedures.

Appendix B provides miscellaneous mathematical and statistical results
used repeatedly throughout the book.

Appendix C supplies SAS code for some of the proposed multiple testing
procedures.

Supplements

The book’s website provides supplementary materials, such as, additional
analyses, tables, and figures, articles, lecture notes, software, datasets,
links, and errata (www.stat.berkeley.edu/~sandrine/MTBook; www.
springer-ny.com).

The reader is referred to the National Center for Biotechnology Infor-
mation (NCBI) website for online tutorials and other educational resources
on genome biology (www.ncbi.nlm.nih.gov/Education). The supplements
to Nature Genetics provide an overview of the biology, technology, and
applications of microarray experiments (Phimister and Cohen (1999); Packer
(2002); Packer and Axton (2005); www.nature.com/ng/supplements). The
book edited by Speed (2003) discusses statistical methods for the analysis of
microarray data.

Software packages (e.g., R package multtest), datasets, short course
materials (e.g., lecture notes, computer labs), and documentation may be
downloaded from the Bioconductor Project (Gentleman et al. (2004); www.
bioconductor.org) and R Project (R Development Core Team (2006); www.
r-project.org) websites. The monograph edited by Gentleman et al. (2005a)
provides a survey of Bioconductor software packages and their applications
to a range of problems in computational biology (www.bioconductor.org/
pub/docs/mogr).

Technical reports are available from the UC Berkeley Division of Biostatis-
tics Working Paper Series website (www.bepress.com/ucbbiostat).

Finally, our personal websites provide additional resources on multiple
hypothesis testing (SD: www.stat.berkeley.edu/~sandrine; MJvdL: www.
stat.berkeley.edu/~laan).
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