List of Figures

1.1	Comparison of Type I error rates for a simple example. [*] 43
1.2	Comparison of Type I error rates for a simple example. [*] 44
1.3	Comparison of single-step, step-down, and step-up procedures: Cut-offs for FWER-controlling marginal Bonferroni, Holm,
	and Hochberg procedures.* 45
1.4	Comparison of single-step, step-down, and step-up procedures: Adjusted <i>p</i> -values for FWER-controlling marginal Bonferroni,
	Holm, and Hochberg procedures. [*]
1.5	Comparison of step-down and step-up procedures: Rejection
	regions for FWER-controlling marginal Holm and Hochberg
	procedures
2.1	Bootstrap estimation of the null shift and scale-transformed test statistics null distribution O_2 (Procedure 2.3) 107
2.2	Bootstrap estimation of the unadjusted <i>p</i> -values $P_{0n}(m)$ 108
3.1	Comparison of stepwise Holm/Hochberg cut-offs and Simes
3.2	gFWER-controlling augmentation multiple testing procedure 160
4.1	Bootstrap estimation of the single-step maxT adjusted
	<i>p</i> -values $\widetilde{P}_{0n}(m)$ (Procedure 4.21)
6.1	Multiple testing procedures for controlling generalized tail
	probability error rates and generalized expected value error
6.9	rates
6.2	Adjusted p -value shift function for a gF wER-controlling AM 1P.276 Adjusted p -value inverse shift function for a
	gFWER-controlling AMTP

6.4	Adjusted <i>p</i> -value shift and inverse shift functions for a rEWEP controlling AMTR	979
6.5	Sets of rejected hypotheses and adjusted <i>p</i> -values for a	210
	gFWER-controlling AMTP.*	279
6.6	Adjusted <i>p</i> -value shift function for a TPPFP-controlling AMTP.	280
6.7	Adjusted <i>p</i> -value inverse shift function for a	
	TPPFP-controlling AMTP.	281
6.8	Adjusted <i>p</i> -value shift and inverse shift functions for a	
	TPPFP-controlling AMTP.	282
6.9	Sets of rejected hypotheses and adjusted <i>p</i> -values for a	
	TPPFP-controlling AMTP.*	283
6.10	Adjusted <i>p</i> -value shift function for a gTPPFP-controlling AMTP.	284
6.11	Adjusted <i>p</i> -value inverse shift function for a	
	gTPPFP-controlling AMTP.	285
6.12	Adjusted <i>p</i> -value shift and inverse shift functions for a	
	gTPPFP-controlling AMTP.	286
6.13	Sets of rejected hypotheses and adjusted <i>p</i> -values for a	
	gTPPFP-controlling AMTP.*	287
8.1	Simulation Study 1: Tests for linear regression coefficients,	
	Type I error control comparison.	358
8.2	Simulation Study 1: Tests for linear regression coefficients,	
	power comparison	359
8.3	Simulation Study 2: Tests for correlation coefficients, Type I	
	error control comparison.	365
8.4	Simulation Study 2: Tests for correlation coefficients, power	
	comparison.	366
9.1	Apo AI dataset: Test statistics	380
9.2	Apo AI dataset: FWER-controlling non-parametric	
	bootstrap-based single-step maxT MTP, test statistics	
	and <i>p</i> -values	381
9.3	Apo AI dataset: FWER-controlling non-parametric	
	bootstrap-based single-step maxT MTP, test statistics	
	and cut-offs.	382
9.4	Apo AI dataset: FWER-controlling non-parametric	
	bootstrap-based single-step maxT MTP, parameter estimates	
	and confidence regions	383
9.5	Apo AI dataset: FWER-controlling non-parametric	
	bootstrap-based MTPs.*	386
9.6	Apo AI dataset: gFWER-controlling non-parametric	
	bootstrap-based AMTPs.*	388
9.7	Apo AI dataset: TPPFP-controlling non-parametric	
	bootstrap-based AMTPs.*	390

9.8	Apo AI dataset: FDR-controlling non-parametric
	bootstrap-based MTPs.*
9.9	Apo AI dataset: FWER-controlling permutation-based MTPs.* 394
9.10	Apo AI dataset: Unadjusted <i>p</i> -values for three test statistics
	null distributions.*
9.11	Apo AI dataset: Step-down maxT adjusted <i>p</i> -values for
	non-parametric bootstrap and permutation test statistics null
	distributions.*
9.12	Apo AI dataset: Unadjusted <i>p</i> -values for non-parametric
	bootstrap and permutation test statistics null distributions 399
9.13	Cancer miRNA dataset, differential expression and
	co-expression: Single-step maxT adjusted <i>p</i> -values for tests for
	logistic regression coefficients and correlation coefficients 408
9.14	Cancer miRNA dataset, co-expression: HOPACH clustering of
-	miRNA expression profiles.*
10.1	Parameters for tests of association with biological annotation
	metadata
10.2	DAG for MF GO term G0:0004713, AmiGO 457
10.3	DAG for MF GO term G0:0004713, QuickGO458
10.4	The Philadelphia chromosome and the BCR/ABL fusion. [*] \dots 459
10.5	Differentially expressed genes between BCR/ABL and NEG
	B-cell ALL
10.6	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, adjusted p-values.*
10.7	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, common terms between
	testing scenarios.*
10.8	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, conditional distribution of
	λ_n^t given A
10.9	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, comparison of adjusted
	<i>p</i> -values for the three gene ontologies
10.10	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, DAG for top 20 BP GO terms.471
10.11	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, DAG for top 20 CC GO terms.472
10.12	2GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, DAG for top 20 MF GO terms.473
10.13	GO terms associated with differential gene expression between
	BCR/ABL and NEG B-cell ALL, BP GO term G0:0006916
	and MF GO term G0:0003735
11.1	HIV-1 lifecycle.*
11.1	111 v - 1 mecycle

XXX List of Figures

11.2	HIV-1 dataset: Multiple testing analysis, Part I.*
12.1	ObeLinks dataset: Phenotype distributions
12.2	Galois lattice for SNP genotypes.*
12.3	ObeLinks dataset: BMI phenotype, OB-IR Codominant
	SNP genotype set.* $\dots \dots \dots$
12.4	ObeLinks dataset: Glycemia phenotype, OB-IR Codominant
	SNP genotype set.*
12.5	ObeLinks dataset: Insulinemia phenotype, OB-IR Codominant
	SNP genotype set.*

* See color plates p. 321–344.