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1.1 What’s this course about?

The goal of this course is to introduce you to a variety of concepts and methods that are useful
when dealing with data. You can think of data as any information that could potentially be
studied to learn more about something.

Some simple examples:

1. Sales records for a company

2. Won/Lost records for a sports team

3. Web log listings

4. Email messages

5. Demographic Information found on the web

What may be surprising is that some of the data (for example web log listings or email)
consists of text, not numbers. It’s increasingly important to be able to deal with text in
order to look at the wide variety of information that is available.

In most statistics courses, a lot of time is spent working on the preliminaries (formulas,
algorithms, statistical concepts) in order to prepare the student for the interesting part of
statistics, which is studying data for a problem that matters to you. Unfortunately, by
the time these preliminaries are covered, many students are bored or frustrated, and they
leave the course with a distorted view of statistics. In this class, we’re going to do things
differently. We will concentrate on:

1. Computer Languages – which will let us read in and manipulate data.

2. Graphical Techniques – which will allow us to display data in a way that makes it
easier to understand and easier to make decisions based on the data.

3. Technologies – so that we can present these techniques to someone who’s not as knowl-
edgeable as us without too much misery.

The main computer language that we will be using in the course is a statistical pro-
gramming environment known as R (http://r-project.org). R is freely downloadable and
copyable, and you are strongly encouraged to install R on your own computer for use in this
course and beyond. We will use this language for both data acquisition, data manipulation
and producing graphical output. R is not the ideal language for all of the tasks we’re going
to do, but in the interest of efficiency, we’ll try to use it for most things, and point you in
the direction of other languages that you might want to explore sometime in the future.

Another tool that we’ll use are UNIX shell commands, which allow you to store, copy
and otherwise manipulate files which contain data, documents or programs. The computer
accounts for this course will allow you to access computers running a version of the UNIX
operating system
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More and more commonly, data is stored on database servers, not in ordinary files. Most
database servers use some version of a language known as the Structured Query Language
(SQL). We’ll use the open-source MySQL database as an example of an SQL database.

While you shouldn’t have any problems understanding any of the statistical techniques we
study in this class, a certain level of complexity arises when various techniques are combined
together and presented as a start-to-finish solution. To learn how we can make techniques
we’ve developed to others, we’ll look at graphical user interfaces (GUIs) as well as using web
servers to get information from users and display results.

1.2 Some Basic Concepts in Computing with Data

Most real-life projects that involve data can be broken down into several steps:

1. Data Acquisition - we need to find (or collect) the data, and get some representation
of it into the computer

2. Data Cleaning - Inevitably, there will be errors in the data, either because they were
entered incorrectly, we misunderstood the nature of the data, records were duplicated
or omitted. Many times data is presented for viewing, and extracting the data in some
other form becomes a challenge.

3. Data Organization - Depending on what you want to do, you may need to reorganize
your data. This is especially true when you need to produce graphical representations
of the data. Naturally, we need the appropriate tools to do these tasks.

4. Data Modeling and Presentation - We may fit a statistical model to our data, or we
may just produce a graph that shows what we think is important. Often, a variety of
models or graphs needs to be considered. It’s important to know what techniques are
available and whether they are accepted within a particular user community.

Further, techniques such as simulation and resampling have been developed to allow us
to get information even in cases where we don’t have exactly the data that we’d like to have.

1.3 A Short Note on Academic Integrity

One of the main ways you are going to learn in this course is by discussing the material in
class and in lab sections, and I feel that this is one of the most important aspects of the
course. However, the programs you write are like an essay or term paper, and you should
not share them with others, or ask others to give their programs to you.

The University has a very detailed code of student conduct, available at
http://students.berkeley.edu/uga/conductiii-vii.asp. Please refer to that document or talk
to me if there are any questions.
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1.4 Introduction to R

Here are some basic concepts about R that we’ll return to later in more detail:

• R can be used as a calculator. Any statements that you type at the R prompt will be
executed, and the answer printed:

> 12 + 9

[1] 21

> 17.1* 13

[1] 222.3

> 554 /3

[1] 184.6667

Notice that spaces can be placed wherever you’d like, as long as they’re not in the
middle of a number.

• R is just as happy to work with vectors (more than one value) as it is with scalars
(single values). The function to create a vector from individual values is c():

> c(10,12,19) + c(8,5,9)

[1] 18 17 28

> c(1,2,3) * c(3,2,1)

[1] 3 4 3

When you use operators like *(multiplication) or +(addition), R does the operations
element by element

• There are three ways to get help in R:

1. The help() command, which can be abbreviated by ?, will open a help page in
a browswer with information about a particular command. For example, to get
help on the c function mentioned above, you could type:

> help(c)

or

> ?c

2. The help.search() function, which can be abbreviated by ??, will show other
functions already installed in your version of R that relate to a particular topic.
For example, to see about functions that combine things in R, you could type

> ??combine

help.search() only looks for functions already installed on your computer.
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3. The RSiteSearch() command will open a browser to a searchable database of
questions and answers posted on the R-help mailing list. (See http://www.r-
project.org/mail.html for more information on the R-help mailing list.)

• When you type the name of an object into R, it will display that object. This can be
frustrating when you want to actually run the object. For example, if you type q at
the R prompt, you’ll see:

> q

function (save = "default", status = 0, runLast = TRUE)

.Internal(quit(save, status, runLast))

<environment: namespace:base>

To actually execute the q command, type

> q()
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2.1 Data in R

While R can handle many types of data, the three main varieties that we’ll be using are
numeric, character and logical. In R, you can identify what type of object you’re dealing
with by using the mode function. For example:

> name = ’phil’

> number = 495

> happy = TRUE

> mode(name)

[1] "character"

> mode(number)

[1] "numeric"

> mode(happy)

[1] "logical"

Note that when we enter character data, it needs to be surrounded by quotes (either double
or single), but the symbols TRUE and FALSE (without quotes) are recognized as values of a
logical variable.

Another important characteristic of an object in R is its class, because many functions
know how to treat objects of different classes in a special way. You can find the class of an
object with the class function.

2.2 Vectors

Occasionally it may be useful to have a variable (like name or happy in the above example)
to have only a single value (like ’phil’ or TRUE), but usually we’ll want to store more than
a single value (sometimes refered to as a scalar) in a variable. A vector is a collection of
objects, all of the same mode, that can be stored in a single variable, and accessed through
subscripts. For example, consider the minimum temperature in Berkeley for the first 10 days
of January, 2006:

50.7 52.8 48.6 53.0 49.9 47.9 54.1 47.6 43.6 45.5

We could create a variable called mintemp as follows:

> mintemp = c(50.7,52.8,48.6,53.0,49.9,47.9,54.1,47.6,43.6,45.5)

The c function is short for catenate or combine, and it’s used to put individual values together
into vectors. You can find the number of elements in a vector using the length function.

Once you’ve created a vector, you can refer to the elements of the vector using subscripts.
Numerical subscripts in R start at 1, and continue up to the length of the vector. Subscripts
of 0 are silently ignored. To refer to multiple elements in a vector, simply use the c function
to create a vector of the indexes you’re interested in. So to extract the first, third, and fifth
values of the mintemp vector, we could use:
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> mintemp[c(1,3,5)]

[1] 50.7 48.6 49.9

If all of the subscripts of an object are negative, R will ignore those values, and use just
the remaining elements. To extract all of the elements of mintemp except the first and last
(tenth), use:

> mintemp[-c(1,10)]

[1] 52.8 48.6 53.0 49.9 47.9 54.1 47.6 43.6

In most programming languages, once you’re dealing with vectors, you also have to start
worrying about loops and other programming problems. Not so in R! For example, suppose
we want to use the conversion formula

C = 5/9(F − 32)

to convert our Fahrenheit temperatures into Celsius. We can act as if mintemp is just a
single number, and R will do the hard part:

> mintempC = 5/9 * (mintemp - 32)

> mintempC

[1] 10.388889 11.555556 9.222222 11.666667 9.944444 8.833333 12.277778

[8] 8.666667 6.444444 7.500000

In fact, most similar operations in R are vectorized; that is they operate on entire vectors
at once, without the need for loops or other programming.

There are some shortcuts to generate vectors. The colon operator lets you generate
sequences of integers from one value to another. For example,

> x = 1:10

> x

[1] 1 2 3 4 5 6 7 8 9 10

For more control, see the help page for the seq function.
You can repeat values using the rep function. This function is very flexible; if called with

scalars, it does the obvious:

> rep(5,3)

[1] 5 5 5

with a vector and a scalar, it creates a new vector by repeating the old one:

> y = 3:7

> rep(y,3)

[1] 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

Finally, if you call rep with two equal length vectors, it repeats the elements of the first
vector as many times as the corresponding element of the second vector:
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> rep(1:4,c(2,3,3,4))

[1] 1 1 2 2 2 3 3 3 4 4 4 4

One surprising thing about vectors in R is that many times it will carry out an operation
with two vectors that aren’t the same size by simply recycling the values in the shorter
vector. For example, suppose we try to add a vector with four numbers to one with just two
numbers:

> c(1,2,3,4) + c(1,2)

[1] 2 4 4 6

Notice that, for the two last elements, it simply recycled the 1 and 2 from the second vector
to perform the addition. R will be silent when things like this happen, but if the length of
the larger vector isn’t an even multiple of the length of the smaller vector, R will print a
warning:

> c(1,2,3,4) + c(1,2,3)

[1] 2 4 6 5

Warning message:

longer object length is not a multiple of shorter object

length in: c(1, 2, 3, 4) + c(1, 2, 3)

It’s possible to provide names for the elements of a vector. Suppose we were working
with purchases in a number of states, and we needed to know the sales tax rate for a given
state. We could create a named vector as follows:

> taxrate = c(AL=4,CA=7.25,IL=6.25,KS=5.3,NY=4.25,TN=7)

> taxrate

AL CA IL KS NY TN

4.00 7.25 6.25 5.30 4.25 7.00

To add names to a vector after a fact, you can use the names function:

> taxrate = c(4,7.25,6.25,5.3,4.25,7)

> taxrate

[1] 4.00 7.25 6.25 5.30 4.25 7.00

> names(taxrate) = c(’AL’,’CA’,’IL’,’KS’,’NY’,’TN’)

> taxrate

AL CA IL KS NY TN

4.00 7.25 6.25 5.30 4.25 7.00

If you have a named vector, you can access the elements with either numeric subscripts or
by using the name of the element you want:

> taxrate[3]

IL
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6.25

> taxrate[’KS’]

KS

5.3

One of the most powerful tools in R is the ability to use logical expressions to extract or
modify elements in the way that numeric subscripts are traditionally used. While there are
(of course) many cases where we’re interested in accessing information based on the numeric
or character subscript of an object, being able to use logical expressions gives us a much
wider choice in the way we can study our data. For example, suppose we want to find all
of observations in taxrate with a taxrate less than 6. First, let’s look at the result of just
asking whether taxrate is less than 6:

> taxrate < 6

AL CA IL KS NY TN

TRUE FALSE FALSE TRUE TRUE FALSE

The result is a logical vector of the same length as the vector we were asking about. If we
use such a vector to extract values from the taxrate vector, it will give us all the ones that
correspond to TRUE values, discarding the ones that correspond to FALSE.

> taxrate[taxrate > 6]

CA IL TN

7.25 6.25 7.00

Another important use of logical variables is counting the number of elements of a vector
meet a particular condition. When a logical vector is passed to the sum function, TRUEs count
as one and FALSEs count as 0. So we can count the number of TRUEs in a logical expression
by passing it to sum:

> sum(taxrate > 6)

[1] 3

This tells us three observations in the taxrate vector had values greater than 6.
As another example, suppose we want to find which of the states we have information

about has the highest sales tax. The max function will find the largest value in a vector.
(Once again, note that we don’t have to worry about the size of the vector or looping over
individual elements.)

> max(taxrate)

[1] 7.25

We can find the state which has the highest tax rate as follows:

> taxrate[taxrate == max(taxrate)]

CA

7.25
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Notice that we use two equal signs when testing for equality, and one equal sign when we
are assigning an object to a variable.

Another useful tool for these kinds of queries is the which function. It converts between
logical subscripts and numeric ones. For example, if we wanted to know the index of the
element in the taxrate vector that was the biggest, we could use:

> which(taxrate == max(taxrate))

CA

2

In fact, this is such a common operation that R provides two functions called which.min and
which.max which will return the index of the minimum or maximum element of a vector:

> which.max(taxrate)

CA

2

While it’s certainly not necessary to examine every function that we use in R, it might be
interesting to see what which.max is doing beyond our straight-forward solution. As always,
we can type the name of the function to see what it does:

> which.max

function (x)

.Internal(which.max(x))

<environment: namespace:base>

.Internal means that the function that actually finds the index of the maximum value
is compiled inside of R. Generally functions like this will be faster than pure R solutions
like the first one we tried. We can use the system.time function to see how much faster
which.max will be. Because functions use the equal sign (=) to name their arguments, we’ll
use the alternative assignment operator, <- in our call to system.time:

> system.time(one <- which(taxrate == max(taxrate)))

user system elapsed

0 0 0

It’s not surprising to see a time of 0 when operating on such a small vector. It doesn’t mean
that it required no time to do the operation, just that the amount of time it required was
smaller than the granularity of the system clock. (The granularity of the clock is simply the
smallest interval of time that can be measured by the computer.) To get a good comparison,
we’ll need to create a larger vector. To do this, we’ll use the rnorm function, which generates
random numbers from the normal distribution with mean 0 and standard deviation 1. To
get times that we can trust, I’ll use a vector with 10 million elements:
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> x = rnorm(10000000)

> system.time(one <- which(x == max(x)))

user system elapsed

0.276 0.016 0.292

> system.time(two <- which.max(x))

user system elapsed

0.068 0.000 0.071

While the pure R solution seems pretty fast (0.292 seconds to find the index of the largest
element in a vector of 10 million numbers), the compiled (internal) version is actually around
4 times faster!

Of course none of this matters if they don’t get the same answers:

> one

[1] 8232773

> two

[1] 8232773

The two methods do agree.
If you try this example on your own computer, you’ll see a different value for the index

of the maximum. This is due to the way random numbers are generated in R, and we’ll see
how to take more control of this later in the semester.

16



2.3 Modes and Classes

It was mentioned earlier that all the elements of a vector must be of the same mode. To see
the mode of an object, you can use the mode function. What happens if we try to combine
objects of different modes using the c function? The answer is that R will find a common
mode that can accomodate all the objects, resulting in the mode of some of the objects
changing. For example, let’s try combining some numbers and some character strings:

> both = c(’dog’,3,’cat’,’mouse’,7,12,9,’chicken’)

> both

[1] "dog" "3" "cat" "mouse" "7" "12" "9"

[8] "chicken"

> mode(both)

[1] "character"

You can see that the numbers have been changed to characters because they are now dis-
played surrounded by quotes. They also will no longer behave like numbers:

> both[2] + both[5]

Error in both[2] + both[5] : non-numeric argument to binary operator

The error message means that the two values can no longer be added. If you really need to
treat character strings like numbers, you can use the as.numeric function:

> as.numeric(both[2]) + as.numeric(both[5])

[1] 10

Of course, the best thing is to avoid combining objects of different modes with the c function.
We’ll see later that R provides an object known as a list that can store different types of
objects without having to change their modes.

2.4 Reading Vectors

Once you start working with larger amounts of data, it becomes very tedious to enter data
into the c function, especially considering the need to put quotes around character values
and commas between values. To read data from a file or from the terminal without the need
for quotes and commas, you can use the scan function. To read from a file (or a URL),
pass it a quoted string with the name of the file or URL you wish to read; to read from the
terminal, call scan() with no arguments, and enter a completely blank line when you’re done
entering your data. Additionally, on Windows or Mac OS X, you can substitute a call to the
file.choose() function for the quoted string with the file name, and you’ll be presented
with the familiar file chooser used by most programs on those platforms.

Suppose there’s a file called numbers in your working directory. (You can get your
working directory by calling the getwd() function, or set it using the setwd function or
File -> Change dir selection in the R console.) Let’s say the contents of this file looks like
this:
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12 7

9 8 14 10

17

The scan function can be used to read these numbers as follows:

> nums = scan(’numbers’)

Read 7 items

> nums

[1] 12 7 9 8 14 10 17

The optional what= argument to scan can be used to read vectors of character or logical
values, but remember a vector can only hold objects all of which are of the same mode.

2.5 Missing Values

No matter how carefully we collect our data, there will always be situations where we don’t
know the value of a particular variable. For example, we might conduct a survey where we
ask people 10 questions, and occasionally we forget to ask one, or people don’t know the
proper answer. We don’t want values like this to enter into calculations, but we can’t just
eliminate them because then observations that have missing values won’t “fit in” with the
rest of the data.

In R, missing values are represented by the string NA. For example, suppose we have a
vector of 10 values, but the fourth one is missing. I can enter a missing value by passing NA

to the c function just as if it was a number (no quotes needed):

x = c(1,4,7,NA,12,19,15,21,20)

R will also recognize the unquoted string NA as a missing value when data is read from a file
or URL.

Missing values are different from other values in R in two ways:

1. Any computation involving a missing value will return a missing value.

2. Unlike other quantities in R, we can’t directly test to see if something is equal to a
missing value with the equality operator (==). We must use the builtin is.na function,
which will return TRUE if a value is missing and FALSE otherwise.

Here are some simple R statements that illustrate these points:

> x = c(1,4,7,NA,12,19,15,21,20)

> mean(x)

[1] NA

> x == NA

[1] NA NA NA NA NA NA NA NA NA
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Fortunately, these problems are fairly easy to solve. In the first case, many functions (like
mean, min, max, sd, quantile, etc.) accept an na.rm=TRUE argument, that tells the function
to remove any missing values before performing the computation:

> mean(x,na.rm=TRUE)

[1] 12.375

In the second case, we just need to remember to always use is.na whenever we are testing
to see if a value is a missing value.

> is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

By combining a call to is.na to the logical “not” operator (!) we can filter out missing
values in cases where no na.rm= argument is available:

> x[!is.na(x)]

[1] 1 4 7 12 19 15 21 20

2.6 Matrices

A very common way of storing data is in a matrix, which is basically a two-way generalization
of a vector. Instead of a single index, we can use two indexes, one representing a row and
the second representing a column. The matrix function takes a vector and makes it into a
matrix in a column-wise fashion. For example,

> mymat = matrix(1:12,4,3)

> mymat

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

The last two arguments to matrix tell it the number of rows and columns the matrix should
have. If you used a named argument, you can specify just one dimension, and R will figure
out the other:

> mymat = matrix(1:12,ncol=3)

> mymat

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12
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To create a matrix by rows instead of by columns, the byrow=TRUE argument can be used:

> mymat = matrix(1:12,ncol=3,byrow=TRUE)

> mymat

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

When data is being read from a file, you can simply imbed a call to scan into a call to
matrix. Suppose we have a file called matrix.dat with the following contents:

7 12 19 4

18 7 12 3

9 5 8 42

We could create a 3×4 matrix, read in by rows, with the following command:

matrix(scan(’matrix.dat’),nrow=3,byrow=TRUE)

To access a single element of a matrix, we need to specify both the row and the column
we’re interested in. Consider the following matrix, containing the numbers from 1 to 10:

> m = matrix(1:10,5,2)

> m

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

Now suppose we want the element in row 4 and column 1:

> m[4,1]

[1] 4

If we leave out either one of the subscripts, we’ll get the entire row or column of the matrix,
depending on which subscript we leave out:

> m[4,]

[1] 4 9

> m[,1]

[1] 1 2 3 4 5
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2.7 Data Frames

One shortcoming of vectors and matrices is that they can only hold one mode of data; they
don’t allow us to mix, say, numbers and character strings. If we try to do so, it will change
the mode of the other elements in the vector to conform. For example:

> c(12,9,"dog",7,5)

[1] "12" "9" "dog" "7" "5"

Notice that the numbers got changed to character values so that the vector could accomodate
all the elements we passed to the c function. In R, a special object known as a data frame
resolves this problem. A data frame is like a matrix in that it represents a rectangular array
of data, but each column in a data frame can be of a different mode, allowing numbers,
character strings and logical values to coincide in a single object in their original forms.
Since most interesting data problems involve a mixture of character variables and numeric
variables, data frames are usually the best way to store information in R. (It should be
mentioned that if you’re dealing with data of a single mode, a matrix may be more efficient
than a data frame.) Data frames correspond to the traditional “observations and variables”
model that most statistical software uses, and they are also similar to database tables.
Each row of a data frame represents an observation; the elements in a given row represent
information about that observation. Each column, taken as a whole, has all the information
about a particular variable for the data set.

For small datasets, you can enter each of the columns (variables) of your data frame using
the data.frame function. For example, let’s extend our temperature example by creating
a data frame that has the day of the month, the minimum temperature and the maximum
temperature:

> temps = data.frame(day=1:10,

+ min = c(50.7,52.8,48.6,53.0,49.9,47.9,54.1,47.6,43.6,45.5),

+ max = c(59.5,55.7,57.3,71.5,69.8,68.8,67.5,66.0,66.1,61.7))

> head(temps)

day min max

1 1 50.7 59.5

2 2 52.8 55.7

3 3 48.6 57.3

4 4 53.0 71.5

5 5 49.9 69.8

6 6 47.9 68.8

Note that the names we used when we created the data frame are displayed with the data.
(You can add names after the fact with the names function.) Also, instead of typing the
name temps to see the data frame, we used a call the the head function instead. This will
show me just the first six observations (by default) of the data frame, and is very handy to
check to make sure a large data.frame really looks the way you think. (There’s a function
called tail that shows the last lines in an object as well.)
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If we try to look at the class or mode of a data frame, it’s not that informative:

> class(temps)

[1] "data.frame"

> mode(temps)

[1] "list"

We’ll see the same results for every data frame we use. To look at the modes of the individual
columns of a data frame, we can use the sapply function. This function simplifies operations
that would require loops in other languages, and automatically returns the appropriate
results for the operation it performs. To use sapply on a data frame, pass the data frame
as the first argument to sapply, and the function you wish to use as the second argument.
So to find the modes of the individual columns of the temps data frame, we could use

> sapply(temps,mode)

date min maximum

"numeric" "numeric" "numeric"

Notice that sapply even labeled the result with the name of each column.
Suppose we want to concentrate on the maximum daily temperature (which we’ve called

max in our data frame) among the days recorded. There are several ways we can refer to the
columns of a data frame:

1. Probably the easiest way to refer to this column is to use a special notation that
eliminates the need to put quotes around the variable names (unless they contain
blanks or other special characters). Separate the data frame name from the variable
name with a dollar sign ($):

> temps$max

[1] 59.5 55.7 57.3 71.5 69.8 68.8 67.5 66.0 66.1 61.7

2. We can treat the data frame like it was a matrix. Since the maximum temperature is
in the third column, we could say

> temps[,3]

[1] 59.5 55.7 57.3 71.5 69.8 68.8 67.5 66.0 66.1 61.7

3. Since we named the columns of temps we can use a character subscript:

> temps[,"max"]

[1] 59.5 55.7 57.3 71.5 69.8 68.8 67.5 66.0 66.1 61.7

4. When you use a single subscript with a data frame, it refers to a data frame consisting
of just that column. R also provides a special subscripting method (double brackets)
to extract the actual data (in this case a vector) from the data frame:
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> temps[’max’]

max

1 59.5

2 55.7

3 57.3

4 71.5

5 69.8

6 68.8

7 67.5

8 66.0

9 66.1

10 61.7

> temps[[’max’]]

[1] 59.5 55.7 57.3 71.5 69.8 68.8 67.5 66.0 66.1 61.7

Notice that this second form is identical to temps$max. We could also use the equivalent
numerical subscript (in this case 3) with single or double brackets.
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2.8 More on Data Frames

1. Notice that if you want to extract more than one column of a data frame, you need to
use single brackets, not double:

> temps[c(’min’,’max’)]

min max

1 50.7 59.5

2 52.8 55.7

3 48.6 57.3

4 53.0 71.5

5 49.9 69.8

6 47.9 68.8

7 54.1 67.5

8 47.6 66.0

9 43.6 66.1

10 45.5 61.7

> temps[[c(’min’,’max’)]]

Error in .subset2(x, i, exact = exact) : subscript out of bounds

2. If you want to work with a data frame without having to constantly retype the data
frame’s name, you can use the with function. Suppose we want to convert our minimum
and maximum temperatures to centigrade, and then calculate the difference between
them. Using with, we can write:

> with(temps,5/9*(max-32) - 5/9*(min-32))

[1] 4.888889 1.611111 4.833333 10.277778 11.055556 11.611111 7.444444

[8] 10.222222 12.500000 9.000000

which may be more convenient than typing out the data frame name repeatedly:

> 5/9*(temps$max-32) - 5/9*(temps$min-32)

[1] 4.888889 1.611111 4.833333 10.277778 11.055556 11.611111 7.444444

[8] 10.222222 12.500000 9.000000

3. Finally, if the goal is to a add one or more new columns to a data frame, you can
combine a few operations into one using the transform function. The first argument
to transform is the name of the data frame that will be used to construct the new
columns. The remaining arguments to transform are name/value pairs describing the
new columns. For example, suppose we wanted to create a new variable in the temps

data frame called range, representing the difference between the min and max values
for each day. We could use transform as follows:
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> temps = transform(temps,range = max - min)

> head(temps)

day min max range

1 1 50.7 59.5 8.8

2 2 52.8 55.7 2.9

3 3 48.6 57.3 8.7

4 4 53.0 71.5 18.5

5 5 49.9 69.8 19.9

6 6 47.9 68.8 20.9

As can be seen, transform returns a new data frame like the original one, but with
one or more new columns added.

2.9 Reading Data Frames from Files and URLs

While creating a data frame the way we just did is very handy for quick examples, it’s
actually pretty rare to enter a data frame in that way; usually we’ll be reading data from a
file or possibly a URL. In these cases, the read.table function (or one of its’ closely related
variations described below) can be used. read.table tries to be clever about figuring out
what type of data you’ll be using, and automatically determines how each column of the
data frame should be stored. One problem with this scheme is has to do with a special
type of variable known as a factor. A factor in R is a variable that is stored as an integer,
but displayed as a character string. By default, read.table will automatically turn all the
character variables that it reads into factors. You can recognize factors by using either the
is.factor function or by examining the object’s class, using the class function. Factors
are very useful for storing large data sets compactly, as well as for statistical modeling and
other tasks, but when you’re first working with R they’ll most likely just get in the way.
To avoid read.table from doing any factor conversions, pass the stringsAsFactors=FALSE
argument as shown in the examples below.

By default, R expects there to be at least one space or tab between each of the data
values in your input file; if you’re using a different character to separate your values, you
can specify it with the sep= argument. Two special versions of read.table are provided
to handle two common cases: read.csv for files where the data is separated by commas,
and read.delim when a tab character is used to separate values. On the other hand, if the
variables in your input data occupy the same columns for every line in the file, the read.fwf

can be used to turn your data into a data frame.
If the first line of your input file contains the names of the variables in your data separated

with the same separator used for the rest of the data, you can pass the header=TRUE argument
to read.table and its variants, and the variables (columns) of your data frame will be named
accordingly. Otherwise, names like V1, V2, etc. will be used.

As an example of how to read data into a data frame, the URL
http://www.stat.berkeley.edu/classes/s133/data/world.txt contains information about liter-
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acy, gross domestic product, income and military expenditures for about 150 countries. Here
are the first few lines of the file:

country,gdp,income,literacy,military

Albania,4500,4937,98.7,56500000

Algeria,5900,6799,69.8,2.48e+09

Angola,1900,2457,66.8,183580000

Argentina,11200,12468,97.2,4.3e+09

Armenia,3900,3806,99.4,1.35e+08

(You can use your favorite browser to examine a file like this, or you can use R’s download.file
and file.edit functions to download a copy to your computer and examine it locally.)

Since the values are separated by commas, and the variable names can be found in the
first line of the file, we can read the data into a data frame as follows:

world = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/world.txt’,header=TRUE,stringsAsFactors=FALSE)

Now that we’ve created the data frame, we need to look at some ways to understand what
our data is like. The class and mode of objects in R is very important, but if we query them
for our data frame, they’re not very interesting:

> mode(world)

[1] "list"

> class(world)

[1] "data.frame"

Note that a data frame is also a list. We’ll look at lists in more detail later. As we’ve seen,
we can use the sapply function to see the modes of the individual columns. This function
will apply a function to each element of a list; for a data frame these elements represent the
columns (variables), so it will do exactly what we want:

> sapply(world,mode)

country gdp income literacy military

"character" "numeric" "numeric" "numeric" "numeric"

> sapply(world,class)

country gdp income literacy military

"character" "integer" "integer" "numeric" "numeric"

You might want to experiment with sapply using other functions to get familiar with some
strategies for dealing with data frames.

You can always view the names of the variables in a data frame by using the names

function, and the size (number of observations and number of variables) using the dim

function:

> names(world)

[1] "country" "gdp" "income" "literacy" "military"

> dim(world)

[1] 154 5
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Suppose we want to see the country for which military spending is the highest. We can
use the which.max function that we used before but extra care is needed to make sure we
get the piece of the data frame we want. Since each country occupies one row in the data
frame, we want all of the columns in that row, and we can leave the second index of the data
frame blank:

>

> world[which.max(world$military),]

country gdp income literacy military

142 USA 37800 39496 99.9 3.707e+11

The 142 at the beginning of the line is the row number of the observation. If you’d like to
use a more informative label for the rows, look at the row.names= argument in read.table

and data.frame, or use the assignment form of the row.names function if the data frame
already exists.

These types of queries, where we want to find observations from a data frame that have
certain properties, are so common that R provides a function called subset to make them
easier and more readable. The subset function requires two arguments: the first is a data
frame, and the second is the condition that you want to use to create the subset. An
optional third argument called select= allows you to specify which of the variables in the
data frame you’re interested in. The return value from subset is a data frame, so you can
use it anywhere that you’d normally use a data frame. A very attractive feature of subset is
that you can refer to the columns of a data frame directly in the second or third arguments;
you don’t need to keep retyping the data frame’s name, or surround all the variable names
with quotes. Suppose we want to find those countries whose literacy rate is below 20%. We
could use the subset function like this:

> subset(world,literacy < 20)

country gdp income literacy military

22 Burkina Faso 1100 1258 12.8 64200000

88 Mali 900 1024 19.0 22400000

102 Niger 800 865 14.4 33300000

One other nice feature of the select= argument is that it converts variable names to
numbers before extracting the requested variables, so you can use “ranges” of variable names
to specify contiguous columns in a data frame. For example, here are the names for the world
data frame:

> names(world)

[1] "country" "gdp" "income" "literacy" "military"

To create a data frame with just the last three variables, we could use

> subset(world,select=income:military)
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If we were interested in a particular variable, it would be useful to reorder the rows of
our data frame so that they were arranged in descending or ascending order of that variable.
It’s easy enough to sort a variable in R; using literacy as an example, we simply call the
sort routine:

> sort(world$literacy)

[1] 12.8 14.4 19.0 25.5 29.6 33.6 39.3 39.6 41.0 41.1 41.5 46.5 47.0 48.6 48.6

[16] 48.7 49.0 50.7 51.2 51.9 53.0 54.1 55.6 56.2 56.7 57.3 58.9 59.0 61.0 64.0

[31] 64.1 65.5 66.8 66.8 67.9 67.9 68.7 68.9 69.1 69.4 69.8 70.6 71.0 73.6 73.6

[46] 74.3 74.4 75.7 76.7 76.9 77.0 77.3 78.9 79.2 79.4 79.7 80.0 81.4 81.7 82.4

[61] 82.8 82.9 82.9 84.2 84.3 85.0 86.5 86.5 87.6 87.7 87.7 87.7 87.9 87.9 88.0

[76] 88.3 88.4 88.7 89.2 89.9 90.0 90.3 90.3 90.4 90.9 91.0 91.0 91.6 91.9 91.9

[91] 92.5 92.5 92.6 92.6 92.7 92.9 93.0 94.2 94.6 95.7 95.8 96.2 96.5 96.8 96.8

[106] 96.9 96.9 97.2 97.2 97.3 97.7 97.7 97.8 98.1 98.2 98.5 98.5 98.7 98.7 98.8

[121] 98.8 99.3 99.3 99.4 99.4 99.5 99.5 99.6 99.6 99.6 99.7 99.7 99.7 99.8 99.9

[136] 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

[151] 99.9 99.9 99.9 99.9

To reorder the rows of a data frame to correspond to the sorted order of one of the
variables in the data frame, the order function can be used. This function returns a set of
indices which are in the proper order to rearrange the data frame appropriately. (Perhaps
the easiest way to understand what the order function is to realize that x[order(x)] is the
same as sort(x).)

> sworld = world[order(world$literacy),]

> head(sworld)

country gdp income literacy military

22 Burkina Faso 1100 1258 12.8 64200000

103 Niger 800 865 14.4 33300000

89 Mali 900 1024 19.0 22400000

29 Chad 1200 1555 25.5 101300000

121 Sierra Leone 500 842 29.6 13200000

14 Benin 1100 1094 33.6 96500000

To sort by descending values of a variable, pass the decreasing=TRUE argument to sort or
order.

When you’re first working with a data frame, it can be helpful to get some preliminary
information about the variables. One easy way to do this is to pass the data frame to the
summary function, which understands what a data frame is, and will give separate summaries
for each of the variables:

> summary(world)

country gdp income literacy

Length:154 Min. : 500 Min. : 569 Min. :12.80

Class :character 1st Qu.: 1825 1st Qu.: 2176 1st Qu.:69.17
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Mode :character Median : 4900 Median : 5930 Median :88.55

Mean : 9031 Mean :10319 Mean :81.05

3rd Qu.:11700 3rd Qu.:15066 3rd Qu.:98.42

Max. :55100 Max. :63609 Max. :99.90

NA’s : 1

military

Min. :6.500e+06

1st Qu.:5.655e+07

Median :2.436e+08

Mean :5.645e+09

3rd Qu.:1.754e+09

Max. :3.707e+11

Another useful way to view the properties of a variable is with the stem function, which
produces a text-base stem-and-leaf diagram. Each observation for the variable is represented
by a number in the diagram showing that observation’s value:

> stem(world$gdp)

The decimal point is 4 digit(s) to the right of the |

0 | 11111111111111111111111111112222222222222222222223333333333344444444

0 | 55555555555666666666677777778889999

1 | 000111111223334

1 | 66788889

2 | 0022234

2 | 7778888999

3 | 00013

3 | 88

4 |

4 |

5 |

5 | 5

Graphical techniques are often useful when exploring a data frame. While we’ll look at
graphics in more detail later, the functions boxplot, hist, and plot combined with the
density function are often good choices. Here are examples:

> boxplot(world$gdp,main=’Boxplot of GDP’)

> hist(world$gdp,main=’Histogram of GDP’)

> plot(density(world$gdp),main=’Density of GDP’)
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2.10 Working with Multiple Data Frames

Suppose we want to add some additional information to our data frame, for example the
continents in which the countries can be found. Very often we have information from differ-
ent sources and it’s very important to combine it correctly. The URL
http://www.stat.berkeley.edu/s133/data/conts.txt contains the information about the con-
tinents. Here are the first few lines of that file:

country,cont

Afghanistan,AS

Albania,EU

Algeria,AF

American Samoa,OC

Andorra,EU

In R, the merge function allows you to combine two data frames based on the value of a
variable that’s common to both of them. The new data frame will have all of the variables
from both of the original data frames. First, we’ll read in the continent values into a data
frame called conts:

conts = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/conts.txt’,na.string=’.’,stringsAsFactors=FALSE)

To merge two data frames, we simply need to tell the merge function which variable(s) the
two data frames have in common, in this case country:

world1 = merge(world,conts,by=’country’)

Notice that we pass the name of the variable that we want to merge by, not the actual value
of the variable itself. The first few records of the merged data set look like this:

> head(world1)

country gdp income literacy military cont

1 Albania 4500 4937 98.7 5.6500e+07 EU

2 Algeria 5900 6799 69.8 2.4800e+09 AF

3 Angola 1900 2457 66.8 1.8358e+08 AF

4 Argentina 11200 12468 97.2 4.3000e+09 SA

5 Armenia 3900 3806 99.4 1.3500e+08 AS

6 Australia 28900 29893 99.9 1.6650e+10 OC

We’ve already seen how to count specific conditions, like how many countries in our data
frame are in Europe:

> sum(world1$cont == ’EU’)

[1] 34

It would be tedious to have to repeat this for each of the continents. Instead, we can use the
table function:
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> table(world1$cont)

AF AS EU NA OC SA

47 41 34 15 4 12

We can now examine the variables taking into account the continent that they’re in. For
example, suppose we wanted to view the literacy rates of countries in the different continents.
We can produce side-by-side boxplots like this:

> boxplot(split(world1$literacy,world1$cont),main=Literacy by Continent’)

Now let’s concentrate on plots involving two variables. It may be surprising, but R is
smart enough to know how to “plot” a dataframe. It actually calls the pairs function,
which will produce what’s called a scatterplot matrix. This is a display with many little
graphs showing the relationships between each pair of variables in the data frame. Before
we can call plot, we need to remove the character variables (country and cont) from the
data using negative subscripts:

> plot(world1[,-c(1,6)])
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The resulting plot looks like this:

As we’d expect, gdp (Gross Domestic Product) and income seem to have a very consistent
relationship. The relation between literacy and income appears to be interesting, so we’ll
examine it in more detail, by making a separate plot for it:

> with(world,plot(literacy,income))

The first variable we pass to plot (literacy in this example) will be used for the x-axis, and
the second (income) will be used on the y-axis. The plot looks like this:
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In many cases, the most interesting points on a graph are the ones that don’t follow the
usual relationships. In this case, there are a few points where the income is a bit higher
than we’d expect based on the other countries, considering the rate of literacy. To see which
countries they represent, we can use the identify function. You call identify with the
same arguments as you passed to plot; then when you click on a point on the graph with
the left mouse button, its row number will be printed on the graph. It’s usually helpful to
have more than just the row number, so identify is usually called with a labels= argument.
In this case, the obvious choice is the country name. The way to stop identifying points
depends on your operating system; on Windows, right click on the plot and choose “Stop”;
on Unix/Linux click on the plot window with the middle button. Here’s the previous graph
after some of the outlier points are identified:
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2.11 Adding Color to Plots

Color is often refered to as the third dimension of a 2-dimensional plot, because it allows
us to add extra information to an ordinary scatterplot. Consider the graph of literacy and
income. By examining boxplots, we can see that there are differences among the distributions
of income (and literacy) for the different continents, and it would be nice to display some of
that information on a scatterplot. This is one situation where factors come in very handy.
Since factors are stored internally as numbers (starting at 1 and going up to the number
of unique levels of the factor), it’s very easy to assign different observations different colors
based on the value of a factor variable.

To illustrate, let’s replot the income vs. literacy graph, but this time we’ll convert the
continent into a factor and use it to decide on the color of the points that will be used for
each country. First, consider the world1 data frame. In that data frame, the continent is
stored in the column (variable) called cont. We convert this variable to a factor with the
factor function. First, let’s look at the mode and class of the variable before we convert it
to a factor:

> mode(world1$cont)

[1] "character"

> class(world1$cont)

[1] "character"

> world1$cont = factor(world1$cont)

In many situations, the cont variable will behave the same as it did when it was a simple
character variable, but notice that its mode and class have changed:
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> mode(world1$cont)

[1] "numeric"

> class(world1$cont)

[1] "factor"

Having made cont into a factor, we need to choose some colors to represent the different
continents. There are a few ways to tell R what colors you want to use. The easiest is to
just use a color’s name. Most colors you think of will work, but you can run the colors

function without an argument to see the official list. You can also use the method that’s
commonly use by web designers, where colors are specified as a pound sign (#) followed by
3 sets of hexadecimal digits providing the levels of red, green and blue, respectively. Using
this scheme, red is represented as ’#FF0000’, green as ’#00FF00’, and blue as ’#0000FF’.
To see how many unique values of cont there are, we can use the levels function, since it’s
a factor. (For non-factors, the unique function is available, but it may give the levels in an
unexpected order.)

> levels(world1$cont)

[1] "AF" "AS" "EU" "NA" "OC" "SA"

There are six levels. The first step is to create a vector of color values:

mycolors = c(’red’,’yellow’,’blue’,’green’,’orange’,’violet’)

To make the best possible graph, you should probably be more careful when choosing the
colors, but this will serve as a simple example.

Now, when we make the scatterplot, we add an additional argument, col=, which is a
vector of the same length as the number of pairs of points that we’re plotting – the color in
each position corresponds to the color that will be used to draw that point on the graph.
Probably the easiest way to do that is to use the value of the factor cont as a subscript to
the mycolors vector that we created earlier. (If you don’t see why this does what we want,
please take a look at the result of mycolors[world1$cont]).

with(world1,plot(literacy,income,col=mycolors[cont]))

There’s one more detail that we need to take care of. Since we’re using color on the graph,
we have to provide some way that someone viewing the graph can tell which color represents
which continent, i.e. we need to add a legend to the graph. In R, this is done with the
legend command. There are many options to this command, but in it’s simplest form we
just tell R where to put the legend, whether we should show points or lines, and what
colors they should be. A title for the legend can also be added, which is a good idea in
this example, because the meaning of the continent abbreviations may not be immediately
apparent. You can specify x- and y-coordinates for the legend location or you can use one
of several shortcuts like ”topleft” to do things automatically. (You may also want to look at
the locator command, that lets you decide where to place your legends interactively). For
our example, the following will place a legend in an appropriate place; the title command
is also used to add a title to the plot:
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with(world1,legend(’topleft’,legend=levels(cont),col=mycolors,pch=1,title=’Continent’))

title(’Income versus Literacy for Countries around the World’)

Notice how the title function can be used to add a title to a plot after it’s displayed if you
forget to provide a main= argument to plot.

The pch= argument to the legend function is a graphics parameter representing the
plotting character. While the plot function uses a value of pch=1 by default, the legend

function won’t display anything if you don’t provide a pch= argument. (You might want to
experiment with different values for the pch= argument in the plot function.) Here’s what
the plot looks like:
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Code Value
%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (abbreviated)
%B Month (full name)
%y Year (2 digit)
%Y Year (4 digit)

2.12 Using Dates in R

Dates on computers have been the source of much anxiety, especially at the turn of the
century, when people felt that many computers wouldn’t understand the new millenium.
These fears were based on the fact that certain programs would store the value of the year in
just 2 digits, causing great confusion when the century “turned over”. In R, dates are stored
as they have traditionally been stored on Unix computers – as the number of days from a
reference date, in this case January 1, 1970, with earlier days being represented by negative
numbers. When dates are stored this way, they can be manipulated like any other numeric
variable (as far as it makes sense). In particular, you can compare or sort dates, take the
difference between two dates, or add an increment of days, weeks, months or years to a date.
The class of such dates is Date and their mode is numeric. Dates are created with as.Date,
and formatted for printing with format (which will recognize dates and do the right thing.)

Because dates can be written in so many different formats, R uses a standard way of
providing flexibility when reading or displaying dates. A set of format codes, some of which
are shown in the table below, is used to describe what the input or output form of the date
looks like. The default format for as.Date is a four digit year, followed by a month, then a
day, separated by either dashes or slashes. So conversions like this happen automatically:

> as.Date(’1915-6-16’)

[1] "1915-06-16"

> as.Date(’1890/2/17’)

[1] "1890-02-17"

The formatting codes are as follows:
(For a complete list of the format codes, see the R help page for the strptime function.)

As an example of reading dates, the URL http://www.stat.berkeley.edu/classes/s133/data/movies.txt
contains the names, release dates, and box office earnings for around 700 of the most popular
movies of all time. The first few lines of the input file look like this:

Rank|name|box|date

1|Avatar|$759.563|December 18, 2009

2|Titanic|$600.788|December 19, 1997

3|The Dark Knight|$533.184|July 18, 2008

As can be seen, the fields are separated by vertical bars, so we can use read.delim with the
appropriate sep= argument.
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> movies = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/movies.txt’,

+ sep=’|’,stringsAsFactors=FALSE)

> head(movies)

rank name box date

1 1 Avatar $759.563 December 18, 2009

2 2 Titanic $600.788 December 19, 1997

3 3 The Dark Knight $533.184 July 18, 2008

4 4 Star Wars: Episode IV - A New Hope $460.998 May 25, 1977

5 5 Shrek 2 $437.212 May 19, 2004

6 6 E.T. the Extra-Terrestrial $434.975 June 11, 1982

The first step in using a data frame is making sure that we know what we’re dealing with.
A good first step is to use the sapply function to look at the mode of each of the variables:

> sapply(movies,mode)

rank name box date

"numeric" "character" "character" "character"

Unfortunately, the box office receipts (box) are character, not numeric. That’s because R
doesn’t recognize a dollar sign ($) as being part of a number. (R has the same problem with
commas.) We can remove the dollar sign with the sub function, and then use as.numeric

to make the result into a number:

> movies$box = as.numeric(sub(’\\$’,’’,movies$box))

To convert the character date values to R Date objects, we can use as.Date with the
appropriate format: in this case it’s the month name followed by the day of the month, a
comma and the four digit year. Consulting the table of format codes, this translates to ’%B

%d, %Y’:

> movies$date = as.Date(movies$date,’%B %d, %Y’)

> head(movies$date)

[1] "2009-12-18" "1997-12-19" "2008-07-18" "1977-05-25" "2004-05-19"

[6] "1982-06-11"

The format that R now uses to print the dates is the standard Date format, letting us know
that we’ve done the conversion correctly. (If we wanted to recover the original format, we
could use the format function with a format similar to the one we used to read the data.)

Now we can perform calculations using the date. For example, to see the difference in
time between the release of Titanic and Avatar (2 very popular movies directed by James
Cameron), we could use:

> movies$date[movies$name == ’Avatar’] - movies$date[movies$name == ’Titanic’]

Time difference of 4382 days
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Even though the result prints out as a character string, it’s actually just a number which
can be used any way a number could be used.

Now suppose we want to see the time difference in years. To convert days to years, we
can divide by 365.25. (The .25 tries to account for leap years.):

> diff = movies$date[movies$name == ’Avatar’] - movies$date[movies$name == ’Titanic’]

> diff / 365.25

Time difference of 11.99726 days

We could either adjust the units attribute of this value or use as.numeric to convert it
to an ordinary number. (In R, an attribute is additional information stored along with a
variable.)

> diff = diff / 365.25

> attr(diff,’units’) = ’years’

> diff

Time difference of 11.99726 years

> as.numeric(diff)

[1] 11.99726

Either way, it will be treated as an ordinary number when used in a calculation.
The Sys.Date function can be used to return the current date, so R can calculate the

time until any date you choose. For example, the midterm for this class is March 2, 2011:

> as.Date(’2011-03-02’) - Sys.Date()

Time difference of 28 days

Another way to create dates is with the ISOdate function. This function accepts three
numbers representing the year, month and day of the date that is desired. So to reproduce
the midterm date we could use

> midterm = ISOdate(2011,3,2)

> midterm

[1] "2011-03-02 12:00:00 GMT"

Notice that, along with the date, a time is printed. That’s because ISOdate returns an
object of class POSIXt, not Date. To make a date like this work properly with objects of
class Date, you can use the as.Date function.

Once we’ve created an R Date value, we can use the functions months, weekdays or
quarters to extract those parts of the date. For example, to see which day of the week
these very popular movies were released, we could use the table function combined with
weekdays:

> table(weekdays(movies$date))

Friday Monday Saturday Sunday Thursday Tuesday Wednesday

753 10 7 11 39 22 164
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Notice that the ordering of the days is not what we’d normally expect. This problem can be
solved by creating a factor that has the levels in the correct order:

> movies$weekday = factor(weekdays(movies$date),

+ levels = c(’Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’,’Saturday’,’Sunday’))

Now we can use weekday to get a nicer table:

> table(movies$weekday)

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

10 22 164 39 753 7 11

Similarly, if we wanted to graphically display a chart showing which month of the year the
popular movies were released in, we could first create an ordered factor, then use the barplot
function:

> movies$month = factor(months(movies$date),levels=c(’January’,’February’,’March’,’April’,’May’,’June’,’July’,’August’,’September’,’October’,’November’,’December’))

> barplot(table(movies$month),main=’Release Month for Top 1000 Movies’)
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To do a similar thing with years, we’d have to create a new variable that represented
the year using the format function. For a four digit year the format code is %Y, so we could
make a table of the hit movies by year like this:

> table(format(movies$date,’%Y’))

1938 1939 1940 1942 1946 1950 1953 1955 1956 1959 1961 1963 1964 1965 1967 1968

1 1 1 2 1 1 1 1 1 1 2 1 2 3 2 2

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

1 4 2 3 2 8 3 4 4 5 12 9 7 10 12 12

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

10 12 13 13 23 19 21 26 19 20 32 26 29 37 41 44

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

43 47 53 55 48 54 43 53 57 47

2.13 Data Summaries

We’ve looked at a few graphical techniques for exploring data, and now we’re going to turn
to a numerical one. Consider the question ”Which day of the week has the highest average
box office for hit movies released on that day?”. As a first step in answering that question, it
would be helpful to look at the mean box office receipts for each of the days. If you look for a
function to do that specific task, you probably wouldn’t find one, because R takes the more
general approach of providing a function that will allow you to calculate anything you want
from vectors of values broken down by groups. In fact, there are a variety of ways to do this.
The one we’re going to look at is called aggregate. You pass aggregate a vector or data
frame containing the variables you want to summarize, a list of the groups to summarize
by, and the function you’d like to use for your summaries. That way, a single function can
perform many tasks, and, as we’ll see when we learn to write functions, it even allows R
to do things that the developers of R never imagined. For now, we’ll stick to some built in
functions, like mean. To find the means for the box office receipts for each day of the week,
we could use a call to aggregate like this:

> aggregate(movies$box,movies[’weekday’],mean)

weekday x

1 Monday 148.04620

2 Tuesday 110.42391

3 Wednesday 139.50965

4 Thursday 117.89700

5 Friday 112.24642

6 Saturday 91.18714

7 Sunday 140.45618

The same thing could be done to calculate other statistics, like median, min, max, or any
statistic that returns a single scalar value for each group. Another nice feature of aggregate
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is that it if the first argument is a data frame, it will calculate the statistic for each column
of the data frame. If we passed aggregate both the rank and box, we’d get two columns of
summaries:

> aggregate(movies[,c(’rank’,’box’)],movies[’weekday’],mean)

weekday rank box

> aggregate(movies[,c(’Rank’,’box’)],movies[’weekday’],mean)

weekday rank box

1 Monday 354.5000 148.04620

2 Tuesday 498.9545 110.42391

3 Wednesday 423.2561 139.50965

4 Thursday 493.7692 117.89700

5 Friday 521.7384 112.24642

6 Saturday 577.5714 91.18714

7 Sunday 338.1818 140.45618

To add a column of counts to the table, we can create a data frame from the table

function, and merge it with the aggregated results:

> dat = aggregate(movies[,c(’rank’,’box’)],movies[’weekday’],mean)

> cts = as.data.frame(table(movies$weekday))

> head(cts)

Var1 Freq

1 Monday 10

2 Tuesday 22

3 Wednesday 164

4 Thursday 39

5 Friday 753

6 Saturday 7

To make the merge simpler, we rename the first column of cts to weekday.

> names(cts)[1] = ’weekday’

> res = merge(cts,dat)

> head(res)

weekday Freq Rank box

1 Friday 753 521.7384 112.24642

2 Monday 10 354.5000 148.04620

3 Saturday 7 577.5714 91.18714

4 Sunday 11 338.1818 140.45618

5 Thursday 39 493.7692 117.89700

6 Tuesday 22 498.9545 110.42391

Notice that the default behaviour of merge is to sort the columns before merging, so that
we’ve lost the order that the levels= argument prescribed. The sort=FALSE argument to
merge can be used to prevent that:
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> res = merge(cts,dat,sort=FALSE)

> head(res)

weekday Freq rank box

1 Monday 10 354.5000 148.04620

2 Tuesday 22 498.9545 110.42391

3 Wednesday 164 423.2561 139.50965

4 Thursday 39 493.7692 117.89700

5 Friday 753 521.7384 112.24642

6 Saturday 7 577.5714 91.18714

2.14 Functions

As you’ve already noticed, functions play an important role in R. A very attractive feature
of R is that you can write your own functions which work exactly the same as the ones that
are part of the official R release. In fact, if you create a function with the same name as one
that’s already part of R, it will override the built-in function, and possibly cause problems.
For that reason, it’s a good idea to make sure that there’s not already another function with
the name you want to use. If you type the name you’re thinking of, and R responds with a
message like “object "xyz" not found” you’re probably safe.

There are several reasons why creating your own functions is a good idea.

1. If you find yourself writing the same code over and over again as you work on different
problems, you can write a function that incorporates whatever it is you’re doing and
call the function, instead of rewriting the code over and over.

2. All of the functions you create are saved in your workspace along with your data. So
if you put the bulk of your work into functions that you create, R will automatically
save them for you (if you tell R to save your workspace when your quit.)

3. It’s very easy to write “wrappers” around existing functions to make a custom version
that sets the arguments to another function to be just what you want. R provides a
special mechanism to “pass along” any extra arguments the other function might need.

4. You can pass your own functions to built-in R functions like aggregate, by, apply,
sapply, lapply, mapply, sweep and other functions to efficiently and easy perform
customized tasks.

Before getting down to the details of writing your own functions, it’s a good idea to
understand how functions in R work. Every function in R has a set of arguments that it
accepts. You can see the arguments that built-in functions take in a number of ways: viewing
the help page, typing the name of the function in the interpreter, or using the args function.
When you call a function, you can simply pass it arguments, in which case they must line
up exactly with the way the function is designed, or you can specifically pass particular
arguments in whatever order you like by providing the with names using the name=value
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syntax. You also can combine the two, passing unnamed arguments (which have to match
the function’s definition exactly), followed by named arguments in whatever order you like.
For example, consider the function read.table. We can view its argument list with the
command:

> args(read.table)

function (file, header = FALSE, sep = "", quote = "\"’", dec = ".",

row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA",

colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,

fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#", allowEscapes = FALSE, flush = FALSE,

stringsAsFactors = default.stringsAsFactors(), encoding = "unknown")

NULL

This argument list tells us that, if we pass unnamed arguments to read.table, it will
interpret the first as file, the next as header, then sep, and so on. Thus if we wanted to
read the file my.data, with header set to TRUE and sep set to ’,’, any of the following calls
would be equivalent:

read.table(’my.data’,TRUE,’,’)

read.table(sep=’,’,TRUE,file=’my.data’)

read.table(file=’my.data’,sep=’,’,header=TRUE)

read.table(’my.data’,sep=’,’,header=TRUE)

Notice that all of the arguments in the argument list for read.table have values after the
name of the argument, except for the file argument. This means that file is the only
required argument to read.table; any of the other arguments are optional, and if we don’t
specify them the default values that appear in the argument list will be used. Most R
functions are written so the the first few arguments will be the ones that will usually be used
so that their values can be entered without providing names, with the other arguments being
optional. Optional arguments can be passed to a function by position, but are much more
commonly passed using the name=value syntax, as in the last example of calling read.table.

Now let’s take a look at the function read.csv. You may recall that this function simply
calls read.table with a set of parameters that makes sense for reading comma separated
files. Here’s read.csv’s function definition, produced by simply typing the function’s name
at the R prompt:

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",

fill = TRUE, comment.char = "", ...)

read.table(file = file, header = header, sep = sep, quote = quote,

dec = dec, fill = fill, comment.char = comment.char, ...)

<environment: namespace:utils>

Pay special attention to the three periods (...) in the argument list. Notice that they also
appear in the call to read.table inside the function’s body. The three dots mean all the
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arguments that were passed to the function that didn’t match any of the previous arguments
in the argument list. So if you pass anything other than file, header, sep, quote, dec, or
fill to read.csv, it will be part of the three dots; by putting the three dots at the end
of the argument list in the call to read.table, all those unmatched arguments are simply
passed along to read.table. So if you make a call to read.csv like this:

read.csv(filename,stringsAsFactors=FALSE)

the stringsAsFactors=FALSE will get passed to read.table, even though it wasn’t explic-
itly named in the argument list. Without the three dots, R will not accept any arguments
that aren’t explicitly named in the argument list of the function definition. If you want
to intercept the extra arguments yourself, you can include the three dots at the end of the
argument list when you define your function, and create a list of those arguments inside the
function body by refering to list(...).

Suppose you want to create a function that will call read.csv with a filename, but which
will automatically set the stringsAsFactors=FALSE parameter. For maximum flexibility,
we’d want to be able to pass other arguments (like na.strings=, or quote=) to read.csv,
so we’ll include the three dots at the end of the argument list. We could name the function
read.csv and overwrite the built-in version, but that’s not a good idea, if for no other
reason than the confusion it would cause if someone else tried to understand your programs!
Suppose we call the function myread.csv. We could write a function definition as follows:

> myread.csv = function(file,stringsAsFactors=FALSE,...){

+ read.csv(file,stringsAsFactors=stringsAsFactors,...)

+ }

Now, we could simply use

thedata = myread.csv(filename)

to read a comma-separated file with stringsAsFactors=FALSE. You could still pass any of
read.table’s arguments to the function (including stringsAsFactors=TRUE if you wanted),
and, if you ask R to save your workspace when you quit, the function will be available to
you next time you start R in the same directory.
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2.15 Functions

When you create a function, it defines a separate environment and the variables you create
inside your function only exist in that function environment; when you return to where you
called the function from, those variables no longer exist. You can refer to other objects that
are in the calling environment, but if you make any changes to them, the changes will only
take place in the function environment. To get information back to the calling environment,
you must pass a return value, which will be available through the functions name. R will
automatically return the last unassigned value it encounters in your function, or you can
place the object you want to return in a call to the return function. You can only return a
single object from a function in R; if you need to return multiple objects, you need to return
a list containing those objects, and extract them from the list when you return to the calling
environment.

As a simple example of a function that returns a value, suppose we want to calculate
the ratio of the maximum value of a vector to the minimum value of the vector. Here’s a
function definition that will do the job:

maxminratio = function(x)max(x)/min(x)

Notice for a single line function you don’t need to use brackets ({}) around the function
body, but you are free to do so if you like. Since the final statement wasn’t assigned to a
variable, it will be used as a return value when the function is called. Alternatively, the
value could be placed in a call to the return function. If we wanted to find the max to min
ratio for all the columns of the matrix, we could use our function with the apply function:

apply(mymat,2,maxminratio)

The 2 in the call to apply tells it to operate on the columns of the matrix; a 1 would be used
to work on the rows.

Before we leave this example, it should be pointed out that this function has a weakness –
what if we pass it a vector that has missing values? Since we’re calling min and max without
the na.rm=TRUE argument, we’ll always get a missing value if our input data has any missing
values. One way to solve the problem is to just put the na.rm=TRUE argument into the calls
to min and max. A better way would be to create a new argument with a default value. That
way, we still only have to pass one argument to our function, but we can modify the na.rm=

argument if we need to.

maxminratio = function(x,na.rm=TRUE)max(x,na.rm=na.rm)/min(x,na.rm=na.rm)

If you look at the function definitions for functions in R, you’ll see that many of them use
this method of setting defaults in the argument list.

As your functions get longer and more complex, it becomes more difficult to simply type
them into an interactive R session. To make it easy to edit functions, R provides the edit

command, which will open an editor appropriate to your operating system. When you close
the editor, the edit function will return the edited copy of your function, so it’s important
to remember to assign the return value from edit to the function’s name. If you’ve already
defined a function, you can edit it by simply passing it to edit, as in
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minmaxratio = edit(minmaxratio)

You may also want to consider the fix function, which automates the process slightly.
To start from scratch, you can use a call to edit like this:

newfunction = edit(function(){})

Suppose we want to write a function that will allow us to calculate the mean of all the
appropriate columns of a data frame, broken down by a grouping variable, and and including
the counts for the grouping variables in the output. When you’re working on developing a
function, it’s usually easier to solve the problem with a sample data set, and then generalize
it to a function. We’ll use the movies data frame as an example, with both weekday and
month as potential grouping variables. First, let’s go over the steps to create the movies

data frame with both grouping variables:

> movies = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/movies.txt’,

+ sep=’|’,stringsAsFactors=FALSE)

> movies$box = as.numeric(sub(’\\$’,’’,movies$box))

> movies$date = as.Date(movies$date,’%B %d, %Y’)

> movies$weekday = weekdays(movies$date)

> movies$weekday = factor(weekdays(movies$date),

+ levels = c(’Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’,’Saturday’,’Sunday’))

> movies$month = months(movies$date)

> movies$month = factor(months(movies$date),levels=c(’January’,’February’,’March’,

+ ’April’,’May’,’June’,’July’,’August’,’September’,’October’,’November’,’December’)

Since I’ve done a fair amount of processing to this data set, and since I’m going to want to
use it later for testing my function, I’m going to use the save function to write a copy of
the data frame to a file. This function writes out R objects in R’s internal format, just like
the workspace is saved at the end of an R session. You can also transfer a file produced by
save to a different computer, because R uses the same format for its saved objects on all
operating systems. Since save accepts a variable number of arguments, we need to specify
the file= argument when we call it:

> save(movies,file=’movies.rda’)

You can use whatever extension you want, but .rda or .Rdata are common choices.
It’s often useful to breakdown the steps of a problem like this, and solve each one before

going on to the next. Here are the steps we’ll need to go through to create our function.

1. Find the appropriate columns of the data frame for the aggregate function.

2. Write the call to the aggregate function that will give us the mean for each group.

3. Write the call to the function to get the counts and convert it to a data frame.

4. Merge together the results from aggregate and table to give us our result.
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To find the appropriate variables, we can examine the class and mode of each column
of our data frame:

> sapply(movies,class)

rank name box date weekday month

"integer" "character" "numeric" "Date" "factor" "factor"

> sapply(movies,mode)

rank name box date weekday month

"numeric" "character" "numeric" "numeric" "numeric" "numeric"

For this data frame, the appropriate variables for aggregation would be rank and box, so we
have to come up with some logic that would select only those columns. One easy way is to
select those columns whose class is either numeric or integer. We can use the | operator
which represents a logical “or” to create a logical vector that will let us select the columns
we want. (There’s also the & operator which is used to test for a logical “and”.)

> classes = sapply(movies,class)

> numcols = classes == ’integer’ | classes == ’numeric’

While this will certainly work, R provides an operator that makes expressions like this easier
to write. The %in% operator allows us to test for equality to more than one value at a time,
without having to do multiple tests. In this example we can use it as follows:

> numcols = sapply(movies,class) %in% c(’integer’,’numeric’)

Now we need to write a call to the aggregate function that will find the means for each
variable based on a grouping variable. To develop the appropriate call, we’ll use weekday as
a grouping variable:

> result = aggregate(movies[,numcols],movies[’weekday’],mean)

> result

weekday rank box

1 Monday 354.5000 148.04620

2 Tuesday 498.9545 110.42391

3 Wednesday 427.1863 139.38540

4 Thursday 493.7692 117.89700

5 Friday 520.2413 112.44878

6 Saturday 577.5714 91.18714

7 Sunday 338.1818 140.45618

Similarly, we need to create a data frame of counts that can be merged with the result of
aggregate:

> counts = as.data.frame(table(movies[’weekday’]))

> counts

Var1 Freq
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1 Monday 10

2 Tuesday 22

3 Wednesday 161

4 Thursday 39

5 Friday 750

6 Saturday 7

7 Sunday 11

Unfortunately, this doesn’t name the first column appropriately for the merge function. The
best way to solve this problem is to change the name of the first column of the counts data
frame to the name of the grouping variable. Recall that using the sort=FALSE argument
to merge will retain the order of the grouping variable that we specified with the levels=

argument to factor

> names(counts)[1] = ’weekday’

> merge(counts,result,sort=FALSE)

weekday Freq rank box

1 Monday 10 354.5000 148.04620

2 Tuesday 22 498.9545 110.42391

3 Wednesday 161 427.1863 139.38540

4 Thursday 39 493.7692 117.89700

5 Friday 750 520.2413 112.44878

6 Saturday 7 577.5714 91.18714

7 Sunday 11 338.1818 140.45618

This gives us exactly the result we want, with the columns labeled appropriately.
To convert this to a function, let’s put together all the steps we just performed:

> load(’movies.rda’)

> numcols = sapply(movies,class) %in% c(’integer’,’numeric’)

> result = aggregate(movies[,numcols],movies[’weekday’],mean)

> counts = as.data.frame(table(movies[’weekday’]))

> names(counts)[1] = ’weekday’

> merge(counts,result,sort=FALSE)

weekday Freq rank box

1 Monday 10 354.5000 148.04620

2 Tuesday 22 498.9545 110.42391

3 Wednesday 161 427.1863 139.38540

4 Thursday 39 493.7692 117.89700

5 Friday 750 520.2413 112.44878

6 Saturday 7 577.5714 91.18714

7 Sunday 11 338.1818 140.45618

To convert these steps into a function that we could use with any data frame, we need to
identify the parts of these statements that would change with different data. In this case,
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there are two variables that we’d have to change: movies which represents the data frame
we’re using, and ’weekday’ which represents the grouping variable we’re using. Here’s a
function that will perform these operations for any combination of data frame and grouping
variable. (I’ll change movies to df and ’weekday’ to grp to make the names more general,
and name the function aggall:

> aggall = function(df,grp){

+ numcols = sapply(df,class) %in% c(’integer’,’numeric’)

+ result = aggregate(df[,numcols],df[grp],mean)

+ counts = as.data.frame(table(df[grp]))

+ names(counts)[1] = grp

+ merge(counts,result,sort=FALSE)

+ }

I’m taking advantage of the fact the R functions will return the result of the last statement
in the function that’s not assigned to a variable, which in this case is the result of the merge

function. Alternatively, I could assign the result of the merge function to a variable and use
the return function to pass back the result. At this point it would be a good idea to copy
our function into a text file so that we can re-enter it into our R session whenever we need it.
You could copy the definition from the console, and remove the > prompts, or you could use
the history command to cut and paste the function without the prompts. (Other ways of
saving the text of the function include the dput and dump functions, or simply making sure
you save the workspace before quitting R.) I’ll call the text file that I paste the definition
into aggall.r.

Now that we have the function written, we need to test it. It’s often a good idea to
test your functions in a “fresh” R session. We can get the movies data frame back into our
workspace by using the load command, passing it the name of the file that we created earlier
with the save command, and we can use the source function to read back the definition of
the aggall function:

> rm(list=objects()) # removes everything from your workspace !!

> source(’aggall.r’)

> load(’movies.rda’)

The first test would be to use the movies data frame, but with a different grouping
variable:

> aggall(movies,’month’)

month Freq rank box

1 January 40 605.0750 92.41378

2 February 55 621.5818 90.98182

3 March 63 516.1111 107.73638

4 April 47 712.9362 77.45891

5 May 95 338.7474 168.77575

6 June 157 449.3885 125.98888
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7 July 121 454.4298 129.67063

8 August 74 562.4865 100.53996

9 September 31 553.2581 99.29284

10 October 54 623.6667 86.12557

11 November 111 441.3423 124.22192

12 December 158 507.9051 117.10242

It seems to work well.
But the real test is to use the function on a different data frame, like the world1 data

frame. Let’s recreate it:

> world = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/world.txt’,

+ header=TRUE)

> conts = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/conts.txt’,

+ na.string=’.’)

> world1 = merge(world,conts)

> aggall(world1,’cont’)

cont Freq gdp income literacy military

1 AF 47 2723.404 3901.191 60.52979 356440000

2 AS 41 7778.049 8868.098 84.25122 5006536341

3 EU 34 19711.765 21314.324 98.40294 6311138235

4 NA 15 8946.667 NA 85.52000 25919931267

5 OC 4 14625.000 15547.500 87.50000 4462475000

6 SA 12 6283.333 6673.083 92.29167 2137341667

We’re close, but notice that there’s an NA for income for one of the continents. Since the
movies data frame didn’t have any missing values, we overlooked that detail. The most
important thing about writing functions is to remember that you can always modify them
using either the edit or fix function. For example, if I type

> aggall = edit(aggall)

I’ll see the body of the aggall function in a text editor where I can modify it. In this case,
I simply need to add the na.rm=TRUE argument to my call to aggregate, resulting in this
new version of the function:

function(df,grp){

numcols = sapply(df,class) %in% c(’integer’,’numeric’)

result = aggregate(df[,numcols],df[grp],mean,na.rm=TRUE)

counts = as.data.frame(table(df[grp]))

names(counts)[1] = grp

merge(counts,result,sort=FALSE)

}

Testing it again on the world1 data frame shows that we have solved the problem:
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> aggall(world1,’cont’)

cont Freq gdp income literacy military

1 AF 47 2723.404 3901.191 60.52979 356440000

2 AS 41 7778.049 8868.098 84.25122 5006536341

3 EU 34 19711.765 21314.324 98.40294 6311138235

4 NA 15 8946.667 10379.143 85.52000 25919931267

5 OC 4 14625.000 15547.500 87.50000 4462475000

6 SA 12 6283.333 6673.083 92.29167 2137341667
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2.16 Sizes of Objects

Before we start looking at character manipulation, this is a good time to review the different
functions that give us the size of an object.

1. length - returns the length of a vector, or the total number of elements in a matrix
(number of rows times number of columns). For a data frame, returns the number of
columns.

2. dim - for matrices and data frames, returns a vector of length 2 containing the number
of rows and the number of columns. For a vector, returns NULL. The convenience
functions nrow and ncol return the individual values that would be returned by dim.

3. nchar - for a character string, returns the number of characters in the string. Returns
a vector of values when applied to a vector of character strings. For a numeric value,
nchar returns the number of characters in the printed representation of the number.

2.17 Character Manipulation

While it’s quite natural to think of data as being numbers, manipulating character strings is
also an important skill when working with data. We’ve already seen a few simple examples,
such as choosing the right format for a character variable that represents a date, or using
table to tabulate the occurences of different character values for a variable. Now we’re going
to look at some functions in R that let us break apart, rearrange and put together character
data.

One of the most important uses of character manipulation is “massaging” data into shape.
Many times the data that is available to us, for example on a web page or as output from
another program, isn’t in a form that a program like R can easily interpret. In cases like
that, we’ll need to remove the parts that R can’t understand, and organize the remaining
parts so that R can read them efficiently.

Let’s take a look at some of the functions that R offers for working with character
variables:

• paste The paste function converts its arguments to character before operating on
them, so you can pass both numbers and strings to the function. It concatenates the
arguments passed to it, to create new strings that are combinations of other strings.
paste accepts an unlimited number of unnamed arguments, which will be pasted to-
gether, and one or both of the arguments sep= and collapse=. Depending on whether
the arguments are scalars or vectors, and which of sep= and collapse= are used, a
variety of different tasks can be performed.

1. If you pass a single argument to paste, it will return a character representation:

> paste(’cat’)
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[1] "cat"

> paste(14)

[1] "14"

2. If you pass more than one scalar argument to paste, it will put them together in
a single string, using the sep= argument to separate the pieces:

> paste(’stat’,133,’assignment’)

[1] "stat 133 assignment"

3. If you pass a vector of character values to paste, and the collapse= argument
is not NULL, it pastes together the elements of the vector, using the collapse=

argument as a separator:

> paste(c(’stat’,133,’assignment’),collapse=’ ’)

[1] "stat 133 assignment"

4. If you pass more than one argument to paste, and any of those arguments is a
vector, paste will return a vector as long as its’ longest argument, produced by
pasting together corresponding pieces of the arguments. (Remember the recycling
rule which will be used if the vector arguments are of different lengths.) Here are
a few examples:

> paste(’x’,1:10,sep=’’)

[1] "x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8" "x9" "x10"

> paste(c(’x’,’y’),1:10,sep=’’)

[1] "x1" "y2" "x3" "y4" "x5" "y6" "x7" "y8" "x9" "y10"

• grep The grep function searches for patterns in text. The first argument to grep is a
text string or regular expression that you’re looking for, and the second argument is
usually a vector of character values. grep returns the indices of those elements of the
vector of character strings that contain the text string. Right now we’ll limit ourselves
to simple patterns, but later we’ll explore the full strength of commands like this with
regular expressions.

grep can be used in a number of ways. Suppose we want to see the countries of the
world that have the world ’United’ in their names.

> grep(’United’,world1$country)

[1] 144 145

grep returns the indices of the observations that have ’United’ in their names. If we
wanted to see the values of country that had ’United’ in their names, we can use the
value=TRUE argument:

> grep(’United’,world1$country,value=TRUE)

[1] "United Arab Emirates" "United Kingdom"
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Notice that, since the first form of grep returns a vector of indices, we can use it as
a subscript to get all the information about the countries that have ’United’ in their
names:

> world1[grep(’United’,world1$country),]

country gdp income literacy military cont

144 United Arab Emirates 23200 23818 77.3 1600000000 AS

145 United Kingdom 27700 28938 99.9 42836500000 EU

grep has a few optional arguments, some of which we’ll look at later. One convenient
argument is ignore.case=TRUE, which, as the name implies will look for the pattern
we specified without regard to case.

• strsplit strsplit takes a character vector, and breaks each element up into pieces,
based on the value of the split= argument. This argument can be an ordinary text
string, or a regular expression. Since the different elements of the vector may have
different numbers of “pieces”, the results from strsplit are always returned in a list.
Here’s a simple example:

> mystrings = c(’the cat in the hat’,’green eggs and ham’,’fox in socks’)

> parts = strsplit(mystrings,’ ’)

> parts

[[1]]

[1] "the" "cat" "in" "the" "hat"

[[2]]

[1] "green" "eggs" "and" "ham"

[[3]]

[1] "fox" "in" "socks"

While we haven’t dealt much with lists before, one function that can be very useful is
sapply; you can use sapply to operate on each element of a list, and it will, if possible,
return the result as a vector. So to find the number of words in each of the character
strings in mystrings, we could use:

> sapply(parts,length)

[1] 5 4 3

• substring The substring function allows you to extract portions of a character string.
Its first argument is a character string, or vector of character strings, and its second
argument is the index (starting with 1) of the beginning of the desired substring. With
no third argument, substring returns the string starting at the specified index and
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continuing to the end of the string; if a third argument is given, it represents the last
index of the original string that will be included in the returned substring. Like many
functions in R, its true value is that it is fully vectorized: you can extract substrings
of a vector of character values in a single call. Here’s an example of a simple use of
substring

> strings = c(’elephant’,’aardvark’,’chicken’,’dog’,’duck’,’frog’)

> substring(strings,1,5)

[1] "eleph" "aardv" "chick" "dog" "duck" "frog"

Notice that, when a string is too short to fully meet a substringing request, no error
or warning is raised, and substring returns as much os the string as is there.

Consider the following example, extracted from a web page. Each element of the
character vector data consists of a name followed by five numbers. Extracting an
individual field, say the field with the state names is straight forward:

> data = c("Lyndhurst Ohio 199.02 15,074 30 5 25",

"Southport Town New York 217.69 11,025 24 4 20",

"Bedford Massachusetts 221.20 12,658 28 0 28")

> states = substring(data,16,28)

> states

[1] "Ohio " "New York " "Massachusetts"

It is possible to extract all the fields at once, at the cost of a considerably more complex
call to substring:

> starts = c(1,16,30,38,46,50,54)

> ends = c(14,28,35,43,47,50,55)

> ldata = length(data)

> lstarts = length(starts)

> x = substring(data,rep(starts,rep(ldata,lstarts)),rep(ends,rep(ldata,lstarts)))

> matrix(x,ncol=lstarts)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] "Lyndhurst " "Ohio " "199.02" "15,074" "30" "5" "25"

[2,] "Southport Town" "New York " "217.69" "11,025" "24" "4" "20"

[3,] "Bedford " "Massachusetts" "221.20" "12,658" "28" "0" "28"

Like many functions in R, substring can appear on the left hand side of an assign-
ment statement, making it easy to change parts of a character string based on the
positions they’re in. To change the third through fifth digits of a set of character
strings representing numbers to 99, we could use:
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> nums = c(’12553’,’73911’,’842099’,’203’,’10’)

> substring(nums,3,5) = ’99’

> nums

[1] "12993" "73991" "849999" "209" "10"

• tolower, toupper These functions convert their arguments to all upper-case characters
or all lower-case characters, respectively

• sub, gsub These functions change a regular expression or text pattern to a different set
of characters. They differ in that sub only changes the first occurence of the specified
pattern, while gsub changes all of the occurences. Since numeric values in R cannot
contain dollar signs or commas, one important use of gsub is to create numeric vari-
ables from text variables that represent numbers but contain commas or dollars. For
example, in gathering the data for the world dataset that we’ve been using, I extracted
the information about military spending from
http://en.wikipedia.org/wiki/List of countries by military expenditures. Here’s an ex-
cerpt of some of the values from that page:

> values = c(’370,700,000,000’,’205,326,700,000’,’67,490,000,000’)

> as.numeric(values)

[1] NA NA NA

Warning message:

NAs introduced by coercion

The presence of the commas is preventing R from being able to convert the values into
actual numbers. gsub easily solves the problem:

> as.numeric(gsub(’,’,’’,values))

[1] 370700000000 205326700000 67490000000
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2.18 Working with Characters

As you probably noticed when looking at the above functions, they are very simple, and,
quite frankly, it’s hard to see how they could really do anything complex on their own. In
fact, that’s just the point of these functions – they can be combined together to do just
about anything you would want to do. As an example, consider the task of capitalizing the
first character of each word in a string. The toupper function can change the case of all the
characters in a string, but we’ll need to do something to separate out the characters so we
can get the first one. If we call strsplit with an empty string for the splitting character,
we’ll get back a vector of the individual characters:

> str = ’sherlock holmes’

> letters = strsplit(str,’’)

> letters

[[1]]

[1] "s" "h" "e" "r" "l" "o" "c" "k" " " "h" "o" "l" "m" "e" "s"

> theletters = letters[[1]]

Notice that strsplit always returns a list. This will be very useful later, but for now we’ll
extract the first element before we try to work with its output.

The places that we’ll need to capitalize things are the first position in the vector or letters,
and any letter that comes after a blank. We can find those positions very easily:

> wh = c(1,which(theletters == ’ ’) + 1)

> wh

[1] 1 10

We can change the case of the letters whose indexes are in wh, then use paste to put the
string back together.

> theletters[wh] = toupper(theletters[wh])

> paste(theletters,collapse=’’)

[1] "Sherlock Holmes"

Things have gotten complicated enough that we could probably stand to write a function:

maketitle = function(txt){

theletters = strsplit(txt,’’)[[1]]

wh = c(1,which(theletters == ’ ’) + 1)

theletters[wh] = toupper(theletters[wh])

paste(theletters,collapse=’’)

}

Of course, we should always test our functions:

> maketitle(’some crazy title’)

[1] "Some Crazy Title"
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Now suppose we have a vector of strings:

> titls = c(’sherlock holmes’,’avatar’,’book of eli’,’up in the air’)

We can always hope that we’ll get the right answer if we just use our function:

> maketitle(titls)

[1] "Sherlock Holmes"

Unfortunately, it didn’t work in this case. Whenever that happens, sapply will operate on
all the elements in the vector:

> sapply(titls,maketitle)

sherlock holmes avatar book of eli up in the air

"Sherlock Holmes" "Avatar" "Book Of Eli" "Up In The Air"

Of course, this isn’t the only way to solve the problem. Rather than break up the string
into individual letters, we can break it up into words, and capitalize the first letter of each,
then combine them back together. Let’s explore that approach:

> str = ’sherlock holmes’

> words = strsplit(str,’ ’)

> words

[[1]]

[1] "sherlock" "holmes"

Now we can use the assignment form of the substring function to change the first letter
of each word to a capital. Note that we have to make sure to actually return the modified
string from our call to sapply, so we insure that the last statement in our function returns
the string:

> sapply(words[[1]],function(w){substring(w,1,1) = toupper(substring(w,1,1));w})

sherlock holmes

"Sherlock" "Holmes"

Now we can paste the pieces back together to get our answer:

> res = sapply(words[[1]],function(w){substring(w,1,1) = toupper(substring(w,1,1));w})

> paste(res,collapse=’ ’)

[1] "Sherlock Holmes"

To operate on a vector of strings, we’ll need to incorporate these steps into a function, and
then call sapply:

mktitl = function(str){

words = strsplit(str,’ ’)

res = sapply(words[[1]],function(w){substring(w,1,1) = toupper(substring(w,1,1));w})

paste(res,collapse=’ ’)

}
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We can test the function, making sure to use a string different than the one we used in our
initial test:

> mktitl(’some silly string’)

[1] "Some Silly String"

And now we can test it on the vector of strings:

> titls = c(’sherlock holmes’,’avatar’,’book of eli’,’up in the air’)

> sapply(titls,mktitl)

sherlock holmes avatar book of eli up in the air

"Sherlock Holmes" "Avatar" "Book Of Eli" "Up In The Air"

How can we compare the two methods? The R function system.time will report the
amount of time any operation in R uses. One important caveat – if you wish to assign an
expression to a value in the system.time call, you must use the “<-” assignment operator,
because the equal sign will confuse the function into thinking you’re specifying a named
parameter in the function call. Let’s try system.time on our two functions:

> system.time(one <- sapply(titls,maketitle))

user system elapsed

0.000 0.000 0.001

> system.time(two <- sapply(titls,mktitl))

user system elapsed

0.000 0.000 0.002

For such a tiny example, we can’t really trust that the difference we see is real. Let’s use
the movie names from a previous example:

> movies = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/movies.txt’,

+ sep=’|’,stringsAsFactors=FALSE)

> nms = tolower(movies$name)

> system.time(one <- sapply(nms,maketitle))

user system elapsed

0.044 0.000 0.045

> system.time(two <- sapply(nms,mktitl))

user system elapsed

0.256 0.000 0.258

It looks like the first method is better than the second. Of course, if they don’t get the same
answer, it doesn’t really matter how fast they are. In R, the all.equal function can be
used to see if things are the same:

> all.equal(one,two)

[1] TRUE
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Unix
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3.1 Software for Remote Access

To learn about the software you’ll need to access the SCF UNIX machines remotely see
Accessing the SCF remotely. To see a list of all the SCF computers go to the Computer
Grid page.

3.2 Basics of Unix

On a UNIX system, most commands are entered into a shell. There is a large amount
(sometimes too much) of online documentation for all UNIX commands, through the man

command. For example, to find out more about the ls command, which lists the files in a
directory, type

man ls

at the UNIX prompt.
Another way to use the man command is to use keywords; type either

man -k keyword

or

apropos keyword

at the UNIX prompt to find a list of commands that involve “keyword”.
One attractive feature of UNIX shells is tab completion; if you type only the first few

letters of a command or file name, and then hit the tab key, the shell will complete the name
you started to type provided that there is only one match. If there’s more than one match,
hitting tab twice will list all the names that match.

A properly configured UNIX file system has permission controls to prevent unauthorized
access to files, and to make sure that users do not accidently remove or modify key files. If
you want to adjust the permissions on the files you own, take a look at the man page for the
chmod command.

I’m not going to make a big distinction between UNIX, Linux and the UNIX core of Mac
OSX, so the commands we’re going to look at here should work under any of these operating
systems.

3.3 Command Path

When you type a command into the shell, it will search through a number of directories
looking for a command that matches the name you typed. The directories it looks through
are called the search path. You can display your search path by typing

echo $PATH
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Command Description Examples
ls Lists files in a given directory ls /some/directory

ls # with no args, lists current dir
cd Change Working Directory cd /some/directory

cd #with no args, cd to home dir
pwd Print Working Directory pwd

mkdir Create New Directory mkdir subdirectory

less Display file one screen at a time less filename

cp Copy files cp file1 newfile1

cp file1 file2 file3 somedirectory

mv Move or rename a file mv oldfile newfile

mv file1 file2 file3 somedirectory

rm Remove a file rm file1 file2

rm -r dir #removes all directories and subdirectories
rmdir Remove a (empty) directory rmdir mydir

history Display previously typed commands history

grep Find strings in files grep Error file.out

head Show the first few lines of a file head myfile

head -20 myfile

tail Show the last few lines of a file tail myfile

tail -20 myfile

file Identify the type of a file file myfile

To see the complete list of commands that are available on a given computer, you could look
at all the files (commands) in all of the directories on your search path. (There are well over
2000 commands on most UNIX systems.)

3.4 Basic Commands

The table below shows some of the most commonly used UNIX commands:
Each of these commands has many options which you can learn about by viewing their

man page. For example, to get more information about the ls command, type

man ls

3.5 Command History

Another useful feature of most UNIX shells is the ability to retrieve and review the commands
you’ve previously typed into that instance of the shell. The arrow keys can be used to scroll
up or down through previous commands. Once a command appears on the command line
(where you would normally type a command), you can use the arrow and/or backspace keys
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Command Meaning Command Meaning
control-p Previous line control-n Next line
control-f One character forward control-b One character backward
control-a Beginning of line control-e End of line
control-d Delete one character control-k Delete to end of line

Wildcard Meaning
* Zero or more of any character
? Any single character
[...] Any of the characters between the brackets
[.̂..] Any characters except those between the brackets
[x-y] Any character in the range x to y [0-9] [a-z]

string-1,string-2,string-3 Each of the strings in turn

to edit the command. A number of control key combinations can also be used to navigate
your command history and are displayed in the table below; these same control sequences
will work in the Emacs editor.

3.6 Editors

Most programming tasks involve a stored copy of a program in a file somewhere, along with
a file which could contain necessary data. On a UNIX system, it becomes very important
to be able to view and modify files, and the program that does that is known as an editor.
The kind of editor you use to work with files on a UNIX system is very different than a
word processor, or other document handling program, as it’s not concerned with formatting,
fonts, or other issues of appearance – it basically just holds the bit patterns that represent
the commands in your program or the information in your data. There are many editors
available on UNIX systems, but the two most popular are emacs and vi. Some of the other
editors you might encounter on a UNIX system are pico, nano, vim, xemacs, gedit, and
kate.

3.7 Wildcards

Along with file completion, UNIX shells offer another way to save typing when entering
filenames. Certain characters (known as wildcards) have special meaning when included
as a filename, and the shell will expand these characters to represent multiple filenames.
The most commonly used wildcard is the asterisk (*), which will match anything in a file
name; other possibilities are in the table below. To see what will be matched for any string
containing wildcards, use the UNIX echo command.

In addition, the shell will recognize the tilda (~) as representing your home directory, and
~user as user’s home directory.
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3.8 Redirection

Unix systems manage their input and output through three so-called streams, known as stan-
dard input, standard output and standard error. Normally, you don’t have to do anything
– standard input will be whatever you type, and standard output and error will be your
computer screen. However, sometimes it’s useful to redirect input from some other source,
or to redirect output to some other source. For example, suppose you wanted a list of files
in your current directory. You could run the ls command and redirect the output to a file,
say myfiles as follows

ls > myfiles

Such a command will overwrite the file myfiles if it already existed. To redirect output to
the end of a file, leaving any content intact, use

ls >> myfiles

To have a command read its input from a file instead from standard input the less-than
sign (<) can be used.

Another useful form of redirection is known as a pipe. In this case, the standard output
of one program is used as the standard input to another program. A very common use of
pipes is to view the output of a command through a pager, like less. This allows you to
view a screen at a time by pressing the space bar, to move up in the file by using control-u,
and to move down using control-d. For example, suppose that you are listing the files in a
directory that contains many, many files. If you simply type ls, the output will go streaming
by too fast to read. But by typing

ls | less

the output will be displayed one screen at a time, and you can navigate using the commands
described above. As another example, suppose we want to find which files we’ve modified
recently. The -lt option of the ls command will provide a long display of files in reverse
chronological order; to display, say the five most recently modified files we could use

ls -lt | head -5

3.9 Job Control

Normally, you type a command into the shell and, while the command is running, you can’t
type any more commands into that shell. This is known as running in the foreground. When
a job is running in the foreground, you can signal it to stop with control-C, which is known
as an interrupt signal. Some programs, like R, will catch this signal and do something
useful. For example, R will stop working and return to its normal prompt when it receives
an interrupt signal. Other programs, (like ls) will simply terminate when they receive that
signal. Another signal you can send to a foreground program is control-\, which is known
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as a kill signal. Programs are not capable of catching this signal, so when you use control-\
it will terminate your foreground program unless there is some larger problem.

When you are sitting in front of the computer, it’s not too much of a burden to open
a second window, but if you’re computing remotely it’s nice to be able to run a command
and get back the shell prompt to continue working. In addition, when you run jobs in the
foreground, they will always terminate when you log out of the computer. The alternative to
running in the foreground is running in the background. You can run any command in the
background by putting an ampersand (&) at the end of your command. If a job is running in
the background and you log off from the computer, it will continue to run, but any output
that is not redirected will be lost.

If you’ve got a job running in the foreground, and you’d like to put it in the background,
you need to carry out two separate steps. First, signal the program with control-Z which
will suspend the program. Once the program is suspended, and the shell prompt returns,
type

bg

to put it in the background. Notice that jobs that are suspended with control-Z continue to
use resources even if they are not running, so when you really want to stop a job you should
use control-C or control-\. If you want to put a suspended job in the foreground, use the fg

command.
We’ve seen how to manage jobs when we still have access to the shell from which we

started them, but sometimes you need to find out about jobs for which we don’t have access
to their originating shells. For example, you may remotely log in to a computer, start a job,
log out and then want to find out if it’s running, or to stop it. The ps command can be
used to find out about all the programs that are running on a computer. Remember that
for a networked system of computers, the ps command will only display information about
commands that are running on the particular computer you’re using, so if you put a job in
the background and log off, it’s a very good idea to remember the name of the computer
you were using so that you can check on its progress later. To find all the commands you’re
running on a particular computer type:

ps -aux | grep username

where username is the account name you logged in with. A single line of ps output looks
like this:

spector 1325 10380 0 09:48 pts/10 00:00:00 /bin/bash /usr/local/linux/bin/R

Notice that the name of the program that’s running is shown at the end of the line. You
can identify a particular program by looking for its name there, or by using a second grep
command when invoking ps. The second column of the output contains the process id or
PID of the process; this number uniquely identifies your job on a particular computer. If
you want to terminate a job whose pid you know, type
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kill pid

This is similar to control-C. To get the same affect as control-\, type

kill -9 pid

where pid is the number from the ps output.
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Regular Expressions
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4.1 Regular Expressions

Regular expressions are a method of describing patterns in text that’s far more flexible than
using ordinary character strings. While an ordinary text string is only matched by an exact
copy of the string, regular expressions give us the ability to describe what we want in more
general terms. For example, while we couldn’t search for email addresses in a text file using
normal searches (unless we knew every possible email address), we can describe the general
form of an email address (some characters followed by an “@” sign, followed by some more
characters, a period, and a few more characters. through regular expressions, and then find
all the email addresses in the document very easily.

Another handy feature of regular expressions is that we can “tag” parts of an expression
for extraction. If you look at the HTML source of a web page (for example, by using View-
¿Source in a browser, or using download.file in R to make a local copy), you’ll notice that
all the clickable links are represented by HTML like:

<a href="http://someurl.com/somewhere">

It would be easy to search for the string href= to find the links, but what if some webmasters
used something like

<a href = ’http://someurl.com/somewhere’>

Now a search for href= won’t help us, but it’s easy to express those sorts of choices using
regular expressions.

There are a lot of different versions of regular expressions in the world of computers, and
while they share the same basic concepts and much of the same syntax, there are irritating
differences among the different versions. If you’re looking for additional information about
regular expressions in books or on the web, you should know that, in addition to basic
regular expresssions, recent versions of R also support perl-style regular expressions. (perl
is a scripting language whose creator, Larry Wall, developed some attractive extensions to
the basic regular expression syntax.) Some of the rules of regular expressions are laid out in
very terse language on the R help page for regex and regexpr. Since regular expressions
are a somewhat challenging topic, there are many valuable resources on the internet.

Before we start, one word of caution. We’ll see that the way that regular expressions
work is that they take many of the common punctuation symbols and give them special
meanings. Because of this, when you want to refer to one of these symbols literally (that
is, as simply a character like other characters), you need to precede those symbols with a
backslash (\). But backslashes already have a special meaning in character strings; they are
used to indicate control characters, like tab (\t), and newline (\n). The upshot of this is
that when you want to type a backslash to keep R from misinterpreting certain symbols, you
need to precede it with two backslashes in the input. By the way, the characters for which
this needs to be done are:

. ^ $ + ? * ( ) [ ] { } | \
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Symbol Matches Symbol Matches

\ w Alphanumerics and \ W Non-alphanumerics
\ d Digits \ D Non-digits
\ s Whitespace \ S Non-whitespace

To reiterate, when any of these characters is to be interpreted literally in a regular expression,
they must be preceded by two backslashes when they are passed to functions in R. If you’re
not sure, it’s almost always safe to add a backslash (by typing two backslashes) in front of
a character – if it’s not needed, it will be ignored.

Regular expressions are constructed from three different components: literal characters,
which will only be matched by the identical literal character, character classes, which are
matched by more than one characters, and modifiers which operate on characters, character
classes, or combinations of the two. A character class consists of an opening square bracket
([), one or more characters, and a closing square bracket (]), and is matched by any of the
characters between the brackets. If the first character inside the brackets is the caret (^),
then the character class is matched by anything except the other characters between the
brackets. Ranges are allowed in character classes and one of the most important examples is
[0-9], a character class matched by any of the digits from 0 to 9. Other ranges of characters
include [a-z], all the lower case letters, and [A-Z], all the uppercase letters.

There are also some shortcuts for certain character classes that you may or may not find
useful. They’re summarized in the following table.

Like other cases in R where backslashes need to be interpreted literally, we have to include
two backslashes to use the above shortcuts.
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Modifier Meaning
* zero or more
? zero or one
+ one or more
{n} exactly n occurences
{n,} at least n occurences
{n,m} between n and m occurences

4.2 Regular Expressions

The period (.) represents the wildcard character. Any character (except for the newline
character) will be matched by a period in a regular expression; when you literally want a
period in a regular expression you need to precede it with a backslash.

Many times you’ll need to express the idea of the beginning or end of a line or word in a
regular expression. For example, you may be looking for a line number at the beginning of
a line, or only be interested in searching for a string if it’s at the end of a line. The carat (^)
represents the beginning of a line in a regular expression, and the dollar sign ($) represents
the end of a line. To specify that the regular expression you’re looking for is a word (i.e.
it’s surrounded by white space, punctuation or line beginnings and endings), surround the
regular expression with escaped angle brackets (\< and \>).

One of the most powerful features in regular expressions is being able to specify that
you’re interested in patterns which may be variable. In the previous example regarding
extracting links through the href= argument, we’d like to be able to find a reference no
matter how many spaces there are between the href and the =. We also might want to
account for the fact that quotes around the url are sometimes omitted. There are a few
characters that act as modifiers to the part of the regular expression that precedes them,
summarized in the table below.

The first three modifiers in the above table are the most important ones; the others are
used much less often. Let’s return to the idea of looking for email addresses. Here’s a regular
expression that will match most email addresses: [-A-Za-z0-9_.%]+@[-A-Za-z0-9_.%]+\.[A-Za-z]+
. In words we could read the regular expression as “one or more occurences of the characters
between the brackets literally followed by an @-sign, followed by one or more characters be-
tween the brackets, literally followed by a period, and completed by one or more letters from
among A-Z and a-z. You can simplify things by specifying ignore.case=TRUE to most R
functions that deal with regular expressions; in that case you would only have to put either
A-Z or a-z in the character class, and it would still match both upper or lower case letters.

If we use the regular expression in a call to grep, it will find all of the elements in a
character vector that contain an email address:

> chk = c(’abc noboby@stat.berkeley.edu’,’text with no email’,

+ ’first me@mything.com also you@yourspace.com’)

> grep(’[-A-Za-z0-9_.%]+@[-A-Za-z0-9_.%]+\\.[A-Za-z]+’,chk)

[1] 1 3
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Since regular expressions in R are simply character strings, we can save typing by storing
regular expressions in variables. For example, if we say:

> emailpat = ’[-A-Za-z0-9_.%]+@[-A-Za-z0-9_.%]+\\.[A-Za-z]+’

then we can use the R variable emailpat in place of the full regular expression. (If you
use this technique, be sure to modify your stored variable when you change your regular
expression.)

To actually get to the regular expressions, we can use the gregexpr function, which
provides more information about regular expression matches. First, let’s see what the output
from gregexpr looks like:

> gregout = gregexpr(emailpat,chk)

> gregout

[[1]]

[1] 5

attr(,"match.length")

[1] 24

[[2]]

[1] -1

attr(,"match.length")

[1] -1

[[3]]

[1] 7 27

attr(,"match.length")

[1] 14 17

First, notice that, since there may be a different number of regular expressions found in
different lines, gregexpr returns a list. In each list element is a vector of starting points
where regular expressions were found in the corresponding input string. In addition, there is
additional information stored as an attribute, which is part of the value, but which doesn’t
interfere if we try to treat the value as if it was simply a vector. The match.length attribute
is another vector, of the same length as the vector of starting points, telling us how long
each match was. Concentrating on the first element, we can use the substring function to
extract the actual address as follows:

> substring(chk[1],gregout[[1]],gregout[[1]] + attr(gregout[[1]],’match.length’) - 1)

[1] "noboby@stat.berkeley.edu"

To make it a little easier to use, let’s make a function that will do the extraction for us:

getexpr = function(s,g)substring(s,g,g + attr(g,’match.length’) - 1)

Now it’s a little easier to get what we’re looking for:
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> getexpr(chk[2],gregout[[2]])

[1] ""

> getexpr(chk[3],gregout[[3]])

[1] "me@mything.com" "you@yourspace.com"

To use the same idea on an entire vector of character strings, we could either write a loop, or
use the mapply function. The mapply function will repeatedly call a function of your choice,
cycling through the elements in as many vectors as you provide to the function. To use our
getexpr function with mapply to extract all of the email addresses in the chk vector, we
could write:

> emails = mapply(getexpr,chk,gregout)

> emails

$"abc noboby@stat.berkeley.edu"

[1] "noboby@stat.berkeley.edu"

$"text with no email"

[1] ""

$"first me@mything.com also you@yourspace.com"

[1] "me@mything.com" "you@yourspace.com"

Notice that mapply uses the text of the original character strings as names for the list it
returns; this may or may not be useful. To remove the names, use the assignment form of
the names function to set the names to NULL

> names(emails) = NULL

> emails

[[1]]

[1] "noboby@stat.berkeley.edu"

[[2]]

[1] ""

[[3]]

[1] "me@mything.com" "you@yourspace.com"

The value that mapply returns is a list, the same length as the vector of input strings (chk
in this example), with an empty string where there were no matches. If all you wanted was
a vector of all the email addresses, you could use the unlist function:

> unlist(emails)

[1] "noboby@stat.berkeley.edu" ""

[3] "me@mything.com" "you@yourspace.com"

The empty strings can be removed in the usual way:
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emails = emails[emails != ’’]

or

emails = subset(emails,emails != ’’)

Suppose we wanted to know how many emails there were in each line of the input text
(chk). One idea that might make sense is to find the length of each element of the list that
the getexpr function returned:

> emails = mapply(getexpr,chk,gregout)

> names(emails) = NULL

> sapply(emails,length)

The problem is that, in order to maintain the structure of the output list, mapply put an
empty (length 0) string in the second position of the list, so that length sees at least one
string in each element of the list. The solution is to write a function that modifies the length
function so that it only returns the length if there are some characters in the strings for a
particular list element. (We can safely do this since we’ve already seen that there will always
be at least one element in the list. We can use the if statement to do this:

> sapply(emails,function(e)if(nchar(e[1]) > 0)length(e) else 0)

[1] 1 0 2

4.3 How matches are found

Regular expressions are matched by starting at the beginning of a string and seeing if a
possible match might begin there. If not, the next character in the string is examined, and
so on; if the end of the string is reached, then no match is reported.

Let’s consider the case where there is a potential match. The regular expression program
remembers where the beginning of the match was and starts checking the characters to the
right of that location. As long as the expression continues to be matched, it will continue,
adding more characters to the matched pattern until it reaches a point in the string where
the regular expression is no longer matched. At that point, it backs up until things match
again, and it checks to see if the entire regular expression has been matched. If it has, it
reports a match; otherwise it reports no match.

While the specifics of this mechanism will rarely concern you when you’re doing regular
expression matches, there is one important point that you should be aware of. The regular
expression program is always going to try to find the longest match possible. This means
if you use the wildcard character, ., with the “one or more” modifier, *, you may get more
than you expected.

Suppose we wish to remove HTML markup from a web page, in order to extract the
information that’s on the page. All HTML markup begins with a left angle bracket (<) and
ends with a right angle bracket (>), and has markup information in between. Before diving
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in and trying to remove the markup, let’s make sure we can find it correctly. An obvious
(but ill-advised) choice for the regular expression is <.*>. In words it means “a literal left
angle bracket, followed by one or more of any character, followed by a literal right angle
bracket”. Let’s see how effective it is:

> htmls = c(’This is an image: <IMG SRC="img/rxb.gif">’,

+ ’<a href="somepage.html">click here</a>’)

> grep(’<.*>’,htmls)

[1] 1 2

We’ve matched both pieces, but what have we really got? We can apply our mapply-based
solution to see the actual strings that were matched:

> getexpr = function(s,g)substring(s,g,g + attr(g,’match.length’) - 1)

> matches = mapply(getexpr,htmls,gregexpr(’<.*>’,htmls))

> names(matches) = NULL

> matches

[1] "<IMG SRC=\"img/rxb.gif\">"

[2] "<a href=\"somepage.html\">click here</a>"

The first match worked fine, but the second match went right past the end of the first piece
of markup, and included the second piece in it. For this reason, regular expressions are
said to be greedy – they will always try to find the longest pattern that satisfies the match.
Fixing problems like this is pretty easy – we just have to think about what we really want
to match. In this case, we don’t want zero or more occurences of anything; what we want is
zero or more occurences of anything except a right angle bracket. As soon as we see the first
right angle bracket after the left angle bracket we want to stop. Fortunately, it’s very easy
to express ideas like this with negated character classes. In this case, we simply replace the
period with [^>]:

> matches = mapply(getexpr,htmls,gregexpr(’<[^>]*>’,htmls))

> names(matches) = NULL

> matches

[[1]]

[1] "<IMG SRC=\"img/rxb.gif\">"

[[2]]

[1] "<a href=\"somepage.html\">" "</a>"

The two pieces of markup in the second element of htmls are now correctly found.
Another way to solve the problem of greedy regular expressions is to use a feature of

regular expressions invented by Larry Wall, the creator of perl. His idea was to use the
question mark (?) after an asterisk (*) or plus sign (+) to indicate that you want a non-
greedy match, that is, to search for the smallest string which will match the pattern. Recent
versions of R have incorporated these features into their regular expression support. So an
alternative to the solution shown above is:
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> matches = mapply(getexpr,htmls,gregexpr(’<.*?>’,htmls))
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4.4 Tagging and Backreferences

Consider again the problem of looking for email addresses. The regular expression that we
wrote is exactly what we want, because we don’t care what’s surrounding the email address.
But in many cases, the only way we can find what we want is to specify the surroundings
of what we’re looking for. Suppose we wish to write a program that will find all of the
links (URLs that can be reached by clicking some text on the page) of a web page. A line
containing a link may look something like this:

<a href="http://www.stat.berkeley.edu">UC Berkeley Stat Dept Home Page</a><br />

Finding the links is very easy; but our goal here is to extract the links themselves. Notice that
there’s no regular expression that can match just the link; we need to use some information
about the context in which it’s found, and when we extract the matched expression there will
be extra characters that we really don’t want. To handle this problem, parentheses can be
used to surround parts of a regular expression that we’re really interested in, and tools exist
to help us get those parts separated from the overall expression. In R, the only functions
that can deal with these tagged expressions are sub and gsub, so to take take advantage of
them, you may have to first extract the regular expressions with the methods we’ve already
seen, and then apply sub or gsub. To illustrate, let’s compose a simple regular expression to
find links. I don’t need to worry about the case of the regular expression, because the grep,
sub, gsub and gregexpr functions all support the ignore.case= argument. Notice that I’ve
surrounded the part we want ([^"’>]+) in parentheses. This will allow me to refer to this
tagged expression as \1 in a call to gsub. (Additional tagged expressions will be refered to
as \2, \3, etc.) Using this pattern, we can first find all the chunks of text that have our links
embedded in them, and then use gsub to change the entire piece to just the part we want:

> link = ’<a href="http://www.stat.berkeley.edu">UC Berkeley Stat Dept Home Page</a><br />’
> gregout = gregexpr(’href *= *["\’]?([^"\’>]+)["\’]? *>’,link,ignore.case=TRUE)
> thematch = mapply(getexpr,link,gregout)
> answer = gsub(’href *= *["\’]?([^"\’>]+)["\’]? *>’,’\\1’,thematch,ignore.case=TRUE)
> names(answer) = NULL
> answer
[1] "http://www.stat.berkeley.edu"

4.5 Getting Text into R

Up until now, we’ve been working with text that’s already been formatted to make it easy
for R to read, and scan or read.table (and its associated wrapper functions) have been
sufficient to take care of things. Now we want to treat our input as raw text; in other words,
we don’t want R to assume that the data is in any particular form. The main function for
taking care of this in R is readLines. In the simplest form, you pass readLines the name
of a URL or file that you want to read, and it returns a character vector with one element
for each line of the file or url, containing the contents of each line. An optional argument to
readLines specifies the number of lines you want to read; by default it’s set to -1, which
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means to read all available lines. readLines removes the newline at the end of each line,
but otherwise returns the text exactly the way it was found in the file or URL.

readLines also accepts connections, which are objects in R that represent an alternative
form of input, such as a pipe or a zipped file. Take a look at the help file for connections

for more information on this capability.
For moderate-sized problems that aren’t too complex, using readLines in its default

mode (reading all the lines of input into a vector of character strings) will usually be the
best way to solve your problem, because most of the functions you’ll use with such data
are vectorized, and can operate on every line at once. As a simple example, suppose we
wanted to get the names of all the files containing notes for this class. A glance at the page
http://www.stat.berkeley.edu/classes/s133/schedule.html indicates that all the online notes
can be found on lines like this one:

<tr><td> Jan 23 </td><td> <a href="Unix.html">Introduction to UNIX</a></td></tr>

We can easily extract the names of the note files using the sub function (since there is only
one link per line, we don’t need to use gsub, although we could).

The first step is to create a vector of character strings that will represents the lines of
the URL we are trying to read. We can simply pass the URL name to readLines:

> x = readLines(’http://www.stat.berkeley.edu/classes/s133/schedule.html’)

Next, we can write a regular expression that can find the links. Note that the pattern that
we want (i.e. the name of the file referenced in the link) has been tagged with parentheses
for later extraction. By using the caret (^) and dollar sign ($) we can describe our pattern
as an entire line – when we substitute the tagged expression for the pattern we’ll have just
what we want. I’ll also add the basename of the files so that they could be, for example,
entered into a browser.

> baseurl = ’http://www.stat.berkeley.edu/classes/s133’

> linkpat = ’^.*<td> *<a href=["\’](.*)["\’]>.*$’

> x = readLines(’http://www.stat.berkeley.edu/classes/s133/schedule.html’)

> y = grep(linkpat,x,value=TRUE)

> paste(baseurl,sub(linkpat,’\\1’,y),sep=’/’)

[1] "http://www.stat.berkeley.edu/classes/s133/Intro.html"

[2] "http://www.stat.berkeley.edu/classes/s133/OS.html"

[3] "http://www.stat.berkeley.edu/classes/s133/Unix.html"

[4] "http://www.stat.berkeley.edu/classes/s133/R-1a.html"

[5] "http://www.stat.berkeley.edu/classes/s133/R-2a.html"

[6] "http://www.stat.berkeley.edu/classes/s133/R-3a.html"

. . .
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4.6 Examples of Reading Web Pages with R

As an example of how to extract information from a web page, consider the task of extract-
ing the spring baseball schedule for the Cal Bears from http://calbears.cstv.com/sports/m-
basebl/sched/cal-m-basebl-sched.html .

4.7 Reading a web page into R

Read the contents of the page into a vector of character strings with the readLines function:

> thepage = readLines(’http://calbears.cstv.com/sports/m-basebl/sched/cal-m-basebl-sched.html’)
Warning message:
In readLines("http://calbears.cstv.com/sports/m-basebl/sched/cal-m-basebl-sched.html") :
incomplete final line found on ’http://calbears.cstv.com/sports/m-basebl/sched/cal-m-basebl-sched.html’

The warning messages simply means that the last line of the web page didn’t contain a
newline character. This is actually a good thing, since it usually indicates that the page was
generated by a program, which generally makes it easier to extract information from it.

Note: When you’re reading a web page, make a local copy for testing; as a courtesy to
the owner of the web site whose pages you’re using, don’t overload their server by constantly
rereading the page. To make a copy from inside of R, look at the download.file function.
You could also save a copy of the result of using readLines, and practice on that until you’ve
got everything working correctly.

Now we have to focus in on what we’re trying to extract. The first step is finding where
it is. If you look at the web page, you’ll see that the title “Opponent / Event” is right above
the data we want. We can locate this line using the grep function:

> grep(’Opponent / Event’,thepage)

[1] 513

If we look at the lines following this marker, we’ll notice that the first date on the schedule
can be found in line 536, with the other information following after:

> thepage[536:545]

[1] " <td class=\"row-text\">02/20/11</td>"

[2] " "

[3] " <td class=\"row-text\">vs. Utah</td>"

[4] " "

[5] " <td class=\"row-text\">Berkeley, Calif.</td>"

[6] " "

[7] " <td class=\"row-text\">W, 7-0</td>"

[8] " "

[9] " </tr>"

[10] " "
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Based on the previous step, the data that we want is always preceded by the HTML tag
“<td class="row-text">”, and followed by “</td>”. Let’s grab all the lines that have that
pattern:

> mypattern = ’<td class="row-text">([^<]*)</td>’

> datalines = grep(mypattern,thepage[536:length(thepage)],value=TRUE)

I used value=TRUE, so I wouldn’t have to worry about the indexing when I restricted myself
to the lines from 550 on. Also notice that I’ve already tagged the part that I want, in
preparation to the final call to gsub.

Now that I’ve got the lines where my data is, I can use gregexpr, then getexpr (from
the previous lecture), and gsub to extract the information without the HTML tags:

> getexpr = function(s,g)substring(s,g,g+attr(g,’match.length’)-1)

> gg = gregexpr(mypattern,datalines)

> matches = mapply(getexpr,datalines,gg)

> result = gsub(mypattern,’\\1’,matches)

> names(result) = NULL

> result[1:10]

[1] "02/19/11" "vs. Utah" "Evans Diamond" "1:00 p.m. PT"

[5] "02/20/11" "vs. Utah" "Evans Diamond" "1:00 p.m. PT"

[9] "02/22/11" "at Stanford"

It seems pretty clear that we’ve extracted just what we wanted – to make it more usable,
we’ll convert it to a data frame and provide some titles. Since it’s hard to describe how to
convert a vector to a data frame, we’ll use a matrix as an intermediate step. Since there are
four pieces of information (columns) for each game (row), a matrix is a natural choice:

> schedule = as.data.frame(matrix(result,ncol=4,byrow=TRUE))

> names(schedule) = c(’Date’,’Opponent’,’Location’,’Result’)

> head(schedule)

Date Opponent Location Result

1 02/19/11 vs. Utah Evans Diamond 1:00 p.m. PT

2 02/20/11 vs. Utah Evans Diamond 1:00 p.m. PT

3 02/22/11 at Stanford Stanford, Calif. 5:30 p.m. PT

4 02/25/11 at Coastal Carolina Conway, S.C. 4:00 p.m. ET

5 02/26/11 vs. Kansas State Conway, S.C. 11:00 a.m. ET

6 &nbsp; vs. North Carolina State Conway, S.C. 11:30 a.m. ET

4.8 Another Example

At http://www.imdb.com/chart is a box-office summary of the ten top movies, along with
their gross profits for the current weekend, and their total gross profits. We would like to
make a data frame with that information. As always, the first part of the solution is to read
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the page into R, and use an anchor to find the part of the data that we want. In this case,
the table has column headings, including one for “Rank”.

> x = readLines(’http://www.imdb.com/chart/’)

> grep(’Rank’,x)

[1] 1294 1546 1804

Starting with line 1294 we can look at the data to see where the information is. A little
experimentation shows that the useful data starts on line 1310:

> x[1310:1318]

[1] " <td class=\"chart_even_row\">"

[2] " <a href=\"/title/tt0990407/\">The Green Hornet</a> (2011)"

[3] " </td>"

[4] " <td class=\"chart_even_row\" style=\"text-align: right; padding-right: 20px\">"

[5] " $33.5M"

[6] " </td>"

[7] " <td class=\"chart_even_row\" style=\"text-align: right\">"

[8] " $40M"

[9] " </td>"

[10] " </tr>"

There are two types of lines that contain useful data: the ones with the title, and the ones
that begin with some blanks followed by a dollar sign. Here’s a regular expression that will
pull out both those lines:

> goodlines = ’<a href="/title[^>]*>(.*)</a>.*$|^ *\\$’

> try = grep(goodlines,x,value=TRUE)

Looking at the beginning of try, it seems like we got what we want:

> try[1:10]

[1] " <a href=\"/title/tt1564367/\">Just Go with It</a> (2011)"

[2] " $30.5M"

[3] " $30.5M"

[4] " <a href=\"/title/tt1702443/\">Justin Bieber: Never Say Never</a> (2011)"

[5] " $29.5M"

[6] " $30.3M"

[7] " <a href=\"/title/tt0377981/\">Gnomeo &#x26; Juliet</a> (2011)"

[8] " $25.4M"

[9] " $25.4M"

[10] " <a href=\"/title/tt1034389/\">The Eagle</a> (2011)"

Sometimes the trickiest part of getting the data off a webpage is figuring out exactly the
part you need. In this case, there is a lot of extraneous information after the table we want.
By examining the output, we can see that we only want the first 30 entries. We also need
to remove the extra information from the title line. We can use the sub function with a
modified version of our regular expression:
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> try = try[1:30]

> try = sub(’<a href="/title[^>]*>(.*)</a>.*$’,’\\1’,try)

> head(try)

[1] " Just Go with It"

[2] " $30.5M"

[3] " $30.5M"

[4] " Justin Bieber: Never Say Never"

[5] " $29.5M"

[6] " $30.3M"

Once the spaces at the beginning of each line are removed, we can rearrange the data into a
3-column data frame:

> try = sub(’^ *’,’’,try)

> movies = data.frame(matrix(try,ncol=3,byrow=TRUE))

> names(movies) = c(’Name’,’Wkend Gross’,’Total Gross’)

> head(movies)

Name Wkend Gross Total Gross

1 Just Go with It $30.5M $30.5M

2 Justin Bieber: Never Say Never $29.5M $30.3M

3 Gnomeo &#x26; Juliet $25.4M $25.4M

4 The Eagle $8.68M $8.68M

5 The Roommate $8.13M $25.8M

6 The King&#x27;s Speech $7.23M $93.7M

We can replace the special characters with the following code:

> movies$Name = sub(’&#x26;’,’&’,movies$Name)

> movies$Name = sub(’&#x27;’,’\’’,movies$Name)

4.9 Dynamic Web Pages

While reading data from static web pages as in the previous examples can be very useful
(especially if you’re extracting data from many pages), the real power of techniques like
this has to do with dynamic pages, which accept queries from users and return results
based on those queries. For example, an enormous amount of information about genes
and proteins can be found at the National Center of Biotechnology Information website
(http://www.ncbi.nlm.nih.gov/), much of it available through query forms. If you’re only
performing a few queries, it’s no problem using the web page, but for many queries, it’s
beneficial to automate the process.

Here is a simple example that illustrate the concept of accessing dynamic information
from web pages. The page http://finance.yahoo.com provides information about stocks; if
you enter a stock symbol on the page, (for example aapl for Apple Computer), you will be
directed to a page whose URL (as it appears in the browser address bar) is
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http://finance.yahoo.com/q?s=aapl&x=0&y=0

The way that stock symbols are mapped to this URL is pretty obvious. We’ll write an R
function that will extract the current price of whatever stock we’re interested in.

The first step in working with a page like this is to download a local copy to play with,
and to read the page into a vector of character strings:

> download.file(’http://finance.yahoo.com/q?s=aapl&x=0&y=0’,’quote.html’)

trying URL ’http://finance.yahoo.com/q?s=aapl&x=0&y=0’

Content type ’text/html; charset=utf-8’ length unknown

opened URL

.......... .......... .......... .........

downloaded 39Kb

> x = readLines(’quote.html’)

To get a feel for what we’re looking for, notice that the words “Last Trade:” appear before
the current quote. Let’s look at the line containing this string:

> grep(’Last Trade:’,x)

45

> nchar(x[45])

[1] 3587

Since there are over 3500 characters in the line, we don’t want to view it directly. Let’s use
gregexpr to narrow down the search:

> gregexpr(’Last Trade:’,x[45])

[[1]]

[1] 3125

attr(,"match.length")

[1] 11

This shows that the string “Last Trade:” starts at character 3125. We can use substr to
see the relevant part of the line:

> substring(x[45],3125,3220)

[1] "Last Trade:</th><td class=\"yfnc_tabledata1\"><big><b><span id=\"yfs_l10_aapl\">363.50</span></b></b"

There’s plenty of context – we want the part surrounded by <big><b><span ... and
</span>. One easy way to grab that part is to use a tagged regular expression with gsub:

> gsub(’^.*<big><b><span [^>]*>([^<]*)</span>.*$’,’\\1’,x[45])

[1] "363.50"

This suggests the following function:
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> getquote = function(sym){
+ baseurl = ’http://finance.yahoo.com/q?s=’
+ myurl = paste(baseurl,sym,’&x=0&y=0’,sep=’’)
+ x = readLines(myurl)
+ q = gsub(’^.*<big><b><span [^>]*>([^<]*)</span>.*$’,’\\1’,grep(’Last Trade:’,x,value=TRUE))
+ as.numeric(q)
+}

As always, functions like this should be tested:

> getquote(’aapl’)

[1] 196.19

> getquote(’ibm’)

[1] 123.21

> getquote(’nok’)

[1] 13.35

These functions provide only a single quote; a little exploration of the yahoo finance
website shows that we can get CSV files with historical data by using a URL of the form:

http://ichart.finance.yahoo.com/table.csv?s=xxx

where xxx is the symbol of interest. Since it’s a comma-separated file, We can use read.csv

to read the chart.

gethistory = function(symbol)

read.csv(paste(’http://ichart.finance.yahoo.com/table.csv?s=’,symbol,sep=’’))

Here’s a simple test:

> aapl = gethistory(’aapl’)

> head(aapl)

Date Open High Low Close Volume Adj.Close

1 2011-02-15 359.19 359.97 357.55 359.90 10126300 359.90

2 2011-02-14 356.79 359.48 356.71 359.18 11073100 359.18

3 2011-02-11 354.75 357.80 353.54 356.85 13114400 356.85

4 2011-02-10 357.39 360.00 348.00 354.54 33126100 354.54

5 2011-02-09 355.19 359.00 354.87 358.16 17222400 358.16

6 2011-02-08 353.68 355.52 352.15 355.20 13579500 355.20

Unfortunately, if we try to use the Date column in plots, it will not work properly, since R
has stored it as a factor. The format of the date is the default for the as.Date function, so
we can modify our function as follows:

gethistory = function(symbol){

data = read.csv(paste(’http://ichart.finance.yahoo.com/table.csv?s=’,symbol,sep=’’))

data$Date = as.Date(data$Date)

data

}
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Now, we can produce plots with no problems:

> aapl = gethistory(’aapl’)

> plot(aapl$Date,aapl$Close,main=’Closing price for AAPL’,type=’l’)

The plot is shown below:
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4.10 Writing a Function

plothistory = function(symbol,what){

match.arg(what,c(’Open’,’High’,’Low’,’Close’,’Volume’,’Adj.Close’))

data = gethistory(symbol)

plot(data$Date,data[,what],main=paste(what,’price for ’,symbol),type=’l’)

invisible(data)

}

This function introduces several features of functions that we haven’t seen yet.

• The match.arg function lets us specify a list of acceptable values for a parameter being
passed to a function, so that an error will occur if you use a non-existent variable:

> plothistory(’aapl’,’Last’)

Error in match.arg("what", c("Open", "High", "Low", "Close", "Volume", :

’arg’ should be one of Open, High, Low, Close, Volume, Adj.Close

• The invisible function prevents the returned value (data in this case) from being
printed when the output of the function is not assigned, but also allows us to assign
the output to a variable if we want to use it latter:

> plothistory(’aapl’,’Close’)

will produce a plot without displaying the data to the screen, but

> aapl.close = plothistory(’aapl’,’Close’)

will produce the plot, and store the data in aapl.close.

4.11 Another Example

When using google, it’s sometimes inconvenient to have to click through all the pages. Let’s
write a function that will return the web links from a google search. If you type a search
time into google, for example a search for ’introduction to r”, you’ll notice that the address
bar of your browser looks something like this:

http://www.google.com/search?q=introduction+to+r&ie=utf-8&oe=utf-8&aq=t&rls=com.ubuntu:en-US:unofficial&client=firefox-a

For our purposes, we only need the “q=” part of the search. For our current example, that
would be the URL

http://www.google.com/search?q=introduction+to+r
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Note that, since blanks aren’t allowed in URLs, plus signs are used in place of spaces. If we
were to click on the “Next” link at the bottom of the page, the URL changes to something
like

http://www.google.com/search?hl=en&safe=active&client=firefox-a&rls=com.ubuntu:en-US:unofficial&hs=xHq&q=introduction+to+r&start=10&sa=N

For our purposes, we only need to add the &start= argument to the web page. Since google
displays 10 results per page, the second page will have start=10, the next page will have
start=20, and so on. Let’s read in the first page of this search into R:

z = readLines(’http://www.google.com/search?q=introduction+to+r’)

Warning message:

In readLines("http://www.google.com/search?q=introduction+to+r") :

incomplete final line found on ’http://www.google.com/search?q=introduction+to+r’

As always, you can safely ignore the message about the incomplete final line.
Since we’re interested in the web links, we only want lines with ”href=” in them. Let’s

check how many lines we’ve got, how long they are, and which ones contain the href string:

> length(z)

[1] 17

> nchar(z)

[1] 369 208 284 26 505 39 40605 1590 460 291 152 248

[13] 317 513 507 5 9

> grep(’href=’,z)

[1] 5 7

It’s pretty clear that all of the links are on the seventh line.
Now we can construct a tagged regular expression to grab all the links.

> hrefpat = ’href *= *"([^"]*)"’

> getexpr = function(s,g)substring(s,g,g+attr(g,’match.length’)-1)

> gg = gregexpr(hrefpat,z[[7]])

> res = mapply(getexpr,z[[7]],gg)

> res = sub(hrefpat,’\\1’,res)

> res[1:10]

[1] "http://images.google.com/images?q=introduction+to+r&um=1&ie=UTF-8&sa=N&hl=en&tab=wi"

[2] "http://video.google.com/videosearch?q=introduction+to+r&um=1&ie=UTF-8&sa=N&hl=en&tab=wv"

[3] "http://maps.google.com/maps?q=introduction+to+r&um=1&ie=UTF-8&sa=N&hl=en&tab=wl"

[4] "http://news.google.com/news?q=introduction+to+r&um=1&ie=UTF-8&sa=N&hl=en&tab=wn"

[5] "http://www.google.com/products?q=introduction+to+r&um=1&ie=UTF-8&sa=N&hl=en&tab=wf"

[6] "http://mail.google.com/mail/?hl=en&tab=wm"

[7] "http://www.google.com/intl/en/options/"

[8] "/preferences?hl=en"

[9] "https://www.google.com/accounts/Login?hl=en&continue=http://www.google.com/search%3Fq%3Dintroduction%2Bto%2Br"

[10] "http://www.google.com/webhp?hl=en"
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We don’t want the internal (google) links – we want external links which will begin with
“http://”. Let’s extract all the external links, and then eliminate the ones that just go
back to google:

> refs = res[grep(’^https?:’,res)]

> refs = refs[-grep(’google.com/’,refs)]

> refs[1:3]

[1] "http://cran.r-project.org/doc/manuals/R-intro.pdf"

[2] "http://74.125.155.132/search?q=cache:d4-KmcWVA-oJ:cran.r-project.org/doc/manuals/R-intro.pdf+introduction+to+r&cd=1&hl=en&ct=clnk&gl=us&ie=UTF-8"

[3] "http://74.125.155.132/search?q=cache:d4-KmcWVA-oJ:cran.r-project.org/doc/manuals/R-intro.pdf+introduction+to+r&amp;cd=1&amp;hl=en&amp;ct=clnk&amp;gl=us&amp;ie=UTF-8"

If you’re familiar with google, you may recognize these as the links to google’s cached results.
We can easily eliminate them:

> refs = refs[-grep(’cache:’,refs)]

> length(refs)

[1] 10

We can test these same steps with some of the other pages from this query:

> z = readLines(’http://www.google.com/search?q=introduction+to+r&start=10’)

Warning message:

In readLines("http://www.google.com/search?q=introduction+to+r&start=10") :

incomplete final line found on ’http://www.google.com/search?q=introduction+to+r&start=10’

> hrefpat = ’href *= *"([^"]*)"’

> getexpr = function(s,g)substring(s,g,g+attr(g,’match.length’)-1)

> gg = gregexpr(hrefpat,z[[7]])

> res = mapply(getexpr,z[[7]],gg)

Error in substring(s, g, g + attr(g, "match.length") - 1) :

invalid multibyte string at ’<93>GNU S’

Unfortunately, there seems to be a problem. Fortunately, it’s easy to fix. What the message
is telling us is that there’s a character in one of the results that doesn’t make sense in the
language (English) that we’re using. We can solve this by typing:

> Sys.setlocale(’LC_ALL’,’C’)

> res = mapply(getexpr,z[[7]],gg)

Since we no longer get the error, we can continue

> res = sub(hrefpat,’\\1’,res)

> refs = res[grep(’^https?:’,res)]

> refs = refs[-grep(’google.com/’,refs)]

> refs = refs[-grep(’cache:’,refs)]

> length(refs)

[1] 10
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Once again, it found all ten links. This obviously suggests a function:

googlerefs = function(term,pg=0){

getexpr = function(s,g)substring(s,g,g+attr(g,’match.length’)-1)

qurl = paste(’http://www.google.com/search?q=’,term,sep=’’)

if(pg > 0)qurl = paste(qurl,’&start=’,pg * 10,sep=’’)

qurl = gsub(’ ’,’+’,qurl)

z = readLines(qurl)

hrefpat = ’href *= *"([^"]*)"’

wh = grep(hrefpat,z)[2]

gg = gregexpr(hrefpat,z[[wh]])

res = mapply(getexpr,z[[wh]],gg)

res = sub(hrefpat,’\\1’,res)

refs = res[grep(’^https?:’,res)]

refs = refs[-grep(’google.com/|cache:’,refs)]

names(refs) = NULL

refs[!is.na(refs)]

}

Now suppose that we want to retreive the links for the first ten pages of query results:

> links = sapply(0:9,function(pg)googlerefs(’introduction to r’,pg))

> links = unlist(links)

> head(links)

[1] "http://cran.r-project.org/doc/manuals/R-intro.pdf"

[2] "http://cran.r-project.org/manuals.html"

[3] "http://www.biostat.wisc.edu/~kbroman/Rintro/"

[4] "http://faculty.washington.edu/tlumley/Rcourse/"

[5] "http://www.stat.cmu.edu/~larry/all-of-statistics/=R/Rintro.pdf"

[6] "http://www.stat.berkeley.edu/~spector/R.pdf"
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Chapter 5

Graphics
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5.1 More on Plotting

We’ve seen the usage of some basic graphics functions in previous lectures, but there are still
a few points that should be covered before we study more advanced graphics commands. One
issue has to do with multiple lines on a plot. In addition to the high-level plot command, R
provides the points and lines functions, which can add new data to a plot. Consider the na-
tionwide Community Health Data, available at the website http://communityhealth.hhs.gov.
The data is available in a zip file, which contains a number of CSV files containing infor-
mation recorded for each county in the USA. One such file, containing information about
various risk factors and access to health care in the counties can be found on the class web-
site:http://www.stat.berkeley.edu/classes/s133/data/RISKFACTORSANDACCESSTOCARE.csv.
First, we’ll read in the data, and look at the first few records:

> risk = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/RISKFACTORSANDACCESSTOCARE.csv’)

> head(risk)

State_FIPS_Code County_FIPS_Code CHSI_County_Name CHSI_State_Name

1 1 1 Autauga Alabama

2 1 3 Baldwin Alabama

3 1 5 Barbour Alabama

4 1 7 Bibb Alabama

5 1 9 Blount Alabama

6 1 11 Bullock Alabama

CHSI_State_Abbr Strata_ID_Number No_Exercise CI_Min_No_Exercise

1 AL 29 27.8 20.7

2 AL 16 27.2 23.2

3 AL 51 -1111.1 -1111.1

4 AL 42 -1111.1 -1111.1

5 AL 28 33.5 26.3

6 AL 75 -1111.1 -1111.1

CI_Max_No_Exercise Few_Fruit_Veg CI_Min_Fruit_Veg CI_Max_Fruit_Veg Obesity

1 34.9 78.6 69.4 87.8 24.5

2 31.2 76.2 71.2 81.3 23.6

3 -1111.1 -1111.1 -1111.1 -1111.1 25.6

4 -1111.1 86.6 77.8 95.4 -1111.1

5 40.6 74.6 66.1 83.0 24.2

6 -1111.1 -1111.1 -1111.1 -1111.1 -1111.1

CI_Min_Obesity CI_Max_Obesity High_Blood_Pres CI_Min_High_Blood_Pres

1 17.3 31.7 29.1 19.2

2 19.5 27.6 30.5 24.5

3 16.2 35.0 -1111.1 -1111.1

4 -1111.1 -1111.1 -1111.1 -1111.1

5 17.2 31.2 -1111.1 -1111.1

6 -1111.1 -1111.1 -1111.1 -1111.1
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CI_Max_High_Blood_Pres Smoker CI_Min_Smoker CI_Max_Smoker Diabetes

1 39.0 26.6 19.1 34.0 14.2

2 36.6 24.6 20.3 28.8 7.2

3 -1111.1 17.7 10.2 25.1 6.6

4 -1111.1 -1111.1 -1111.1 -1111.1 13.1

5 -1111.1 23.6 16.7 30.4 8.4

6 -1111.1 -1111.1 -1111.1 -1111.1 -1111.1

CI_Min_Diabetes CI_Max_Diabetes Uninsured Elderly_Medicare Disabled_Medicare

1 9.1 19.3 5690 4762 1209

2 5.2 9.3 19798 22635 3839

3 2.0 11.3 5126 3288 1092

4 4.7 21.5 3315 2390 974

5 4.4 12.4 8131 5019 1300

6 -1111.1 -1111.1 2295 1433 504

Prim_Care_Phys_Rate Dentist_Rate Community_Health_Center_Ind HPSA_Ind

1 45.3 22.6 1 2

2 67.0 30.8 1 2

3 45.8 24.6 1 2

4 41.8 18.6 1 1

5 16.2 10.8 2 1

6 54.3 18.1 1 1

It’s clear that the value -1111.1 is being used for missing values, and we’ll need to fix that
before we work with the data:

> risk[risk == -1111.1] = NA

Suppose we want to investigate the relationship between Diabetes and Smoking in each of
the counties in California. We could create a data set with only California using the subset

command, and then plot the two variables of interest:

> risk.ca = subset(risk, CHSI_State_Name == ’California’)

> plot(risk.ca$Smoker,risk.ca$Diabetes)

Here’s what the plot looks like:
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Now let’s say that we wanted to examine the relationship between smoking and diabetes
for some other state, say Alabama. We can extract the Alabama data using subset, and
then use the points command to add that data to the existing plot. (Unlike plot, points
doesn’t produce a new plot, it adds to the currently active plot.)

> risk.al = subset(risk, CHSI_State_Name == ’Alabama’)

> points(risk.al$Smoker,risk.al$Diabetes,col=’red’)

The plot now looks like this:
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Clearly there’s a problem: some of the Alabama points are off the scale. This demon-
strates that when you wish to plot multiple sets of points on the same graph that you have
to make sure that the axes are big enough to accomodate all of the data. One very easy way
to do this is to call the plot function with the minimums and maximums of all the data
using type=’n’ as one of the arguments. This tells R to set up the axes, but not to actually
plot anything. So a better way to plot the two sets of points would be as follows:

> plot(range(c(risk.ca$Smoker,risk.al$Smoker),na.rm=TRUE),

+ range(c(risk.ca$Diabetes,risk.al$Diabetes),na.rm=TRUE),

+ type=’n’,xlab=’Smoking Rate’,ylab=’Diabetes Rate’)

> points(risk.ca$Smoker,risk.ca$Diabetes)

> points(risk.al$Smoker,risk.al$Diabetes,col=’red’)

> legend(’topright’,c(’California’,’Alabama’),col=c(’black’,’red’),pch=1)

> title(’Diabetes Rate vs. Smoking by County’)

The completed plot looks like this:
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To add a line to a plot, the lines function can be used in place of the points func-
tion. The built-in data set Puromycin provides data on concentration and reaction rate
of Puromycin on two types of cells, treated and untreated. You can learn more about R’s
builtin data sets by using the data() function, and then using the usual help facility within
R. Since this is a small data set (only 23 rows), we can examine it directly:

> Puromycin

conc rate state

1 0.02 76 treated

2 0.02 47 treated

3 0.06 97 treated

4 0.06 107 treated

5 0.11 123 treated

6 0.11 139 treated

7 0.22 159 treated

8 0.22 152 treated

9 0.56 191 treated

10 0.56 201 treated
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11 1.10 207 treated

12 1.10 200 treated

13 0.02 67 untreated

14 0.02 51 untreated

15 0.06 84 untreated

16 0.06 86 untreated

17 0.11 98 untreated

18 0.11 115 untreated

19 0.22 131 untreated

20 0.22 124 untreated

21 0.56 144 untreated

22 0.56 158 untreated

23 1.10 160 untreated

Since there are two observations at each concentration, we can use the aggregate function
to calculate the mean before plotting the data:

> Puro = aggregate(list(rate=Puromycin$rate),list(conc=Puromycin$conc,state=Puromycin$state),mean)

By putting the rate variable in a named list, I insure that the column with the mean will
be called “rate”. Alternatively, I could rename the column later:

> Puro = aggregate(Puromycin$rate,list(conc=Puromycin$conc,state=Puromycin$state),mean)

> names(Puro)[3] = ’rate’

Now we can create two data frames, one for the treated cells, and one for the untreated ones:

> Puro.treated = subset(Puro,state==’treated’)

> Puro.untreated = subset(Puro,state==’untreated’)

Examination of the data shows that the rate for the treated cells are higher than the untreated
cells. Thus, instead of creating an empty plot as in the previous example, I’ll just plot the
line for the treated cells first:

> plot(Puro.treated$conc,Puro.treated$rate,xlab=’Conc’,ylab=’Rate’,main=’Rate vs. Concentration for Puromycin’,type=’l’)

> lines(Puro.untreated$conc,Puro.untreated$rate,col=’blue’)

> legend(’bottomright’,c(’Treated’,’Untreated’),col=c(’black’,’blue’),lty=1)

The plot appears below:
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5.2 Multiple Plots on a Page

The mfrow or mfcol arguments to the par function allow you to divide the plotting page into
a grid, to accomodate multiple plots on a single page. The layout of the plot is determined by
a vector of length 2, specifying the number of rows and columns in the grid. The difference
between mfrow and mfcol concerns the order in which the plots are drawn. When using
mfrow, plots are drawn across the rows, while mfcol draws the plot down the columns.

As an example, consider the builtin airquality data set, which contains various air
quality measures for a five month period in New York. We can get an idea of what the data
is like by using the summary function:

> summary(airquality)

Ozone Solar.R Wind Temp

Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00

1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00

Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
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Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88

3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00

Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00

NA’s : 37.00 NA’s : 7.0

Month Day

Min. :5.000 Min. : 1.00

1st Qu.:6.000 1st Qu.: 8.00

Median :7.000 Median :16.00

Mean :6.993 Mean :15.80

3rd Qu.:8.000 3rd Qu.:23.00

Max. :9.000 Max. :31.00

Suppose we want to plot histograms of each of the first four variables, side by side with a
plot of the variable over time. The first step is to convert the Month and Date variables into
R Date variables:

> airquality$date = as.Date(ISOdate(1973,airquality$Month,airquality$Day))

Rather than typing in the plotting commans repeatedly, we can write a function to make
the plots for each variable:

twoplot = function(var){

plot(density(airquality[,var],na.rm=TRUE),main=paste(’Density of’,var))

plot(airquality$date,airquality[,var],type=’l’,main=paste(var,’vs. time’),ylab=var)

}

Since we’ll be plotting the first four variables, we’ll want a 4x2 grid, and we’ll want to plot
by rows. Thus, we issue the following command:

> par(mfrow=c(4,2))

We can use sapply to call our twoplot function for each of the variables:

> sapply(names(airquality)[1:4],twoplot)

Ozone Solar.R Wind Temp

[1,] 1216 1216 1216 1216

[2,] 1247 1247 1247 1247

[3,] 1277 1277 1277 1277

[4,] 1308 1308 1308 1308

[5,] 1339 1339 1339 1339

[6,] 1369 1369 1369 1369

Here’s the plot:
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As can be seen, the default for multiple plots leaves quite a bit of space between the
plots. The graphics parameter that controls this is called mar. The value that determines
the spacing is a vector of length 4, with the number of lines of space on the bottom, left,
top, and right of the plots. We can find the current value of graphics parameters by passing
the name of the parameter to par:

> par(’mar’)

[1] 5.1 4.1 4.1 2.1

Let’s remove one line from each of the top and bottom, and replot the series of graphs:

> par(mar=c(4.1,4.1,3.1,2.1),mfrow=c(4,2))

> sapply(names(airquality)[1:4],twoplot)

Ozone Solar.R Wind Temp

[1,] 1216 1216 1216 1216

[2,] 1247 1247 1247 1247

[3,] 1277 1277 1277 1277

[4,] 1308 1308 1308 1308

[5,] 1339 1339 1339 1339

[6,] 1369 1369 1369 1369

The plot is shown below:
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After plotting multiple plots, you can restore R’s normal behaviour of plotting each plot
on a separate page by resetting mfrow as follows:

> par(mfrow=c(1,1))

5.3 More on Barplots

We briefly looked at barplots when we examined the day of the week on which popular
movies opened. You may recall that we passed the result of a call from the table function
to barplot. This idea can be extended to create side-by-side or stacked barplots. As an
alternative to using table, we can produce a matrix with the values we wish to plot. By
providing dimnames for this matrix, barplot will be able to appropriately label the plot.

Once again consider the risk data set we used earlier. To simplify the plot, the differ-
ent states in the data set can be grouped into regions, using the built-in state.name and
state.region objects:

> risk = merge(risk,data.frame(state=state.name,region=state.region),

+ by.x=’CHSI_State_Name’,by.y=’state’)
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Suppose we’re interested in comparing the average smoking, diabetes, and obesity rates
for the different regions. First, we use the aggregate function to find the averages of the
variables, broken down by regions:

> mns = aggregate(risk[,c(’Smoker’,’Diabetes’,’Obesity’)],risk[’region’],

+ mean,na.rm=TRUE)

> mns

region Smoker Diabetes Obesity

1 Northeast 22.62537 7.161972 22.13430

2 South 25.15847 8.754302 25.71493

3 North Central 22.28592 7.318565 24.16283

4 West 19.50740 6.349167 21.01306

If we try to pass this data frame to barplot, we’ll get an error, since barplot needs a matrix.
In addition, the column that identifies the different groups (in this case region), needs to
be part of the row names, not a variable in the data frame itself. These two steps create the
row names, and eliminate the region column from the data frame:

> row.names(mns) = mns$region

> mns$region = NULL

If we were to use the following statement to create the barplot:

> barplot(as.matrix(mns))

we’d find that the bars were representing the variables, not the regions. To fix this, we
simply pass the transpose of the matrix to barplot:

> barplot(t(as.matrix(mns)))

Here’s what the plot looks like:
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This is known as a stacked barplot, and while it’s useful for some kinds of data, I don’t find
it appropriate for this type of data. By passing the beside=TRUE argument to barplot, we
can produce a side-by-side barchart, which I find more useful. The legend=TRUE argument
helps to identify the bars:

> barplot(t(as.matrix(mns)),beside=TRUE,legend=TRUE)

Here’s the result:
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5.4 Mapping

We’ve looked at some data about different countries around the world, but so far we haven’t
taken advantage of the fact that the data has a geographic origin (other than trying to see if
relationships were different among different continents by using color to represent continent
in scatterplots.) The R library maps gives us the ability to use different colors to represent
values of variables on actual maps of the world or the United States. A current concern
in the United States has to do with the number of people without health insurance. Since
this continues to be of great concern, it would be interesting to see if there are geographic
patterns to the rate of ininsured adults in the different states.

The data for this example comes from the swivel.com website, and can be downloaded
from the class website from http://www.stat.berkeley.edu/classes/s133/data/insurance.csv.

> library(maps)

> ins = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/insurance.csv’,

+ stringsAsFactors=FALSE)
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> head(ins)

State Employer Individual Medicaid Medicare Other.Public Uninsured

1 Alabama 0.54 0.03 0.15 0.13 0.01 0.14

2 Alaska 0.52 0.04 0.16 0.06 0.05 0.17

3 Arizona 0.47 0.05 0.16 0.13 0.01 0.18

4 Arkansas 0.47 0.06 0.15 0.14 0.02 0.17

5 California 0.48 0.07 0.16 0.09 0.01 0.18

6 Colorado 0.59 0.07 0.07 0.08 0.02 0.16

The first step in preparing a map (after loading the maps library) is determining a variable
to use to provide color to the different regions. In this case we’ll use the Uninsured variable.
Our goal will be to break the data up into four groups, based on the value of the Uninsured

variable, and then to color in each state in the map using a color based on the groups.
To create the four groups based on values of Uninsured, we can use the cut function. If

we pass cut a variable and a number of groups, it will divide the range of the variable by
that number, and assign each variable to one of the groups. Depending on how the variable
is distributed, there may be more observations in one group than the other. Alternatively,
we can provide cut with a breaks= argument, giving one more value than the number of
groups we want, and it will assign the values to groups based on the ranges that the breaks
define. Thus, if different values of the variable being used to determine the ranges have
special meanings, the grouping can be customized using this argument. A final alternative
is to guarantee nearly equal-sized groups by using quantiles of the variable in question as
the breaks. The include.lowest=TRUE argument should be included to make sure that the
smallest value gets properly classified. To create four equal-sized groups for the Uninsured

variable, we could use the following call to cut:

> ugroups = cut(ins$Uninsured,quantile(ins$Uninsured,(0:4)/4),include.lowest=TRUE)

> head(ugroups)

[1] (0.13,0.17] (0.13,0.17] (0.17,0.24] (0.13,0.17] (0.17,0.24] (0.13,0.17]

Levels: [0.08,0.11] (0.11,0.13] (0.13,0.17] (0.17,0.24]

Notice that cut produces a factor by default; to suppress this, use the labels=FALSE argu-
ment. The factor, since it contains information about the actual values, will turn out to be
quite useful.

The maps library provides three databases: "world", "state", and "county". For each
identifier in the database, there is information on what polygons need to be drawn to create
an outline of the area in question. For example, the entry identified by california in
the state database would contain the information about California’s borders in the form
of polygon coordinates which the polygon function will draw when we ask for a map of
California. While the help page for the map function implies that we can pass a vector of
region names and colors directly to map, things are complicated by the fact that some states
can’t be plotted by a single polygon, and map gets confused about the proper colors to use
when it needs to draw more than one polygon for a state.
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One way around the problem is to create multiple entries in a vector of colors for those
states that have more than one polygon. To do this, we need to look at the region names
stored inside the database. We can get a vector of region names by calling map with the
names=TRUE and plot=FALSE arguments:

> map.names = map(’state’,names=TRUE,plot=FALSE)

The regions which represent multiple polygons for a single state will always contain semi-
colons:

> grep(’:’,map.names,value=TRUE)

[1] "massachusetts:martha’s vineyard" "massachusetts:main"

[3] "massachusetts:nantucket" "michigan:north"

[5] "michigan:south" "new york:manhattan"

[7] "new york:main" "new york:staten island"

[9] "new york:long island" "north carolina:knotts"

[11] "north carolina:main" "north carolina:spit"

[13] "virginia:chesapeake" "virginia:chincoteague"

[15] "virginia:main" "washington:san juan island"

[17] "washington:lopez island" "washington:orcas island"

[19] "washington:whidbey island" "washington:main"

To properly connect our data with these region names, we first create a vector of state names
corresponding to the regions in the data base:

> map.states = sub(’^([^:]*):.*’,’\\1’,map.names)

Now we can use the match function to see which observations in the ins dataframe correspond
to the regions in the database. Since the database uses all lower case, I’ll use the tolower

function to convert the state names in the ins data frame to lower case:

> which.state = match(map.states,tolower(ins$State))

Now that we know how the state names line up with the region names, we can create a
vector of colors to properly create our map:

> mycolors = c(’gray’,’white’,’pink’,’red’)

> thecolors = mycolors[ugroups[which.state]]

This process is complicated enough that it might be worth making a function to give us the
proper vector of groupings. Here’s such a function, created by putting together the steps we
just followed:

mapgroups = function(db,myregions,mygroups,tolower=TRUE){

map.names = map(db,names=TRUE,plot=FALSE)

map.regions = gsub(’^([^:]*):.*$’,’\\1’,map.names)

if(tolower)myregions = tolower(myregions)

which.region = match(map.regions,myregions)

mygroups[which.region]

}
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(I’ve included the tolower= argument because not all the map databases use lower case.)
Using this function (or the step-by-step approach that led to it), we can now make our plot:

> mycolors = c(’gray’,’white’,’pink’,’red’)

> thecolors = mycolors[mapgroups(’state’,ins$State,ugroups)]

> map(’state’,col=thecolors,fill=TRUE)

Plots like this should always have a legend:

> title(’Uninsured Rates by State’)

> legend(’bottomleft’,legend=levels(ugroups),fill=mycolors,cex=.8)

The map is pictured below.

There are a variety of functions in R which will help us choose colors that will be use-
ful for plotting. Some of the functions you might want to investigate include rainbow,
heat.colors, topo.colors, as well as the color.gradient function in the plotrix library,
the colorpanel function in the gplots library. and the functions in the RColorBrewer li-
brary. Let’s look at another example, also from swivel.com, concerning rates of childhood
obesity. A copy of the dataset is available on the class website.
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> obesity = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/obesity.csv’)

Before preceding, it turns out that the state names in this data set have some embedded
blanks:

> head(as.character(obesity$State))

[1] " Alabama " " Alaska " " Arizona " " Arkansas " " California "

[6] " Colorado "

Left uncorrected, this would make our mapgroups function fail to find any matching states
in the map data base, and when we plot the map, there would be no colors. If you think
you’re doing everything right, but there are no colors on the map, check to make sure that
the state names are correct.

Naturally fixing something like this is not a problem:

> obesity$State = gsub(’^ +’,’’,obesity$State)

> obesity$State = gsub(’ +$’,’’,obesity$State)

Now we can proceed with producing the map. We’ll use the Childhood.Obesity.Rate

variable for the example, and a color scheme generated by the heat.colors function:

> mycolors = rev(heat.colors(4))

> ogroups = cut(obesity$Childhood.Obesity.Rate,

+ quantile(obesity$Childhood.Obesity.Rate,(0:4)/4),include.lowest=TRUE)

> thecolors = mycolors[mapgroups(’state’,obesity$State,ogroups)]

> map(’state’,col=thecolors,fill=TRUE)

> title(’Childhood Obesity Rates by State’)

> legend(’bottomleft’,legend=levels(ogroups),fill=mycolors,cex=.8)

The map appears below:
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As an example of using the county maps, we can use another one of the Community
Health data sets, this one concerned with demographics. It’s located at
http://www.stat.berkeley.edu/classes/s133/data/DEMOGRAPHICS.csv. The first step is
to read the data into R. We’ll concentrate on the variable Hispanic, which gives the per-
centage of Hispanics in each county.

> demo = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/DEMOGRAPHICS.csv’)

> summary(demo$Hispanic)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.100 2.300 7.018 6.300 97.500

Next we need to see how the county names are stored in the county map database:

> nms = map(’county’,names=TRUE,plot=FALSE)

> head(nms)

[1] "alabama,autauga" "alabama,baldwin" "alabama,barbour" "alabama,bibb"

[5] "alabama,blount" "alabama,bullock"

We need to combine the state and county information in our data set so that it matches up
with the format used in the database. We could either call tolower now, or leave it to our
mapgroups function:

> head(subset(demo,select=c(CHSI_State_Name,CHSI_County_Name)))

CHSI_State_Name CHSI_County_Name

1 Alabama Autauga

2 Alabama Baldwin

3 Alabama Barbour

4 Alabama Bibb

5 Alabama Blount

6 Alabama Bullock

> thecounties = paste(demo$CHSI_State_Name,demo$CHSI_County_Name,sep=’,’)

Based on the summary information above, we can cut the Hispanic variable at 1,2,5, and 10.
Then we can create a pallete of blues using the brewer.pal function from the RColorBrewer
package.

> hgroups = cut(demo$Hispanic,c(0,1,2,5,10,100))

> table(hgroups)

hgroups

(0,1] (1,2] (2,5] (5,10] (10,100]

678 770 778 356 558

> library(RColorBrewer)

> mycolors = brewer.pal(5,’Blues’)

> thecolors = mycolors[mapgroups(’county’,thecounties,hgroups)]

> map(’county’,col=thecolors,fill=TRUE)

> legend(’bottomleft’,levels(hgroups),fill=mycolors,cex=.8)

> title(’Percent Hispanic by County’)
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The cex=.8 argument reduces the text size to 80% of the default size, to prevent the legend
from running into the map. The map looks like this:

In previous examples, we created equal sized groups using the quantile function. Let’s
see if it will make a difference for this example:

> hgroups1 = cut(demo$Hispanic,quantile(demo$Hispanic,(0:5)/5))

> table(hgroups1)

hgroups1

(0,1] (1,1.7] (1.7,3.2] (3.2,8.7] (8.7,97.5]

678 597 627 618 620

The rest of the steps are the same as before:

> mycolors = brewer.pal(5,’Blues’)

> thecolors = mycolors[mapgroups(’county’,thecounties,hgroups1)]

> map(’county’,col=thecolors,fill=TRUE)

> legend(’bottomleft’,levels(hgroups1),fill=mycolors,cex=.8)

> title(’Percent Hispanic by County’)
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The plot, which is very similar to the previous plot, appears below:

As a final example of working with maps, let’s revisit the world data set that we’ve used
in other examples. Suppose we want to create a map showing literacy rates around the
world. First we need to decide on a grouping. The summary function is useful in helping us
decide:

> world = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/world2.txt’,

+ na.strings=’.’,comment=’#’)

> summary(world$literacy)

Min. 1st Qu. Median Mean 3rd Qu. Max.

12.80 69.10 88.40 80.95 98.50 99.90

Let’s create four levels: less than 50use cut to create these levels and label them at the same
time:

litgroups = cut(world$literacy,breaks=c(0,50,70,95,100),include.lowest=TRUE,

labels=c(’<50%’,’50-70%’,’70-95%’,’>95%’))

We can use the mapgroups function to come up with the correct colors, noticing that the
region names in the world database are not in lower case:
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> mycolors = topo.colors(4)

> litcolors = mycolors[mapgroups(’world’,world$country,litgroups,tolower=FALSE)]

> map(’world’,col=litcolors,fill=TRUE)

> title(’World Literacy Rates’)

> legend(’left’,legend=levels(litgroups),fill=mycolors,cex=.9)

The map appears below
An alternative which is useful when you only want to use part of a database is to eliminate

missing values from the vector of colors and the corresponding regions from the full list of
regions, and pass those vectors directly to map. Applying this idea to the previous example,
we could have gotten the same plot with statements like this:

> omit = is.na(litcolors)

> useregions = map(’world’,names=TRUE,plot=FALSE)[!omit]

> map(’world’,regions=useregions,col=litcolors[!omit],fill=TRUE)
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5.5 The Lattice Plotting Library

The graphics we’ve been using up until now are sometimes known as “traditional” graphics
in the R community, because they are the basic graphics components that have been part
of the S language since its inception. To review, this refers to the high-level functions
like plot, hist, barplot, plot, pairs, and boxplot, the low-level functions like points,
lines, and legend, and the graphics parameter system accessed through the par function.
There’s another entire set of graphics tools available through the lattice library. Originally
developed as the trellis library, the implementation in R is known as lattice, although the
name “trellis” persists in some functions and documentation. All of the functions in the
lattice library use the formula interface that we’ve seen in classification and modeling
functions instead of the usual list of x and y values. Along with other useful features unique
to each function, all of the lattice functions accept a data= argument, making it convenient
to work with dataframes; by specifying the data frame name via this argument, you can
refer to the variables in the data frame without the data frame name. They also accept a
subset= argument, similar to the second argument to the subset function, to allow selection
of only certain cases when you are creating a plot. Finally, the lattice plotting functions
can produce what are known as conditioning plots. In a conditioning plot, several graphs,
all with common scaling, are presented in a single display. Each of the individual plots
is constructed using observations that have a particular value of a variable (known as the
conditioning variable), allowing complex relationships to be viewed more easily. To illustrate
the idea, let’s revisit the income versus literacy graph that we looked at when we first started
studying graphics. The lattice equivalent of the traditional plot command is xyplot. This
function accepts a plotting formula, and has some nice convenience functions not available
in the regular plot command. For example, the groups= argument allows specifying a
grouping variable; observations with different levels of this variable will be plotted with
different colors. The argumentauto.key=TRUE automatically shows which colors represent
which groups. So we could create our graph with the single statement:

> library(lattice)

> world = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/world2.txt’,

+ comment=’#’,na.strings=’.’)

> xyplot(income ~ literacy,data=world,groups=cont,auto.key=TRUE,

+ main=’Income vs. Literacy’))

The plot is shown below.
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One simple change we could make is to display the legend (created by auto.key=TRUE) in
3 columns. This can be acheived by changing the value of auto.key to auto.key=list(columns=3).
Many of the parameters to lattice functions can be changed by passing a list of named pa-
rameters. Here’s the updated call to lattice, and the result:

> xyplot(income ~ literacy,data=world,groups=cont,auto.key=list(columns=3))
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If you wish to finetune the appearance of lattice plots, you can modify most aspects
of lattice plots through the command trellis.par.set, and you can display the current
values of options with the command trellis.par.get. To explore possible modifications
of the trellis (lattice) environment, take a look at the output from

> names(trellis.par.get())

Any of the listed parameters can be changed through the trellis.par.set() command.
To illustrate the idea of a conditioning plot, let’s create a scatter plot like the previous

one, but, instead of using color to distinguish among the continents, we’ll use the continent
as a conditioning variable, resulting in a separate scatter plot for each continent. To use a
conditioning variable in any of the lattice commands, follow the formula with a vertical
bar (|) and the name of the conditioning variable. To get xyplot to display the value of the
conditioning variable, it helps if it’s a factor:

> world$cont = factor(world$cont)

> xyplot(income ~ literacy | cont,data=world)

The plot is shown below:
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5.6 Customizing the Panel Function

One of the basic concepts of lattice plots is the idea of a panel. Each separate graph that is
displayed in a multi-plot lattice graph is known as a panel, and for each of the basic types
of lattice plots, there’s a function called panel.plottype, where plottype is the type of
plot in question. For example, the function that actually produces the individual plots for
xyplot is called panel.xyplot. To do something special inside the panels, you can pass your
own panel function to the lattice plotting routines using the panel= argument. Generally,
the first thing such a function would do is to call the default panel plotting routine; then
additional operations can be performed with functions like panel.points, panel.lines,
panel.text. (See the help page for panel.functions to see some other possibilities.) For
example, in the income versus literacy plot, we might want to show the best regression line
that goes through the points for each continent, using the panel.lmline function. Here’s
how we could construct and call a custom panel function:

> mypanel = function(x,y,...){

+ panel.xyplot(x,y,...)

+ panel.lmline(x,y)

+ }

xyplot(income ~ literacy | cont,data=world,panel=mypanel)

The plot is shown below.
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As another example, consider again the Community Health Data risk and access to care
data set. We want to see if there is a relationship between the number of physicians in a
state, and the rate of Diabetes in that state. We’ll read it in as before, aggregate it, and
merge it with the state regions.

> risk = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/RISKFACTORSANDACCESSTOCARE.csv’)
> risk[risk==-1111.1] = NA
> avgs = aggregate(risk[,c(’Diabetes’,’Prim_Care_Phys_Rate’)],risk[’CHSI_State_Name’
],mean,na.rm=TRUE)
> avgs = merge(avgs,data.frame(state.name,region=state.region),by.x=’CHSI_State_Name’,by.y=1)

Notice that I used the variable number instead of the name in the call to merge. Let’s first
use color to represent the different regions.

> xyplot(Diabetes~Prim_Care_Phys_Rate,groups=region,data=avgs,auto.key=TRUE,

+ main=’Diabetes vs. Physician Rate by Region’)

Here’s the plot:
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Alternatively, we could place each region in a separate panel, and display the best fit
regression line:

> mypanel = function(x,y,...){

+ panel.xyplot(x,y,...)

+ panel.lmline(x,y)

+ }

> xyplot(Diabetes~Prim_Care_Phys_Rate|region,data=avgs,

+ main=’Diabetes vs. Physician Rate by Region’,panel=mypanel)

The plot appears below:
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By default, the lattice functions display their panels from bottom to top and left to right,
similar to the way points are drawn on a scatterplot. If you’d like the plots to be displaying
going from top to bottom, use the as.table=TRUE argument to any of the lattice plotting
functions.
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The lattice library is actually flexible enough to produce separate plots for each state:

> xyplot(Diabetes~Prim_Care_Phys_Rate|CHSI_State_Name,data=risk,

+ main=’Diabetes vs. Physician Rate by Region’)

Looking at the plot, we should make some elements of the plot smaller, namely the titles on
the strips and the points themselves:

> xyplot(Diabetes~Prim_Care_Phys_Rate|CHSI_State_Name,data=risk,

+ main=’Diabetes vs. Physician Rate by Region’,cex=.5,

+ par.strip.text=list(cex=.6))

This results in the following plot:
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Finally, let’s suppose that we want to break up the plots into two pages, each with 25
plots in a 5x5 arrangement. To get exactly 50 states, we’ll use the subset= argument of the
lattice functions to remove Alaska (for which there’s no data), and the layout= argument
to arrange the plots the way we want, and the page= argument to call a function at the end
of each page:

> xyplot(Diabetes~Prim_Care_Phys_Rate|CHSI_State_Name,data=risk,

+ main=’Diabetes vs. Physician Rate by Region’,

+ subset=CHSI_State_Name != ’Alaska’,

+ layout=c(5,5,2),page=readline)

You can run this example to see the two pages.
Now that we’ve seen some of the basics of how the lattice library routines work, we’ll take

a look at some of the functions that are available. Remember that there are usually similar
alternatives available among the traditional graphics functions, so you can think of these as
additional choices that are available, and not necessarily the only possibility for producing
a particular type of plot.
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5.7 Univariate Displays

Univariate displays are plots that are concerned with the distribution of a single variable,
possibly comparing the distribution among several subsamples of the data. They are espe-
cially useful when you are first getting acquainted with a data set, since you may be able
to identify outliers or other problems that could get masked by more complex displays or
analyses.

5.7.1 dotplot

A simple but surprisingly useful display for small to moderate amounts of univariate data
is the dotplot. Each observation’s value for a variable is plotted as a dot along a line that
spans the range of the variable’s value. In the usual case, there will be several such lines, one
for each level of a grouping variable, making it very easy to spot differences in the variable’s
distribution for different groups.

To illustrate, we’ll use a a data set from a wine recognition experiment where a number
of chemical and other measurements were taken on wines from three cultivars. The data is
available at http://www.stat.berkeley.edu/classes/s133/data/wine.data; information about
the variables is at http://www.stat.berkeley.edu/classes/s133/data/wine.names Suppose we
are interested in comparing the alcohol level of wines from the three different cultivars:

> wine = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/wine.data’,header=FALSE)
> names(wine) = c("Cultivar", "Alcohol", "Malic.acid", "Ash", "Alkalinity.ash",
+ "Magnesium", "Phenols", "Flavanoids", "NF.phenols", "Proanthocyanins",
+ "Color.intensity","Hue","OD.Ratio","Proline")
> wine$Cultivar = factor(wine$Cultivar)
> dotplot(Cultivar~Alcohol,data=wine,ylab=’Cultivar’)

The plot is shown below.
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5.7.2 bwplot

The bwplot produces box/whisker plots. Unfortunately, notched boxplots are not currently
available using bwplot. To create a box/whisker plot of Alcohol for the three cultivars, we
can use the same formula we passed to dotplot:

> bwplot(Alcohol~Cultivar,data=wine,xlab=’Cultivar’,ylab=’Alcohol’)

The plot is shown below.
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For both dotplot and bwplot, if you switch the roles of the variables in the formula, the
orientation of the plot will change. In other words, the lines in the dotplot will be displayed
vertically instead of horizontally, and the boxplots will be displayed horizontally instead of
vertically.

As a second example, consider the literacy rates for the different continents in the world
data set. We can compare these rates using the following command:

> bwplot(literacy~cont,data=world,main=’Literacy Rates by Continent’)

The plot is shown below
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5.7.3 densityplot

As its name implies, this function produces smoothed plots of densities, similar to passing a
call to the density function to the plot function. To compare multiple groups, it’s best to
create a conditioning plot:

> densityplot(~Alcohol|Cultivar,data=wine)

Notice that, for plots like this, the formula doesn’t have a left hand side. The plot is shown
below:
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As another example of a custom panel function, suppose we wanted to eliminate the
points that are plotted near the x-axis and replace them with what is known as a rug -
a set of tickmarks pointing up from the x-axis that show where the observations were. In
practice, many people simply define panel functions like this on the fly. After consulting the
help pages for panel.densityplot and panel.rug, we could replace the points with a rug
as follows:

> densityplot(~Alcohol|Cultivar,data=wine,panel=function(x,...){

+ panel.densityplot(x,plot.points=FALSE)

+ panel.rug(x=x)

+ })

Of course, if you find it easier or more convenient to define a custom panel function separate
from the call to the plotting function, you can use that method. Here’s the result:
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5.8 barchart

A bar chart is like a histogram for categorical data. The barchart function expects its input
data frame to already have the numbers of observations for each grouping tabulated. For
the simplest case of a single variable with no conditioning variable, you can use a call to
table on the right hand side of the tilda to produce a vertical bar chart:

> barchart(~table(cont),data=world)

The plot is shown below.
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For more complex barcharts, a data frame containing the counts to be plotted needs to be
constructed. This can be done easily using the table in conjunction with as.data.frame.
To illustrate, we’ll return to the movies data set which has the release dates and box office
receipts for some of the all-time most popular movies. Suppose we want to see if the distri-
bution of the day of the week the movies opened on has changed over time. First, we’ll read
the data and create a grouping variable for different time periods:

> movies = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/movies.txt’,as.is=TRUE,sep=’|’)
> movies$box = as.numeric(sub(’\\$’,’’,movies$box))
> movies$date = as.Date(movies$date,’%B %d, %Y’)
> movies$year = as.numeric(format(movies$date,’%Y’))
> movies$weekday = factor(weekdays(movies$date),
+ levels=c(’Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’,’Saturday’,’Sunday’))
> movies$yrgrp = cut(movies$year,c(1936,1980,1985,1990,1995,2000,2006,2011),
+ labels=c(’1937-1979’,’1980-1984’,’1985-1990’,’1991-1995’,’1996-2000’,’2001-2006’,’2007-2010’))
> counts = as.data.frame(table(yrgrp=movies$yrgrp,weekday=movies$weekday))
> barchart(Freq~weekday|yrgrp,data=counts,scales=list(x=list(rot=90)),as.table=TRUE)

The plot is shown below.
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If the roles of Freq and weekday were reversed in the previous call to barchart, the bars
would be drawn horizontally instead of vertically.

5.9 3-D Plots: cloud

The three-dimensional analog of the two-dimensional xyplot in the lattice library is cloud.
By using a conditioning variable, cloud can allow us to consider the relationship of four
variables at once. To illustrate, here’s conditioning plot showing the relationship among four
variables from the wine data frame:

cloud(Alcohol ~ Color.intensity + Malic.acid|cut(Hue,4),data=wine)

The plot is shown below:
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One important point about lattice graphics is that they operate slightly differently from
R’s traditional graphics. When you type a lattice command at the top level R session, it’s
R’s automatic printing that actually displays the plot. So if you’re calling a lattice function
in a function or source file, you’ll need to surround the call with a call to the print function,
or store the result of the lattice plot in a variable, and print that variable.
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Chapter 6

Spreadsheets and Databases

6.1 Spreadsheets

Spreadsheets, in particular the ”xls” format used by Microsoft Excel, are one of the most
common (if not the most common) methods for transfering data from one organization to
another. When you download or receive a spreadsheet, it’s often a good idea to make sure
that it really is a spreadsheet. Comma-separated files, which are easily read into spreadsheet
programs, are often erroneously labeled “spreadsheets” or “Excel files”, and may even have
an incorrect extension of ".xls". In addition, Excel spreadsheets are often used to hold
largely textual information, so simply finding a spreadsheet that appears to contain data
can be misleading. Furthermore, many systems are configured to use a spreadsheet program
to automatically open files with an extension of ".csv", further adding to the confusion.

For many years, the only reliable way to read an Excel spreadsheet was with Microsoft
Excel, which is only available on Windows and Mac OS computers; users on UNIX were
left with no option other than finding a different computer. In the last few years, a number
of programs, notably gnumeric and OpenOffice.org (usually available through the ooffice

command) have been developed through careful reverse engineering to allow Unix users
the ability to work with these files. To insure its advantage in the marketplace, Microsoft
doesn’t publish a detailed description of exactly how it creates its spreadsheet files. There are
often “secret” ways of doing things that are only known to the developers within Microsoft.
Reverse engineering means looking at the way a program handles different kinds of files, and
then trying to write a program that imitates what the other program does. The end result
of all this is that there are several ways to get the data from spreadsheet files into R.

Spreadsheets are organized as a collection of one or more sheets, stored in a single file.
Each of the sheets represents a rectangular display of rows and columns, not unlike a data
frame. Unfortunately, people often embed text, graphics and pictures into spreadsheets, so
it’s not a good idea to assume that a spreadsheet has the consistent structure of a data frame
or matrix, even if portions of it do appear to have that structure. In addition, spreadsheets
often have a large amount of header information (more than just a list of variable names),
sometimes making it challenging to figure out the correct variable names to use for the
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different columns in the spreadsheet.
Our main concern will be in getting the information from the spreadsheet into R: we

won’t look at how to work with data within Excel.
If you are simply working with a single Excel spreadsheet, the easiest way to get it into R

is to open the spreadsheet with any compatible program, go to the File menu, and select Save
As. When the file selector dialog appears, notice that you will be given an option of different
file format choices, usually through a drop down menu. Choose something like “Tab delimited
text”, or “CSV (Comma separated values)”. If any of the fields in the spreadsheet contain
commas, tab delimited is a better choice, but generally it doesn’t matter which one you use.
Now, the file is (more or less) ready to be read into R, using read.csv or read.delim. A
very common occurence is for fields stored in a spreadsheet to contain either single or double
quotes, in which case the quote= argument can be used to make sure R understands what
you want. Spreadsheets often arrange their data so that there are a different number of valid
entries on different lines, which will confuse read.table; the fill= argument may be of use
in these cases. Finally, as mentioned previously, there are often multiple descriptive lines
of text at the top of a spreadsheet, so some experimentation with the skip= argument to
read.table may be necessary. Alternatively, you can simply delete those lines from the file
into which you save the tab- or comma-delimited data.

As you can see, this is a somewhat time-consuming process which needs to be customized
for each spreadsheet. It’s further complicated by the fact that it only handles one sheet of a
multi-sheet spreadsheet; in those cases the process would need to be repeated for each sheet.
If you need to read a number of spreadsheets, especially ones where you need to access the
data from more than one sheet, you need to use a more programmable solution.

R provides several methods to read spreadsheets without having to save them as tab-
or comma-delimited files. The first is the read.xls function in the gdata library. This
function uses a Perl program (included as part of the library), that converts the spreadsheet
to a comma-separated file, and then uses read.csv to convert it to a data frame. In order
for this library to work, perl must also be installed on the computer that’s running R. perl
will be installed on virtually any Unix-based computer (including Mac OSX), but will most
likely not be on most Windows computers (although once perl is installed on a Windows
system, the read.xls function will work with no problems). However there is a Windows-
only package , xlsReadWrite, available from CRAN which can both read and write Excel
files. (On other platforms, the dataframes2xls package provides a write.xls function.)

Another method utilizes a facility known as ODBC (Open DataBase Connectivity), which
is a method that allows different programs that handle data to communicate with each other.
The ODBC interface uses a query language known as SQL, which we’ll study later, so for
now I’ll just describe the use of read.xls. (Remember, for just one or two data tables from
a spreadsheet, saving as a tab- or comma-delimited file and using the correct read.table

variant will usually be the easiest route. )
Since read.xls does nothing more than convert the spreadsheet to comma-separated

form and then call read.csv, the guidelines for using it are very similar to the normal use
of read.csv. The most useful feature of read.xls is that it accepts an optional sheet=
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argument, allowing multiple sheets from a spreadsheet file to be automatically read.
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As a simple example, consider a spreadsheet with listings for the top 200 educational
institutions in the US with respect to the number of postdoctoral students, which I found
at http://mup.asu.edu/Top200-III/2 2005 top200 postdoc.xls

Here’s a view of how the data looks in the UNIX gnumeric spreadsheet:

Here are the first few lines of the file created when I use File-¿Save As, and choose the
CSV format:

"The Top 200 Institutions--Postdoctoral Appointees

(2005)",,,,,

,,,,,

"Top 50 Institutions

in Postdoctoral Appointees

(2005)","Number of Postdocs","National Rank","Control Rank",,"Institutional

Control"

"Harvard University",4384,1,1,,Private

"Johns Hopkins University",1442,2,2,,Private

"Stanford University",1259,3,3,,Private

"University of California - Los Angeles",1094,4,1,,Public

"Yale University",1012,5,4,,Private

"University of California - San Francisco",1003,6,2,,Public

"University of Washington - Seattle",963,7,3,,Public

"University of California - San Diego",886,8,4,,Public

"Massachusetts Institute of Technology",851,9,5,,Private

"University of Pennsylvania",815,10,6,,Private

"Columbia University",793,11,7,,Private
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"University of California - Berkeley",774,12,5,,Public

While the data itself looks fine, it’s unlikely that the header information will be of much use.
Since there are 7 header lines, I could use the following statements to read the data into R:

> fromcsv = read.csv(’2_2005_top200_postdoc.csv’,header=FALSE,

+ skip=7,stringsAsFactors=FALSE)

> dim(fromcsv)

[1] 206 6

> head(fromcsv)

V1 V2 V3 V4 V5 V6

1 Harvard University 4384 1 1 NA Private

2 Johns Hopkins University 1442 2 2 NA Private

3 Stanford University 1259 3 3 NA Private

4 University of California - Los Angeles 1094 4 1 NA Public

5 Yale University 1012 5 4 NA Private

6 University of California - San Francisco 1003 6 2 NA Public

The fifth column can be removed (take a look at the spreadsheet to see why), and we should
supply some names to the spreadsheet. One problem with this spreadsheet is that it repeats
its header information several times part way through the spreadsheet. These lines will have
to be removed manually. The can be identified by the fact that the sixth variable should be
either Public or Private, and could be eliminated as follows:

> fromcsv = fromcsv[fromcsv$V6 %in% c(’Public’,’Private’),]

The fifth variable can be removed by setting it to NULL, and the columns can be named.

> fromcsv$V5 = NULL

> names(fromcsv) = c(’Institution’,’NPostdocs’,’Rank’,’ControlRank’,’Control’)

Finally, a check of the columns shows that, because of the header problem, the numeric
variables explicitly need to be converted:

> sapply(fromcsv,class)

Institution NPostdocs Rank ControlRank Control

"character" "character" "character" "character" "character"

> fromcsv[,c(2,3,4)] = sapply(fromcsv[,c(2,3,4)],as.numeric)

A similar procedure could be carried out with read.xls, although it might take some
experimentation with skip= to make things work properly. The only other difference between
read.xls and read.csv for this example is that a space mysteriously appeared at the end
of one of the variables when using read.xls:

library(gdata)

fromreadxls = read.xls(’2_2005_top200_postdoc.xls’,stringsAsFactors=FALSE,
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header=FALSE,skip=2)

fromreadxls = fromreadxls[-1,-c(1,6)]

fromreadxls$V7 = sub(’ $’,’’,fromreadxls$V7)

fromreadxls = fromreadxls[fromreadxls$V7 %in% c(’Public’,’Private’),]

fromreadxls[,c(2,3,4)] = sapply(fromreadxls[,c(2,3,4)],as.numeric)

names(fromreadxls) = c(’Institution’,’NPostdocs’,’Rank’,’ControlRank’,’Control’)

6.2 Writing Spreadsheets

As with reading a spreadsheet, one option for writing a spreadsheet is to write out a comma-
or tab-separated file, and to use a spreadsheet program to read it and then save it as a “.xls”
file. The write.csv, and write.table functions are useful in this regard. For example, we
could create a comma-seperated version of the world data frame as follows:

> write.csv(world,file=’world.csv’)

Here’s the result of reading the csv file with a spreadsheet program:

The File->Save As menu would allow saving the spreadsheet in an appropriate format.
To automate the process of writing spreadsheets, the Windows-only xlsReadWrite pack-

age provides a write.xls function; for other operating systems, this function is provided by
the dataframe2xls package.
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6.3 Databases

A database is a collection of data, usually with some information (sometimes called meta-
data) about how the data is organized. But many times when people refer to a database,
they mean a database server, which is similar to a web server, but responds to requests for
data instead of web pages.

By far the most common type of database server is known a a relational database manage-
ment system (RDBMS), and the most common way of communicating with such a database
is a language known as SQL, which is an acronym for Structured Query Language. Some
examples of database systems that use SQL to communicate with an RDBMS include Or-
acle, Sybase, Microsoft SQL Server, SQLite, MySQL and Postgres. While there is an SQL
standard, each database manufacturer provides some additional features, so SQL that works
with one database is not guaranteed to work on another. We’ll try to stick to aspects of
SQL that should be available on most SQL based systems.

A Database consists of one or more tables, which are generally stored as files on the
computer that’s running the DBMS. A table is a rectangular array, where each row represents
an observation, and each column represents a variable. Most databases consists of several
tables, each containing information about one aspect of the data. For example, consider a
database to hold information about the parts needed to build a variety of different products.
One way to store the information would be to have a data table that had the part id, its
description, the supplier’s name, and the cost of the part. An immediate problem with this
is scheme concerns how we could store information about the relation between products and
parts. Furthermore, if one supplier provided many different parts, redundant information
about suppliers would be repeated many times in the data table. In the 1970s when database
technology was first being developed, disk and memory space were limited and expensive,
and organizing data in this way was not very efficient, especially as the size of the data base
increased. In the late 1970s, the idea of a relational database was developed by IBM, with the
first commercial offering coming from a company which is now known as Oracle. Relational
database design is governed by a principle known as normalization. While entire books are
devoted to the subject, the basic idea of normalization is to try and remove redundancy
as much as possible when creating the tables that make up a data base. Continuing the
parts example, a properly normalized database to hold the parts information would consist
of four tables. The first would contain a part id to uniquely identify the part, its description,
price and an id to identify the supplier. A second table would contain the supplier codes
and any other information about the supplier. A third table would contain product ids and
descriptions, while the final table would have one record for each part used in each product,
stored as pairs of product id and part id. The variables that link together the different
databases are refered to as keys, or sometimes foreign keys. Clearly, making sure that there
are keys to link information from one table to another is critical to the idea of a normalized
data base. This allows large amounts of information to be stored in manageably sized tables
which can be modified and updated without having to change all of the information in all
of the tables. Such tables will be efficient in the amount of disk and memory resources that
they need, which was critical at the time such databases were developed. Also critical to
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this scheme is a fast and efficient way of joining together these tables so that queries like
”Which suppliers are used for product xyz?” or ”What parts from Acme Machine Works
cost between $2 and $4” or ”What is the total cost of the parts needed to make product
xyz?”. In fact, for many years the only programs that were capable of combining data from
multiple sources were RDBMSs.

We’re going to look at the way the SQL language is used to extract information from
RDBMSs, specifically the open source SQLite data base (http://sqlite.org) (which doesn’t
require a database server), and the open source MySQL data base (http://www.mysql.com)
which does. In addition we’ll see how to do typical database operations in R, and how to
access a database using SQL from inside of R.

One of the first questions that arises when thinking about databases is “When should I
use a database?” There are several cases where a database makes sense:

1. The only source for the data you need may be an existing database.

2. The data you’re working with changes on a regular basis, especially if it can poten-
tially be changed by many people. Database servers (like most other servers) provide
concurrency, which takes care of problems that might otherwise arise if more than one
person tries to access or modify a database at the same time.

3. Your data is simply too big to fit into the computer’s memory, but if you could con-
veniently extract just the parts you need, you’d be able to work with the data. For
example, you may have hundreds of variables, but only need to work with a small
number at at time, or you have tens of thousands of observations, but only need to
work with a few thousand at a time.

One of the most important uses of databases in the last ten years has been as back ends
to dynamic web sites. If you’ve ever placed an order online, joined an online discussion
community, or gotten a username/password combination to access web resources, you’ve
most likely interacted with a database. In addition both the Firefox and Safari browsers us
SQLite databases to store cookies, certificates, and other information.

There are actually three parts to a RDBMS system: data definition, data access, and
privelege management. We’re only going to look at the data access aspect of databases; we’ll
assume that a database is already available, and that the administrator of the database has
provided you with access to the resources you need. You can communicate with a database
in at least three different ways:

1. You can use a command line program that will display its results in a way similar to
the way R works: you type in a query, and the results are displayed.

2. You can use a graphical interface (GUI) that will display the results and give you
the option to export them in different forms, such as a comma-separated data file.
One advantage to these clients is that they usually provide a display of the available
databases, along with the names of the tables in the database and the names of the
columns within the tables.
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3. You can use a library within R to query the database and return the results of the query
into an R data frame. For use with MySQL library, the RMySQL library is available for
download from CRAN; for SQLite, the RSQLite package is available. When you install
either, the DBI library, which provides a consistent interface to different databases, will
also be installed.

It’s very important to understand that SQL is not a programming language – it’s said
to be a declarative language. Instead of solving problems by writing a series of instructions
or putting together programming statements into functions, with SQL you write a single
statement (query) that will return some or all of the records from a database. SQL was
designed to be easy to use for non-programmers, allowing them to present queries to the
database in a language that is more similar to a spoken language than a programming
language. The main tool for data access is the select statement. Since everything needs
to be done with this single statement, descriptions of its syntax can be quite daunting.
For example, here’s an example that shows some of the important features of the select
statement:

SELECT columns or computations

FROM table

WHERE condition

GROUP BY columns

HAVING condition

ORDER BY column [ASC | DESC]

LIMIT offset,count;

(The keywords in the above statement can be typed in upper or lower case, but I’ll generally
use upper case to remind us that they are keywords.) MySQL is case sensistive to table and
column names, but not for commands. SQLite is not case sensitive at all. SQL statements
always end with a semi-colon, but graphical clients and interfaces in other languages some-
times don’t require the semi-colon. Fortunately, you rarely need to use all of these commands
in a single query. In fact, you may be able to get by knowing just the command that returns
all of the information from a table in a database:

SELECT * from table;

6.4 Working with Databases

When you’re not using a graphical interface, it’s easy to get lost in a database considering
that each database can hold multiple tables, and each table can have multiple columns.
Three commands that are useful in finding your way around a database are:

MySQL SQLite
SHOW DATABASES; .databases
SHOW TABLES IN database; .tables
SHOW COLUMNS IN table; pragma table info(table)
DESCRIBE table; .schema table
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For use as an example, consider a database to keep track of a music collection, stored as
an SQLite database in the file albums.db. We can use the commands just shown to see how
the database is organized. In class, I sometimes used some of the graphical SQLite clients
that are mentioned on the Class Resources page. Here, I’m using the UNIX command-line
client called sqlite3:

springer.spector$ sqlite3 albums.db

SQLite version 3.4.2

Enter ".help" for instructions

sqlite> .mode column

sqlite> .header on

sqlite> .tables

Album Artist Track

title TEXT

);

sqlite> .schema Album

CREATE TABLE Album

( aid INTEGER,

alid INTEGER,

title TEXT

);

CREATE INDEX jj on Album(alid);

sqlite> .schema Artist

CREATE TABLE Artist

( aid INTEGER,

name TEXT

);

CREATE INDEX ii on Artist(aid);

Studying these tables we can see that the organization is as follows: each track in the
Track table is identified by an artist id (aid) and an album id (alid). To get the actual
names of the artists, we can link to the Artist database through the aid key; to get the
names of the albums, we can link to the Album table through the alid key. These keys are
integers, which don’t take up very much space; the actual text of the album title or artist’s
name is stored only once in the table devoted to that purpose. (This is the basic principle
of normalization that drives database design.) The first thing to notice in schemes like this
is that the individual tables won’t allow us to really see anything iteresting, since they just
contain keys, not actual values; to get interesting information, we need to join together
multiple tables. For example, let’s say we want a list of album titles and artist names. We
want to extract the Name from the Artist table and combine it with Title from the Album

table, based on a matching value of the aid variable:

sqlite> .width 25 50

sqlite> SELECT Artist.name, Album.title FROM Artist, Album
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...> WHERE Artist.aid = Album.aid;

Gloria Wood Wood by the Fire

Bobby Hackett Jazz Session

Bobby Hackett 1943-1947

Bobby Hackett Sextet

Bobby Hackett Blues With A Kick

Bobby Hackett Coast Concert

Bobby Hackett Creole Cookin’

Bobby Hackett In Concert

George Wettling’s Jazz Ba Jazz Session

Jimmy Forrest most much!

Jimmy Forrest Night Train

Jimmy Forrest Sit Down And Relax With Jimmy Forrest

Jimmy Forrest Soul Street

Jimmy Forrest Out of the Forrest (1961)

Jimmy Forrest Forrest Fire

Jimmy Forrest Black Forrest

Mary Lou Williams 1927-1940

Mary Lou Williams Mary Lou Williams Presents Black Christ of the And

. . .

Queries like this are surprisingly fast – they are exactly what the database has been designed
and optimized to acheive.

There are a few conveniences that you can use in SQL to save typing and improve the
appearance of the output. You can use the AS keyword to provide an alternative name for a
database for use within a query, or to rename a column so that it will display with a different
heading. The previous query could have been written:

sqlite> SELECT ar.name AS Artist, al.title AS ’Album Name’

...> FROM Artist AS ar, Album AS al

...> WHERE ar.aid = al.aid LIMIT 200,10;

Artist Album Name

------------------------- --------------------------------------------------

Mundell Lowe TransitWest

Mundell Lowe A Grand Night For Swinging

Mundell Lowe The Mundell Lowe Quartet

Duke Ellington Jazz Violin Session

Duke Ellington Happy-Go-Lucky Local

Duke Ellington The Great Paris Concert - Disc 2

Duke Ellington The Great Paris Concert

Duke Ellington Piano Reflections

Duke Ellington Continuum

Duke Ellington At Newport
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Note the new headings that appear in the output. The LIMIT keyword allows you to display
just some of the results. Given a single number, it prints that many lines starting from the
beginning; given two numbers it starts at the first number and prints as many records as
specified in the second number. Combining two data sets in this way is a very common
operation, known as an inner join. An alternative way of expressing the query we’re looking
at would be as follows:

SELECT ar.name AS Artist, al.title AS ’Album Name’

FROM Artist AS ar inner join Album AS al

using(aid) limit 200,10;

When the two tables being joined share exactly one common column (key), the operation is
sometimes known as a natural join. Since this is the case with the Album and Artist tables,
yet another way to express the query is

SELECT ar.name AS Artist, al.title AS ’Album Name’

FROM Artist AS ar natural join Album AS al limit 200,10;

Note that if the key used to join two tables does not have the same name in each of the
tables, you must use the previous method that specifies the matching condition in the WHERE

clause.
SQL provides some convenient facilities for aggregating values based on counts, sums,

averages and minimums and maximums, through the COUNT, SUM, AVG, MIN and MAX functions.
To find the number of records that match a certain condition, the expression COUNT(*) can
be used. For example, to find the number of observations in the Track data set, we could
use:

sqlite> SELECT COUNT(*) from Track;

COUNT(*)

-------------------------

54396

To count how many tracks were longer than 1000, we could use

sqlite> SELECT COUNT(*) from Track WHERE length > 1000;

COUNT(*)

-------------------------

129

To find the track with the longest length in the Track table, we could try:

sqlite> SELECT MAX(length) from Track;

MAX(length)

-------------------------

2049
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This gives us the length of the maximum track, but not its title. The easiest way to get
around this is to use a subquery. In SQL, a subquery is a SELECT statement surrounded by
parentheses. You can use the values returned by the subquery in WHERE or HAVING clauses.
So to find the track with the maximum length, we could use

sqlite> SELECT title,length FROM Track WHERE length = (SELECT max(length) FROM Track);

title length

------------------------- --------------------------------------------------

Hues Of Melanin 2049

Of course, this query would be more useful if we knew the name of the album and artist that
the track came from:

sqlite> .width 20 25 25 5

sqlite> SELECT tr.title,al.title,ar.name,tr.length

...> FROM Track as tr, Album as al, Artist as ar

...> WHERE tr.alid = al.alid and tr.aid = al.aid and ar.aid = al.aid

...> AND length = (SELECT max(length) FROM Track);

title title name lengt

-------------------- ------------------------- ------------------------- -----

Hues Of Melanin Live Sam Rivers Trio 2049

When you construct queries like this, it’s extremely important to list all of the WHERE con-
ditions that need to be satisfied to avoid getting meaningless duplicate records.

As another example of a subquery, suppose we want to count how many albums we have
for each artist, and then tabulate how many artists there are with one album, two albums,
three albums, and so on. The first part is fairly easy:

sqlite> SELECT aid,count(aid) FROM Album GROUP BY aid limit 100;

aid count(aid)

-------------------- -------------------------

1 1

2 1

3 1

4 1

5 1

6 1

. . .

We can use this result as a subquery to see the distribution of albums per artist:

mysql> SELECT ct,count(ct) FROM

-> (SELECT aid,count(aid) AS ct FROM Album GROUP BY aid)

-> GROUP by ct ORDER by ct;

ct count(ct)
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-------------------- -------------------------

1 2303

2 302

3 137

4 72

5 46

6 36

7 25

8 25

9 15

. . .

When using subqueries in this way, some databases may require that the subquery is given
an alias. In such a case, a query like the following could be used:

SELECT ct,count(ct) FROM

(SELECT aid,count(aid) AS ct FROM Album GROUP BY aid) AS x

GROUP by ct ORDER by ct;

One of the most useful features of SQL is that it can summarize large data sets, producing
a smaller result set that can be more easily handled by other programs. For example, suppose
we are interested in the total length (in seconds) of the tracks on each album. Instead of
processing all the tracks outside of the database, we can create a summarized version of
the database that has the lengths already summarized. Very few programs can operate on
databases as fast as SQL, so operations like this can save lots of processing time. To perform
operations like this we can use the GROUP BY clause:

sqlite> SELECT alid,SUM(length) AS TotalTime FROM Track GROUP BY alid limit 50;

alid TotalTime

-------------------- -------------------------

1 2551

2 3710

3 2402

4 3339

5 3588

6 3207

7 4268

8 4409

9 4120

10 4249

. . .

Once again, the results would probably be more useful with the title of the album and the
artist included. In this example, we can also sort them by the total time of the album:
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sqlite> .header on

sqlite> .mode column

sqlite> .width 20 25 25 5

sqlite> SELECT ar.name,al.title,SUM(tr.length) AS TotalTime

...> FROM Track as tr, Artist as ar,Album as al

...> WHERE ar.aid = al.aid AND al.alid = tr.alid

...> GROUP BY tr.alid

...> ORDER by TotalTime DESC limit 100;

ar.name al.title TotalTime

-------------------- ------------------------- -------------------------

Jimmy Giuffre/Marty West Coast Scene 13856

Curtis Fuller Complete Blue Note UA Ses 11529

Clifford Brown At The Cotton Club (1956) 11282

Count Basie American Decca Recordings 11261

Onzy Matthews Mosaic Select: Onzy Matth 9624

Cannonball Adderley Sophisticated Swing 9486

Thelonius Monk Live at the It Club 9289

. . .

In this particular example, instead of processing the 53000 or so tracks outside of SQL, we’ve
reduced what we have to work with to around 5000 records, which could make the overall
processing much faster. Exactly which aggregation functions will be available depends on
the database you’re using.
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6.5 Regular Expressions in SQL

For things like partial matching of strings, all flavors of SQL provide the LIKE operator,
which allows limited wildcard matching. With the LIKE operator the percent sign (%)
stands for 0 or more characters, and the underscore (_) stands for exactly one. Many
modern databases (MySQL included) provide the RLIKE operator, which uses regular ex-
pressions. For the remainder of these examples, we’ll use the MySQL database running on
springer.berkeley.edu. We’ll write a regular expression to find all the artists who have
exactly three words in their names.

springer.spector$ mysql -u stat133 -p albums

Enter password:

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 11

Server version: 5.0.51a-3ubuntu5.4-log (Ubuntu)

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> SELECT name FROM Artist

-> WHERE name RLIKE ’^[A-Za-z]+ [A-Za-z]+ [A-Za-z]+$’;

+----------------------------------+

| name |

+----------------------------------+

| Mary Lou Williams |

| Dexter Gordon Quartet |

| Modern Jazz Septet |

| Eddie South Trio |

| Gerry Mulligan Tentette |

| Bill Harris rarities |

| Jimmy Heath Sextet |

| Horae Parlan Trio |

Note that in order to access the MySQL database, a username and password needed to be
used.

If you look at the original definition of the SELECT statement, you’ll notice the HAVING

clause which we have not yet covered. The basic difference between HAVING and WHERE is
that, due to the timing of operations in the database, we can’t use computed variables (like
SUM and AVG) in the WHERE clause, but you can in the HAVING clause. Suppose we wanted
to find the artists for which there were more than five albums in the database. A first try
might be as follows:
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mysql > SELECT aid,COUNT(aid) as count FROM Album

-> WHERE count > 5

-> GROUP BY aid;

ERROR 1054 (42S22): Unknown column ’count’ in ’where clause’

Since the WHERE clause doesn’t have access to columns you’ve created through computations,
MySQL can’t find the computed variable (count). To fix this, add a HAVING clause after the
GROUP BY clause:

mysql> SELECT aid,COUNT(aid) as count FROM Album

-> GROUP BY aid

-> HAVING count > 5;

+------+-------+

| aid | count |

+------+-------+

| 0 | 6 |

| 14 | 6 |

| 20 | 9 |

| 24 | 6 |

| 40 | 15 |

| 74 | 6 |

| 92 | 6 |

| 101 | 6 |

| 107 | 9 |

. . .

Of course, queries like this are infinitely more useful if the bring in the relevant information
from other tables:

mysql> SELECT ar.name as Artist,COUNT(al.alid) AS count

-> FROM Artist as ar, Album as al

-> WHERE ar.aid = al.aid

-> GROUP BY al.aid HAVING count > 5;

| Abdullah Ibrahim | 6 |

| Ahmad Jamal | 9 |

| Al Cohn | 6 |

| Al Haig | 15 |

| Andre Previn | 6 |

| Anita O’Day | 6 |

| Archie Shepp | 6 |

. . .
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6.6 Accessing databases in R

To provide consistent access to different databases, R uses an intermediate layer of commu-
nication known as the DBI (Data Base Interface) library. As we’ve seen before, different
commands are necessary to get information about different databases, so the DBI layer pro-
vides a set of routines that will work identically for all databases. Some of these routines
are described in the following table.

dbConnect connect to a database
dbDisconnect close the connection to a database
dbExistsTable returns TRUE or FALSE
dbGetQuery send a query to the database and get the results
dbListTables shows all the tables in a database
dbListFields shows the names of columns in a database
dbSendQuery send a query to the database and use fetch to get results
dbWriteTable stores a data frame in a database

To let the DBI layer know what type of database you are using, you pass a string (like
’MySQL’ or ’SQLite’) to the dbDriver function. This will return an object which can be
passed to dbConnect to make a connection to the database. dbConnect returns a connection
object which is passed to all the other routines so that they can communicate with the
database you are using.

For example, to connect to the albums SQLite database, we’d use the following state-
ments:

library(RSQLite)

drv = dbDriver(’SQLite’)

con = dbConnect(drv,db=’albums.db’)

Since SQLite doesn’t require a database server, you can easily create SQLite databases
using dbWriteTable. For very large data sets, you can process the data in chunks, using the
append= option of dbWriteTable.

To use MySQL, you must have a valid username and password. For the MySQL database
running on springer.berkeley.edu, you’d need to use the following statements:

drv = dbDriver(’MySQL’)

con = dbConnect(drv,dbname=’albums’,user=’stat133’,pass=’T0pSecr3t’)

If you’re using an SCF machine, you’d need to specify a hostname (springer) when con-
necting; for non-SCF machines, you would set up an SSH tunnel and use a hostname of
’127.0.0.1’.

Once you get the connection object from dbConnect you can use it repeatedly to make as
many queries as you need, and the functions you use are the same, regardless of the nature
of the underlying database.

It’s up to you to decide how much of the work you want to do through the database,
and how much you’ll do in R. For example, suppose we want to find albums in the albums
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database whose total time (sum of the length variable in the Track table) is between 2400
and 2700 seconds, displayed in descending order of total time.

One approach (after loading the library and making the connection to the database)
would be to do all the work in the database. Notice that this may be your only option if the
database you’re dealing with is too large to fit into R.

> albums = dbGetQuery(con,statement=’SELECT al.title,ar.name,SUM(tr.length) AS tot

+ FROM Album AS al,Artist AS ar,Track AS tr

+ WHERE tr.alid = al.alid AND tr.aid = ar.aid AND tr.aid = al.aid

+ GROUP BY tr.alid

+ HAVING tot BETWEEN 2400 AND 2700 ORDER BY tot DESC’)

> head(albums)

title name tot

1 Blues Groove Tiny Grimes & Coleman Hawkins 2699

2 I Need Some Money Eddie Harris 2699

3 Young Chet Chet Baker 2699

4 Up & Down Horace Parlan 2698

5 Arcadia Shuffle Roy Eldridge 2697

6 Night Dance Jimmy Giuffre 2697

It’s usually most convenient to spread out the query over multiple lines, but the entire
query could be passed as one long string. The dbGetQuery function gets the results of the
query and puts them into a data frame, in this case called albums.

Another way to find the albums with total time between 2400 and 2700 would be to use
SQL to get the total time of all the albums, and then use the subset function in R to get
the ones in the desired time range:

> albums = dbGetQuery(con,statement=’SELECT al.title,ar.name,

+ SUM(tr.length) AS "Total Time"

+ FROM Album AS al,Artist AS ar,Track AS tr

+ WHERE tr.alid = al.alid AND tr.aid = ar.aid AND tr.aid = al.aid

+ GROUP BY tr.alid’)

> myalbums = subset(albums,‘Total Time‘ > 2400 & ‘Total Time‘ < 2700)

> myalbums = myalbums[order(myalbums$"Total Time",decreasing=TRUE),]

> head(myalbums)

title name Total Time

821 Blues Groove Tiny Grimes & Coleman Hawkins 2699

2206 I Need Some Money Eddie Harris 2699

5632 Young Chet Chet Baker 2699

5337 Up & Down Horace Parlan 2698

418 Arcadia Shuffle Roy Eldridge 2697

3390 Night Dance Jimmy Giuffre 2697

Here I used a more descriptive name for the total time, namely Total Time. Note that,
since there’s a space in the variable name, I need to surround it with backquotes (‘) in the
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subset function, but when I refer to the variable in the order function, I used ordinary
quotes. Backquotes will work in either case.

At the other end of the extreme, you could read in the entire database and work with
it entirely in R. This may not be the wisest approach, because if the database is too large,
you may have problems. Working with the data in this way, however will allow us to see
the R equivalent of some of the database operations we’ve been studying. Once again, I’m
assuming that the RMySQL library has been loaded, and a connection object has been obtained
through a call to dbConnect.

> album = dbGetQuery(con,statement="select * from Album")

> track = dbGetQuery(con,statement="select * from Track")

> artist = dbGetQuery(con,statement="select * from Artist")

We now have three data frames in R corresponding to the three data tables in the database.
In R, the equivalent of an inner join can be carried out with the merge function. You
provide merge with the data frames you wish to join, and a character string or vector of
character strings with the name(s) of the variables that you wish to join them by. In database
terminology, these names are the keys for the join. The merge function will only accept two
data frames, but it can be called repeatedly in case there are more than two data frames
that need to be merged.

If there are variables with the same name (other than the keys) in the two data frames
to be merged, merge will rename them by adding either .x or .y to the end of the name to
tell you which data frame that variable came from. An often easier approach is to rename
variables before merging so that all the names (other than the keys) will be unique. In the
current example, the variable title is in both the album data frame and the track data
frame. Let’s rename the title variable in the album data frame to albumname:

> names(album)

[1] "alid" "aid" "title" "year"

> names(album)[3] = ’albumname’

Now we can merge the album data frame with the artist data frame using aid as a key,
and then merge the track data frame with the album data frame using alid as a key.

> album = merge(album,artist,by=’aid’)

> track = merge(track,album,by=’alid’)

> head(track)

alid aid.x title filesize bitrate length aid.y albumname

1 1 2836 Sonnymoon For Two 6459 189 279 2836 100% Proof

2 1 2836 Nutty 6062 191 259 2836 100% Proof

3 1 2836 100% Proof 19877 190 853 2836 100% Proof

4 1 2836 Bluesology 7101 189 306 2836 100% Proof

5 1 2836 Night In Tunisia 9102 190 391 2836 100% Proof

6 1 2836 Milestones 10774 190 463 2836 100% Proof
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name

1 Tubby Hayes Orchestra

2 Tubby Hayes Orchestra

3 Tubby Hayes Orchestra

4 Tubby Hayes Orchestra

5 Tubby Hayes Orchestra

6 Tubby Hayes Orchestra

To calculate the total length of tracks, we only need the album and artist names along with
the length of each track:

> track = track[,c(’albumname’,’name’,’length’)]

The rest of the processing is pretty straightforward now that everything is in R:

> tot = aggregate(track$length,list(albumname=track$albumname,artist=track$name),sum)

> use = tot[tot$x > 2400 & tot$x <= 2700,]

> use = use[order(use$x,decreasing=TRUE),]

> head(use)

albumname artist x

1105 Young Chet Chet Baker 2699

1748 I Need Some Money Eddie Harris 2699

5245 Blues Groove Tiny Grimes & Coleman Hawkins 2699

2520 Up & Down Horace Parlan 2698

2848 Night Dance Jimmy Giuffre 2697

4559 Arcadia Shuffle Roy Eldridge 2697

Because of the way merge operates, ties are resolved differently than in previous examples,
but the results are essentially the same.

A different approach illustrates the relationship between factors and the principles of
normalization. Since a factor stores each of its levels only once, normalized tables can often
be used to form factors in R. Once again, let’s assume that we’ve loaded the RMySQL library
and obtained a connection object. This time, I’ll trim off the unneeded variables from the
track data frame before processing:

> album = dbGetQuery(con,statement="select * from Album")

> track = dbGetQuery(con,statement="select * from Track")

> artist = dbGetQuery(con,statement="select * from Artist")

> track = track[,c(’aid’,’alid’,’length’)]

> names(track) = c(’artist’,’album’,’length’)

> track$artist = factor(track$artist,levels=artist$aid,labels=artist$name)

> track$album = factor(track$album,levels=album$alid,labels=album$title)

The tables formed in the process of normalizing the database essentially contain the levels
and labels of a factor variable in R. Processing the data set is the same as in the previous
example:
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> track$albart = paste(track$album,track$artist,sep=’\t’)

> tot = aggregate(track$length,track[’albart’],sum)

> aa = strsplit(tot$albart,’\t’)

> tot$album = sapply(aa,’[’,1)

> tot$artist = sapply(aa,’[’,2)

> tot$albart = NULL

> use = tot[tot$x > 2400 & tot$x <= 2700,]

> use = use[order(use$x,decreasing=TRUE),]

> head(use)

x album artist

821 2699 Blues Groove Tiny Grimes & Coleman Hawkins

2206 2699 I Need Some Money Eddie Harris

5632 2699 Young Chet Chet Baker

5337 2698 Up & Down Horace Parlan

418 2697 Arcadia Shuffle Roy Eldridge

3390 2697 Night Dance Jimmy Giuffre

In practice, the most useful solutions would probably fall in between the extreme of doing
everything on the database and doing everything in R.

6.7 Using SQL in R

If you like using SQL, or you see a handy way to get something done using SQL, you can
use the sqldf package to operate on R data frames using SQL. When you pass a query to
the sqldf function, it will identify the data frames involved in the query, create a temporary
SQLite database, perform the query, and return the results. For example, consider the task
of merging two data frames, based on the value of a variable id:

> data1 = data.frame(id=c(1,4,2,3,5),x=c(7,12,19,15,9))

> data2 = data.frame(id=c(2,3,4,1,5),y=c(21,32,29,35,19))

> sqldf(’select * from data1 natural join data2’)

id x y

1 1 7 35

2 4 12 29

3 2 19 21

4 3 15 32

5 5 9 19

6.8 Reading Spreadsheets with the RODBC Library

Now that we’ve got the basics of SQL down, we can look at a third option for reading
spreadsheets into R, the RODBC library. Note that this functionality is only available on
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Windows and you don’t need a copy of Excel on your computer in order for it to work. The
ODBC interface provides access to spreadsheets using SQL as a query language. Here’s a
sample session showing how we could read the spreadsheet from the previous example using
RODBC:

> library(RODBC)

> con = odbcConnectExcel(’2_2005_top200_postdoc.xls’)

> tbls = sqlTables(con)

> tbls

TABLE_CAT

1 C:\\Documents and Settings\\spector\\Desktop\\2_2005_top200_postdoc

2 C:\\Documents and Settings\\spector\\Desktop\\2_2005_top200_postdoc

3 C:\\Documents and Settings\\spector\\Desktop\\2_2005_top200_postdoc

4 C:\\Documents and Settings\\spector\\Desktop\\2_2005_top200_postdoc

5 C:\\Documents and Settings\\spector\\Desktop\\2_2005_top200_postdoc

TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 <NA> Sheet1$ SYSTEM TABLE <NA>

2 <NA> Sheet2$ SYSTEM TABLE <NA>

3 <NA> Sheet3$ SYSTEM TABLE <NA>

4 <NA> Sheet1$Print_Area TABLE <NA>

5 <NA> Sheet1$Print_Titles TABLE <NA>

> qry = paste(’select * from ’,’[’,tbls$TABLE_NAME[1],’]’,sep=’’)

> postdocs = sqlQuery(con,qry,stringsAsFactors=FALSE)

> head(postdocs)

F1 The Top 200 Institutions--Postdoctoral Appointees_(2005) F3 F4 F5 F6

1 NA <NA> NA NA NA NA

2 NA Top 50 Institutions\nin Postdoctoral Appointees \n(2005) NA NA NA NA

3 NA Harvard University 4384 1 1 NA

4 NA Johns Hopkins University 1442 2 2 NA

5 NA Stanford University 1259 3 3 NA

6 NA University of California - Los Angeles 1094 4 1 NA

F7

1 <NA>

2 Institutional\nControl

3 Private

4 Private

5 Private

6 Public

> sapply(postdocs,class)

F1

"logical"

The Top 200 Institutions--Postdoctoral Appointees_(2005)

"character"
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F3

"numeric"

F4

"numeric"

F5

"numeric"

F6

"logical"

F7

"character"

> dim(postdocs)

[1] 208 7

The RODBC interface was able to correctly classify the numeric columns.
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Chapter 7

Cluster Analysis
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7.1 Introduction to Cluster Analysis

While we often think of statistics as giving definitive answers to well-posed questions, there
are some statistical techniques that are used simply to gain further insight into a group of
observations. One such technique (which encompasses lots of different methods) is cluster
analysis. The idea of cluster analysis is that we have a set of observations, on which we
have available several measurements. Using these measurements, we want to find out if the
observations naturally group together in some predictable way. For example, we may have
recorded physical measurements on many animals, and we want to know if there’s a natural
grouping (based, perhaps on species) that distinquishes the animals from another. (This use
of cluster analysis is sometimes called ”numerical taxonomy”). As another example, suppose
we have information on the demographics and buying habits of many consumers. We could
use cluster analysis on the data to see if there are distinct groups of consumers with similar
demographics and buying habits (market segmentation).

It’s important to remember that cluster analysis isn’t about finding the right answer –
it’s about finding ways to look at data that allow us to understand the data better. For
example, suppose we have a deck of playing cards, and we want to see if they form some
natural groupings. One person may separate the black cards from the red; another may
break the cards up into hearts, clubs, diamonds and spades; a third person might separate
cards with pictures from cards with no pictures, and a fourth might make one pile of aces,
one of twos, and so on. Each person is right in their own way, but in cluster analysis, there’s
really not a single “correct” answer.

Another aspect of cluster analysis is that there are an enormous number of possible ways
of dividing a set of observations into groups. Even if we specify the number of groups,
the number of possibilities is still enormous. For example, consider the task of dividing 25
observations into 5 groups. (25 observations is considered very small in the world of cluster
analysis). It turns out there are 2.4 ∗ 1015 different ways to arrange those observations into
5 groups. If, as is often the case, we don’t know the number of groups ahead of time, and
we need to consider all possible numbers of groups (from 1 to 25), the number is more than
4∗1018! So any technique that simply tries all the different possibilities is doomed to failure.

7.2 Standardization

There are two very important decisions that need to be made whenever you are carrying out
a cluster analysis. The first regards the relative scales of the variables being measured. We’ll
see that the available cluster analysis algorithms all depend on the concept of measuring the
distance (or some other measure of similarity) between the different observations we’re trying
to cluster. If one of the variables is measured on a much larger scale than the other variables,
then whatever measure we use will be overly influenced by that variable. For example, recall
the world data set that we used earlier in the semester. Here’s a quick summary of the mean
values of the variables in that data set:

> apply(world1[-c(1,6)],2,mean,na.rm=TRUE)
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gdp income literacy military

9.053595e+03 1.025796e+04 8.094902e+01 5.679061e+09

Without some sort of standardization, a variable like literacy, measured on a scale of 0 to
100 has no chance of influencing our solution when the other variables are so much larger.

The traditional way of standardizing variables is to subtract their mean, and divide by
their standard deviation. Variables standardized this way are sometimes refered to as z-
scores, and always have a mean of zero and variance of one. In the case of variables that
contain outliers (observations that are much bigger or smaller than the vast majority of the
data), this sort of standardization may be too severe, scaling down the outlying observations
so that they appear to be closer to the others. One alternative is to use the median absolute
deviation in place of the standard deviation; another possibility is to subtract the median and
divide by either the interquartile range or the median absolute deviation. For the common
methods of measuring distances (discussed below), centering the data by subtracting the
mean or median is not really critical; it’s the division by an appropriate scaling factor that’s
important.

7.3 Distance Measures

The most common distance measure, and the default for most programs that perform cluster
analysis is the Euclidean distance, which is an extension of the usual notion of the distance
between two points in a plane. The Euclidean distance between two observations is calculated
as the square root of the sum of the squares of the distances between corresponding variables
in the two observations being considered. Another widely used measure is the Manhattan
distance, so named because it is similar to the distance between two points in a city, where
you can only travel along a grid of streets. It’s calculated by adding up the absolute value
of the differences of the corresponding variables, and is less likely to be influenced by a very
large difference between just one of the variables. The Canberra distance is interesting in
that it performs its own standardization; absolute values of differences are divided by the
absolute value of the sum of the corresponding variables in the two observations. Depending
on the values and distributions of the variables in the data set being clustered, these different
distance measures may point out different aspects of the structure of the data set.

Special consideration needs to be given to binary variables, that is, variables that take on
only one of two values like TRUE or FALSE, especially when they are used in conjunction
with continuous variables. Generally there are two types of measures that are used with
binary data. Symmetric measures view two observations as being close together if the binary
feature is either absent in both or present in both, while asymmetric measures only view the
observations as being close if the feature is present for both.

For some clustering methods, the entire distance matrix must be calculated; for other
methods, distances are only calculated as needed.
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7.4 Clustering Techniques

Much of the history of cluster analysis is concerned with developing algorithms that were
not too computer intensive, since early computers were not nearly as powerful as they are
today. Accordingly, computational shortcuts have traditionally been used in many cluster
analysis algorithms. These algorithms have proven to be very useful, and can be found in
most computer software.

More recently, many of these older methods have been revisited and updated to reflect the
fact that certain computations that once would have overwhelmed the available computers
can now be performed routinely. In R, a number of these updated versions of cluster analysis
algorithms are available through the cluster library, providing us with a large selection of
methods to perform cluster analysis, and the possibility of comparing the old methods with
the new to see if they really provide an advantage.

One of the oldest methods of cluster analysis is known as k-means cluster analysis, and
is available in R through the kmeans function. The first step (and certainly not a trivial
one) when using k-means cluster analysis is to specify the number of clusters (k) that will be
formed in the final solution. The process begins by choosing k observations to serve as centers
for the clusters. Then, the distance from each of the other observations is calculated for each
of the k clusters, and observations are put in the cluster to which they are the closest. After
each observation has been put in a cluster, the center of the clusters is recalculated, and
every observation is checked to see if it might be closer to a different cluster, now that the
centers have been recalculated. The process continues until no observations switch clusters.

Looking on the good side, the k-means technique is fast, and doesn’t require calculating
all of the distances between each observation and every other observation. It can be written
to efficiently deal with very large data sets, so it may be useful in cases where other methods
fail. On the down side, if you rearrange your data, it’s very possible that you’ll get a different
solution every time you change the ordering of your data. Another criticism of this technique
is that you may try, for example, a 3 cluster solution that seems to work pretty well, but when
you look for the 4 cluster solution, all of the structure that the 3 cluster solution revealed
is gone. This makes the procedure somewhat unattractive if you don’t know exactly how
many clusters you should have in the first place.

The R cluster library provides a modern alternative to k-means clustering, known as
pam, which is an acronym for “Partitioning around Medoids”. The term medoid refers to an
observation within a cluster for which the sum of the distances between it and all the other
members of the cluster is a minimum. pam requires that you know the number of clusters
that you want (like k-means clustering), but it does more computation than k-means in
order to insure that the medoids it finds are truly representative of the observations within a
given cluster. Recall that in the k-means method the centers of the clusters (which might or
might not actually correspond to a particular observation) are only recaculated after all of
the observations have had a chance to move from one cluster to another. With pam, the sums
of the distances between objects within a cluster are constantly recalculated as observations
move around, which will hopefully provide a more reliable solution. Furthermore, as a by-
product of the clustering operation it identifies the observations that represent the medoids,
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and these observations (one per cluster) can be considered a representative example of the
members of that cluster which may be useful in some situations. pam does require that
the entire distance matrix is calculated to facilitate the recalculation of the medoids, and
it does involve considerably more computation than k-means, but with modern computers
this may not be a important consideration. As with k-means, there’s no guarantee that the
structure that’s revealed with a small number of clusters will be retained when you increase
the number of clusters.

Another class of clustering methods, known as hierarchical agglomerative clustering meth-
ods, starts out by putting each observation into its own separate cluster. It then examines
all the distances between all the observations and pairs together the two closest ones to
form a new cluster. This is a simple operation, since hierarchical methods require a distance
matrix, and it represents exactly what we want – the distances between individual observa-
tions. So finding the first cluster to form simply means looking for the smallest number in
the distance matrix and joining the two observations that the distance correspnds to into a
new cluster. Now there is one less cluster than there are observations. To determine which
observations will form the next cluster, we need to come up with a method for finding the
distance between an existing cluster and individual observations, since once a cluster has
been formed, we’ll determine which observation will join it based on the distance between
the cluster and the observation. Some of the methods that have been proposed to do this
are to take the minimum distance between an observation and any member of the cluster,
to take the maximum distance, to take the average distance, or to use some kind of mea-
sure that minimizes the distances between observations within the cluster. Each of these
methods will reveal certain types of structure within the data. Using the minimum tends to
find clusters that are drawn out and “snake”-like, while using the maximum tends to find
compact clusters. Using the mean is a compromise between those methods. One method
that tends to produce clusters of more equal size is known as Ward’s method. It attempts
to form clusters keeping the distances within the clusters as small as possible, and is often
useful when the other methods find clusters with only a few observations. Agglomerative
Hierarchical cluster analysis is provided in R through the hclust function.

Notice that, by its very nature, solutions with many clusters are nested within the solu-
tions that have fewer clusters, so observations don’t “jump ship” as they do in k-means or
the pam methods. Furthermore, we don’t need to tell these procedures how many clusters we
want – we get a complete set of solutions starting from the trivial case of each observation
in a separate cluster all the way to the other trivial case where we say all the observations
are in a single cluster.

Traditionally, hierarchical cluster analysis has taken computational shortcuts when up-
dating the distance matrix to reflect new clusters. In particular, when a new cluster is formed
and the distance matrix is updated, all the information about the individual members of the
cluster is discarded in order to make the computations faster. The cluster library provides
the agnes function which uses essentially the same technique as hclust, but which uses
fewer shortcuts when updating the distance matrix. For example, when the mean method
of calculating the distance between observations and clusters is used, hclust only uses the
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two observations and/or clusters which were recently merged when updating the distance
matrix, while agnes calculates those distances as the average of all the distances between
all the observations in the two clusters. While the two techniques will usually agree quite
closely when minimum or maximum updating methods are used, there may be noticeable
differences when updating using the average distance or Ward’s method.

7.5 Hierarchial Clustering

For the hierarchial clustering methods, the dendogram is the main graphical tool for getting
insight into a cluster solution. When you use hclust or agnes to perform a cluster analysis,
you can see the dendogram by passing the result of the clustering to the plot function.

To illustrate interpretation of the dendogram, we’ll look at a cluster analysis performed
on a set of cars from 1978-1979; the data can be found at
http://www.stat.berkeley.edu/classes/s133/data/cars.tab. Since the data is a tab-delimited
file, we use read.delim:

> cars = read.delim(’cars.tab’,stringsAsFactors=FALSE)

To get an idea of what information we have, let’s look at the first few records;

> head(cars)

Country Car MPG Weight Drive_Ratio Horsepower

1 U.S. Buick Estate Wagon 16.9 4.360 2.73 155

2 U.S. Ford Country Squire Wagon 15.5 4.054 2.26 142

3 U.S. Chevy Malibu Wagon 19.2 3.605 2.56 125

4 U.S. Chrysler LeBaron Wagon 18.5 3.940 2.45 150

5 U.S. Chevette 30.0 2.155 3.70 68

6 Japan Toyota Corona 27.5 2.560 3.05 95

Displacement Cylinders

1 350 8

2 351 8

3 267 8

4 360 8

5 98 4

6 134 4

It looks like the variables are measured on different scales, so we will likely want to standard-
ize the data before proceeding. The daisy function in the cluster library will automatically
perform standardization, but it doesn’t give you complete control. If you have a particular
method of standardization in mind, you can use the scale function. You pass scale a
matrix or data frame to be standardized, and two optional vectors. The first, called center,
is a vector of values, one for each column of the matrix or data frame to be standardized,
which will be subtracted from every entry in that column. The second, called scale, is
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similar to center, but is used to divide the values in each column. Thus, to get z-scores, you
could pass scale a vector of means for center, and a vector of standard deviations for scale.
These vectors can be created with the apply function, that performs the same operation on
each row or column of a matrix. Suppose we want to standardize by subtracting the median
and dividing by the mean average deviation:

> cars.use = cars[,-c(1,2)]

> medians = apply(cars.use,2,median)

> mads = apply(cars.use,2,mad)

> cars.use = scale(cars.use,center=medians,scale=mads)

(The 2 used as the second argument to apply means to apply the function to the columns
of the matrix or data frame; a value of 1 means to use the rows.) The country of origin and
name of the car will not be useful in the cluster analysis, so they have been removed. Notice
that the scale function doesn’t change the order of the rows of the data frame, so it will be
easy to identify observations using the omitted columns from the original data.

First, we’ll take a look at a hierarchical method, since it will provide information about
solutions with different numbers of clusters. The first step is calculating a distance matrix.
For a data set with n observations, the distance matrix will have n rows and n columns;
the (i,j)th element of the distance matrix will be the difference between observation i

and observation j. There are two functions that can be used to calculate distance matrices
in R; the dist function, which is included in every version of R, and the daisy function,
which is part of the cluster library. We’ll use the dist function in this example, but you
should familiarize yourself with the daisy function (by reading its help page), since it offers
some capabilities that dist does not. Each function provides a choice of distance metrics; in
this example, we’ll use the default of Euclidean distance, but you may find that using other
metrics will give different insights into the structure of your data.

cars.dist = dist(cars.use)

If you display the distance matrix in R (for example, by typing its name), you’ll notice that
only the lower triangle of the matrix is displayed. This is to remind us that the distance
matrix is symmetric, since it doesn’t matter which observation we consider first when we
calculate a distance. R takes advantage of this fact by only storing the lower triangle of the
distance matrix. All of the clustering functions will recognize this and have no problems, but
if you try to access the distance matrix in the usual way (for example, with subscripting),
you’ll see an error message. Thus, if you need to use the distance matrix with anything other
than the clustering functions, you’ll need to use as.matrix to convert it to a regular matrix.

To get started, we’ll use the hclust method; the cluster library provides a similar
function, called agnes to perform hierarchical cluster analysis.

> cars.hclust = hclust(cars.dist)

Once again, we’re using the default method of hclust, which is to update the distance
matrix using what R calls “complete” linkage. Using this method, when a cluster is formed,
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its distance to other objects is computed as the maximum distance between any object in
the cluster and the other object. Other linkage methods will provide different solutions,
and should not be ignored. For example, using method=ward tends to produce clusters of
fairly equal size, and can be useful when other methods find clusters that contain just a few
observations.

Now that we’ve got a cluster solution (actually a collection of cluster solutions), how
can we examine the results? The main graphical tool for looking at a hierarchical cluster
solution is known as a dendogram. This is a tree-like display that lists the objects which
are clustered along the x-axis, and the distance at which the cluster was formed along the
y-axis. (Distances along the x-axis are meaningless in a dendogram; the observations are
equally spaced to make the dendogram easier to read.) To create a dendogram from a cluster
solution, simply pass it to the plot function. The result is displayed below.

plot(cars.hclust,labels=cars$Car,main=’Default from hclust’)

If you choose any height along the y-axis of the dendogram, and move across the den-
dogram counting the number of lines that you cross, each line represents a group that was
identified when objects were joined together into clusters. The observations in that group are
represented by the branches of the dendogram that spread out below the line. For example,
if we look at a height of 6, and move across the x-axis at that height, we’ll cross two lines.
That defines a two-cluster solution; by following the line down through all its branches, we
can see the names of the cars that are included in these two clusters. Since the y-axis rep-
resents how close together observations were when they were merged into clusters, clusters
whose branches are very close together (in terms of the heights at which they were merged)
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probably aren’t very reliable. But if there’s a big difference along the y-axis between the
last merged cluster and the currently merged one, that indicates that the clusters formed
are probably doing a good job in showing us the structure of the data. Looking at the
dendogram for the car data, there are clearly two very distinct groups; the right hand group
seems to consist of two more distinct cluster, while most of the observations in the left hand
group are clustering together at about the same height For this data set, it looks like either
two or three groups might be an interesting place to start investigating. This is not to imply
that looking at solutions with more clusters would be meaningless, but the data seems to
suggest that two or three clusters might be a good start. For a problem of this size, we can
see the names of the cars, so we could start interpreting the results immediately from the
dendogram, but when there are larger numbers of observations, this won’t be possible.

One of the first things we can look at is how many cars are in each of the groups. We’d
like to do this for both the two cluster and three cluster solutions. You can create a vector
showing the cluster membership of each observation by using the cutree function. Since
the object returned by a hierarchical cluster analysis contains information about solutions
with different numbers of clusters, we pass the cutree function the cluster object and the
number of clusters we’re interested in. So to get cluster memberships for the three cluster
solution, we could use:

> groups.3 = cutree(cars.hclust,3)

Simply displaying the group memberships isn’t that revealing. A good first step is to use
the table function to see how many observations are in each cluster. We’d like a solution
where there aren’t too many clusters with just a few observations, because it may make it
difficult to interpret our results. For the three cluster solution, the distribution among the
clusters looks good:

> table(groups.3)

groups.3

1 2 3

8 20 10

Notice that you can get this information for many different groupings at once by combining
the calls to cutree and table in a call to sapply. For example, to see the sizes of the
clusters for solutions ranging from 2 to 6 clusters, we could use:

> counts = sapply(2:6,function(ncl)table(cutree(cars.hclust,ncl)))

> names(counts) = 2:6

> counts

$"2"

1 2

18 20

$"3"
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1 2 3

8 20 10

$"4"

1 2 3 4

8 17 3 10

$"5"

1 2 3 4 5

8 11 6 3 10

$"6"

1 2 3 4 5 6

8 11 6 3 5 5

To see which cars are in which clusters, we can use subscripting on the vector of car
names to choose just the observations from a particular cluster. Since we used all of the
observations in the data set to form the distance matrix, the ordering of the names in the
original data will coincide with the values returned by cutree. If observations were removed
from the data before the distance matrix is computed, it’s important to remember to make
the same deletions in the vector from the original data set that will be used to identify
observations. So, to see which cars were in the first cluster for the four cluster solution, we
can use:

> cars$Car[groups.3 == 1]

[1] Buick Estate Wagon Ford Country Squire Wagon

[3] Chevy Malibu Wagon Chrysler LeBaron Wagon

[5] Chevy Caprice Classic Ford LTD

[7] Mercury Grand Marquis Dodge St Regis

As usual, if we want to do the same thing for all the groups at once, we can use sapply:

> sapply(unique(groups.3),function(g)cars$Car[groups.3 == g])

[[1]]

[1] Buick Estate Wagon Ford Country Squire Wagon

[3] Chevy Malibu Wagon Chrysler LeBaron Wagon

[5] Chevy Caprice Classic Ford LTD

[7] Mercury Grand Marquis Dodge St Regis
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[[2]]

[1] Chevette Toyota Corona Datsun 510 Dodge Omni

[5] Audi 5000 Saab 99 GLE Ford Mustang 4 Mazda GLC

[9] Dodge Colt AMC Spirit VW Scirocco Honda Accord LX

[13] Buick Skylark Pontiac Phoenix Plymouth Horizon Datsun 210

[17] Fiat Strada VW Dasher BMW 320i VW Rabbit

[[3]]

[1] Volvo 240 GL Peugeot 694 SL Buick Century Special

[4] Mercury Zephyr Dodge Aspen AMC Concord D/L

[7] Ford Mustang Ghia Chevy Citation Olds Omega

[10] Datsun 810

We could also see what happens when we use the four cluster solution

> groups.4 = cutree(cars.hclust,4)

> sapply(unique(groups.4),function(g)cars$Car[groups.4 == g])

[[1]]

[1] Buick Estate Wagon Ford Country Squire Wagon

[3] Chevy Malibu Wagon Chrysler LeBaron Wagon

[5] Chevy Caprice Classic Ford LTD

[7] Mercury Grand Marquis Dodge St Regis

[[2]]

[1] Chevette Toyota Corona Datsun 510 Dodge Omni

[5] Ford Mustang 4 Mazda GLC Dodge Colt AMC Spirit

[9] VW Scirocco Honda Accord LX Buick Skylark Pontiac Phoenix

[13] Plymouth Horizon Datsun 210 Fiat Strada VW Dasher

[17] VW Rabbit

[[3]]

[1] Audi 5000 Saab 99 GLE BMW 320i

[[4]]

[1] Volvo 240 GL Peugeot 694 SL Buick Century Special

[4] Mercury Zephyr Dodge Aspen AMC Concord D/L

[7] Ford Mustang Ghia Chevy Citation Olds Omega

[10] Datsun 810

The new cluster can be recognized as the third group in the above output.
Often there is an auxiliary variable in the original data set that was not included in the

cluster analysis, but may be of interest. In fact, cluster analysis is sometimes performed
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to see if observations naturally group themselves in accord with some already measured
variable. For this data set, we could ask whether the clusters reflect the country of origin
of the cars, stored in the variable Country in the original data set. The table function can
be used, this time passing two arguments, to produce a cross-tabulation of cluster group
membership and country of origin:

> table(groups.3,cars$Country)

groups.3 France Germany Italy Japan Sweden U.S.

1 0 0 0 0 0 8

2 0 5 1 6 1 7

3 1 0 0 1 1 7

>

Of interest is the fact that all of the cars in cluster 1 were manufactured in the US. Con-
sidering the state of the automobile industry in 1978, and the cars that were identified in
cluster 1, this is not surprising.

In an example like this, with a small number of observations, we can often interpret the
cluster solution directly by looking at the labels of the observations that are in each cluster.
Of course, for larger data sets, this will be impossible or meaningless. A very useful method
for characterizing clusters is to look at some sort of summary statistic, like the median, of
the variables that were used to perform the cluster analysis, broken down by the groups that
the cluster analysis identified. The aggregate function is well suited for this task, since it
will perform summaries on many variables simultaneously. Let’s look at the median values
for the variables we’ve used in the cluster analysis, broken up by the cluster groups. One
oddity of the aggregate function is that it demands that the variable(s) used to divide up
the data are passed to it in a list, even if there’s only one variable:

> aggregate(cars.use,list(groups.3),median)

Group.1 MPG Weight Drive_Ratio Horsepower Displacement Cylinders

1 1 -0.7945273 1.5051136 -0.9133729 1.0476133 2.4775849 4.7214353

2 2 0.6859228 -0.5870568 0.5269459 -0.6027364 -0.5809970 -0.6744908

3 3 -0.4058377 0.5246039 -0.1686227 0.3587717 0.3272282 2.0234723

If the ranges of these numbers seem strange, it’s because we standardized the data before
performing the cluster analysis. While it is usually more meaningful to look at the variables
in their original scales, when data is centered, negative values mean “lower than most” and
positive values mean “higher than most”. Thus, group 1 is cars with relatively low MPG, high
weight, low drive ratios, high horsepower and displacement, and more than average number
of cylinders. Group 2 are cars with high gas mileage, and low weight and horsepower; and
group 3 is similar to group 1. It may be easier to understand the groupings if we look at the
variables in their original scales:
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> aggregate(cars[,-c(1,2)],list(groups.3),median)

Group.1 MPG Weight Drive_Ratio Horsepower Displacement Cylinders

1 1 17.30 3.890 2.430 136.5 334 8

2 2 30.25 2.215 3.455 79.0 105 4

3 3 20.70 3.105 2.960 112.5 173 6

It may also be useful to add the numbers of observations in each group to the above display.
Since aggregate returns a data frame, we can manipulate it in any way we want:

> a3 = aggregate(cars[,-c(1,2)],list(groups.3),median)

> data.frame(Cluster=a3[,1],Freq=as.vector(table(groups.3)),a3[,-1])

Cluster Freq MPG Weight Drive_Ratio Horsepower Displacement Cylinders

1 1 8 17.30 3.890 2.430 136.5 334 8

2 2 20 30.25 2.215 3.455 79.0 105 4

3 3 10 20.70 3.105 2.960 112.5 173 6

To see how the four cluster solution differed from the three cluster solution, we can perform
the same analysis for that solution:

> a4 = aggregate(cars[,-c(1,2)],list(groups.4),median)

> data.frame(Cluster=a4[,1],Freq=as.vector(table(groups.4)),a4[,-1])

Cluster Freq MPG Weight Drive_Ratio Horsepower Displacement Cylinders

1 1 8 17.3 3.890 2.43 136.5 334 8

2 2 17 30.9 2.190 3.37 75.0 98 4

3 3 3 21.5 2.795 3.77 110.0 121 4

4 4 10 20.7 3.105 2.96 112.5 173 6

The main difference seems to be that the four cluster solution recognized a group of cars
that have higher horsepower and drive ratios than the other cars in the cluster they came
from.

7.6 PAM: Partitioning Around Medoids

Unlike the hierarchical clustering methods, techniques like k-means cluster analysis (available
through the kmeans function) or partitioning around mediods (avaiable through the pam

function in the cluster library) require that we specify the number of clusters that will
be formed in advance. pam offers some additional diagnostic information about a clustering
solution, and provides a nice example of an alternative technique to hierarchical clustering.
To use pam, you must first load the cluster library. You can pass pam a data frame or a
distance matrix; since we’ve already formed the distance matrix, we’ll use that. pam also
needs the number of clusters you wish to form. Let’s look at the three cluster solution
produced by pam:
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> library(cluster)

> cars.pam = pam(cars.dist,3)

First of all, let’s see if the pam solution agrees with the hclust solution. Since pam only
looks at one cluster solution at a time, we don’t need to use the cutree function as we did
with hclust; the cluster memberships are stored in the clustering component of the pam

object; like most R objects, you can use the names function to see what else is available.
Further information can be found in the help page for pam.object.

> names(cars.pam)

[1] "medoids" "id.med" "clustering" "objective" "isolation"

[6] "clusinfo" "silinfo" "diss" "call"

We can use table to compare the results of the hclust and pam solutions:

> table(groups.3,cars.pam$clustering)

groups.3 1 2 3

1 8 0 0

2 0 19 1

3 0 0 10

The solutions seem to agree, except for 1 observations that hclust put in group 2 and pam

put in group 3. Which observations was it?

> cars$Car[groups.3 != cars.pam$clustering]

[1] Audi 5000

Notice how easy it is to get information like this due to the power of R’s subscripting
operations.

One novel feature of pam is that it finds observations from the original data that are
typical of each cluster in the sense that they are closest to the center of the cluster. The
indexes of the medoids are stored in the id.med component of the pam object, so we can use
that component as a subscript into the vector of car names to see which ones were selected:

> cars$Car[cars.pam$id.med]

> cars$Car[cars.pam$id.med]

[1] Dodge St Regis Dodge Omni Ford Mustang Ghia

Another feature available with pam is a plot known as a silhouette plot. First, a measure
is calculated for each observation to see how well it fits into the cluster that it’s been assigned
to. This is done by comparing how close the object is to other objects in its own cluster
with how close it is to objects in other clusters. (A complete description can be found in
the help page for silhouette.) Values near one mean that the observation is well placed
in its cluster; values near 0 mean that it’s likely that an observation might really belong in
some other cluster. Within each cluster, the value for this measure is displayed from smallest
to largest. If the silhouette plot shows values close to one for each observation, the fit was
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Range of SC Interpretation
0.71-1.0 A strong structure has been found
0.51-0.70 A reasonable structure has been found
0.26-0.50 The structure is weak and could be artificial
<0.25 No substantial structure has been found

good; if there are many observations closer to zero, it’s an indication that the fit was not
good. The sihouette plot is very useful in locating groups in a cluster analysis that may not
be doing a good job; in turn this information can be used to help select the proper number
of clusters. For the current example, here’s the silhouette plot for the three cluster pam

solution, produced by the command

> plot(cars.pam)

The plot indicates that there is a good structure to the clusters, with most observations
seeming to belong to the cluster that they’re in. There is a summary measure at the bottom
of the plot labeled “Average Silhouette Width”. This table shows how to use the value:

To create a silhouette plot for a particular solution derived from a hierarchical cluster
analysis, the silhouette function can be used. This function takes the appropriate out-
put from cutree along with the distance matrix used for the clustering. So to produce a
silhouette plot for our 4 group hierarchical cluster (not shown), we could use the following
statements:
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plot(silhouette(cutree(cars.hclust,4),cars.dist))

7.7 AGNES: Agglomerative Nesting

As an example of using the agnes function from the cluster package, consider the famous
Fisher iris data, available as the dataframe iris in R. First let’s look at some of the data:

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

We will only consider the numeric variables in the cluster analysis. As mentioned previously,
there are two functions to compute the distance matrix: dist and daisy. It should be
mentioned that for data that’s all numeric, using the function’s defaults, the two methods
will give the same answers. We can demonstrate this as follows:

> iris.use = subset(iris,select=-Species)

> d = dist(iris.use)

> library(cluster)

> d1 = daisy(iris.use)

> sum(abs(d - d1))

[1] 1.072170e-12

Of course, if we choose a non-default metric for dist, the answers will be different:

> dd = dist(iris.use,method=’manhattan’)

> sum(abs(as.matrix(dd) - as.matrix(d1)))

[1] 38773.86

The values are very different!
Continuing with the cluster example, we can calculate the cluster solution as follows:

> z = agnes(d)

The plotting method for agnes objects presents two different views of the cluster solution.
When we plot such an object, the plotting function sets the graphics parameter ask=TRUE,
and the following appears in your R session each time a plot is to be drawn:

Hit <Return> to see next plot:
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If you know you want a particular plot, you can pass the which.plots= argument an integer
telling which plot you want.

The first plot that is displayed is known as a banner plot. The banner plot for the iris
data is shown below:

The white area on the left of the banner plot represents the unclustered data while the
white lines that stick into the red are show the heights at which the clusters were formed.
Since we don’t want to include too many clusters that joined together at similar heights, it
looks like three clusters, at a height of about 2 is a good solution. It’s clear from the banner
plot that if we lowered the height to, say 1.5, we’d create a fourth cluster with only a few
observations.

The banner plot is just an alternative to the dendogram, which is the second plot that’s
produced from an agnes object:
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The dendogram shows the same relationships, and it’s a matter of individual preference
as to which one is easier to use.

Let’s see how well the clusters do in grouping the irises by species:

> table(cutree(z,3),iris$Species)

setosa versicolor virginica

1 50 0 0

2 0 50 14

3 0 0 36

We were able to classify all the setosa and versicolor varieties correctly. The following plot
gives some insight into why we were so successful:

> splom(~iris,groups=iris$Species,auto.key=TRUE)
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Chapter 8

XML
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8.1 What is XML?

XML, which is an acronym for extensible markup language, is a way of creating documents
that contain structured information. Up until now, most of the data sets that we’ve con-
sidered were easily accomodated by a observations and variables rectangular data structure
(like a comma separated file, which translates neatly to a data frame in R), where the num-
ber of variables for each observations is the same. Outside of variable names and the actual
data values, there was no additional information stored in the data, either in its text form
or once it was read into R.

One type of data that we’ve seen that accomodates extra information is the spreadsheet;
people often annotate their data will all sorts of useful and maybe-not-so-useful information.
But as we’ve seen, there’s no standard structure to these non-data rows of the spreadsheet,
so they really just get in our way and require customized processing.

Another example of non-regular data would be the baseball database; players played for
varying numbers of seasons, and for varying numbers of teams; they may or may not have
attended college, or played in a world series, etc. Databases have traditionally been used for
data like this, but they certainly have their disadvantages: there are many tables, making it
necessary to perform lots of joins, and it’s easy to lose track of all that information.

One frustrating aspect regarding designing formats for data is that if you go into the
design with a specific type of data in mind, you’ll build in features that are wonderful for
that data, but may be very lacking for other sorts of data. For example, statisticians would
want a rich syntax to describe things like repeated measures, missing values, allowable ranges
of variables, etc., but these features would not be of much use to a general user. So in some
ways, we can think of XML as a compromise that will allow a wide variety of different
information to be stored and distributed in a similar way without favoring any particular
structure or type of data. The features that I’ve described can easily be accomodated in an
XML document by simply defining new tags to contain this information. Furthermore, XML
is designed so that it’s alright if there is no extra information in the document other than the
data and its’ associated tags. This sort of flexibility is one of the most powerful forces behind
the development of XML. To see a list of some of the applications for which XML document
styles have been proposed, go to http://xml.coverpages.org/xml.html#applications.

At first glance, XML looks very similar to HTML, but there are important differences.
First, HTML is used to describe the desired appearance of information in the browser, not
the structure of that information. Second, the set of allowable tags in HTML is fixed; we
can’t just redefine them at our convenience. HTML is also inconsistent. Tags like h1 and
td must have accompanying closing tags (</h1> and </td>), but tags like <br> and <p>

don’t. Finally, to accomodate all the people creating web pages and all the browsers trying
to display them, HTML doesn’t lay down strict rules about the way information is put into
a web page. These facts about HTML should not be interpreted as saying the HTML is not
useful. It’s very useful for what it does, but it doesn’t give us a consistent, extensible format
for accomodating data that preserves its structure.

Here are some of the things that we’ll see in XML documents:
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• XML documents always begin with

<?xml ....?>

• Information is identified by tags (i.e. an indentifier surrounded by angle brackets, like

<coursename>

Statistics 133

</coursename>

Every opening tag has a corresponding tag, except for the case where there is no
information; then a single tag like <sometag/> can be used. The specific names of
these tags will vary with each XML document.

• Tags are case sensitive, and opening and closing tags must match exactly.

• No spaces are allowed between the opening angle bracket and the tag name

• Tag names must begin with a letter, and can contain only letters and numbers.

• As in HTML, angle brackets will always be interpreted as parts of tags; to get literal
angle brackets in data we need to use &lt; and &gt;.

• Additional information can be stored in the tags in the form of attributes. For example,
in the previous example, we could have specified the department as:

<coursename department=’Statistics’>

Statistics 133

</coursename>

or

<course>

<name>

Statistics 133

</name>

<department>

Statistics

</department>

</course>

The decision is up to the designer of the particular document.

• Comments can be placed in an XML document by starting with <!-- and ending with
-->, and they may appear anywhere in the document.
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Documents that conform to these rules are said to be well-formed, and this is the min-
imum requirement for any XML document. But to be useful, they should also conform to
additional rules described in what is known as the Document Type Definitions for a par-
ticular document, or the DTD. The DTD describes the allowable tags, what kind of data
can be stored within those tags, and what attributes are allowed in the tags. The DTD
for a particular document can be provided in the document itself; when a document uses
multiple DTDs, the tag name may be prefaced with an identifier followed by a colon to make
clear which DTD the tag comes from. The programs that read XML are known as parsers;
without a DTD they simply make sure that the document is well-formed; with a DTD they
can additionally check to make sure that the data is valid.

8.2 A Simple Example

Let’s start with a very simple example to introduce the XML library and some of the strate-
gies we’ll need to use when working with XML. The example we’ll use is a catalog of plants.
(You can find the XML document at http://www.stat.berkeley.edu/classes/s133/data/plant catalog.xml.)
Here’s what the beginning of the file looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>^M

<!-- Edited with XML Spy v2006 (http://www.altova.com) -->^M

<CATALOG>^M

<PLANT>^M

<COMMON>Bloodroot</COMMON>^M

<BOTANICAL>Sanguinaria canadensis</BOTANICAL>^M

<ZONE>4</ZONE>^M

<LIGHT>Mostly Shady</LIGHT>^M

<PRICE>$2.44</PRICE>^M

<AVAILABILITY>031599</AVAILABILITY>^M

</PLANT>^M

<PLANT>^M

<COMMON>Columbine</COMMON>^M

<BOTANICAL>Aquilegia canadensis</BOTANICAL>^M

<ZONE>3</ZONE>^M

<LIGHT>Mostly Shady</LIGHT>^M

<PRICE>$9.37</PRICE>^M

<AVAILABILITY>030699</AVAILABILITY>^M

</PLANT>^M

. . .

The main body of the data is enclosed by the CATALOG tag; we’ll sometimes refer to this as
a node. Within the CATALOG node are several PLANT nodes - each of them contains several
pieces of data which are the information we wish to extract. We’re going to use the R XML
library with what is known as the Document Object Model (DOM), in which R will read the
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entire XML file into memory, and internally convert it to a tree structure. (There is another
model, called SAX (Simple API for XML), which only reads part of the data at a time,
but it’s more complicated than the DOM model.) All the information about the data and its
structure will be stored in a list inside of R, but when we print it, it will look very much
like the document that we started with. The basic strategy of working with XML files under
this model is to keep “tunneling down” into the document structure without disturbing its
structure until we come to the end of the node. For example, with the plant catalog, we want
to extract the PLANT nodes as XML structures, and then extract the values of the terminal
branches of the tree (like COMMON, BOTANICAL, and ZONE) using the xmlValue function. As
we explore the structure of the data, we can use the names function to see what nodes exist;
at any time, we can print a node, and it will show us a representation like the original XML
document so we’ll know where to go next.

The first step in reading an XML document into R is loading the XML library. Next, the
xmlTreeParse function is called to read the document into memory, and the root of the
XML tree is extracted using xmlRoot:

> library(XML)

> doc = xmlTreeParse(’plant_catalog.xml’)

> root = xmlRoot(doc)

Let’s look at some properties of this root node:

> class(root)

[1] "XMLNode" "RXMLAbstractNode" "XMLAbstractNode" "oldClass"

> names(root)

> names(root)

[1] "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT"

[10] "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT"

[19] "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT"

[28] "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT" "PLANT"

In this example, xmlTreeParse read its input from a local file. Other choices are local
gzipped files and URLs representing XML documents or gzipped XML documents.

The class of XMLNode indicates that internally, R is storing the object as part of an XML
tree. This will be important later when we decide how to process the entire tree. The result
of the names function call tells us that the structure of this document is quite simple. Inside
the root node, there are 36 PLANT nodes. (For larger documents, it might be prudent to
make a table of the names instead of displaying the names directly.) As we’ve already seen
from looking at the document, this is where our data lies, so we’ll want to examine one of
the plant nodes a little more carefully to figure out how to extract the actual data.

> oneplant = root[[1]]

> class(oneplant)

[1] "XMLNode" "RXMLAbstractNode" "XMLAbstractNode" "oldClass"

> oneplant
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<PLANT>

<COMMON>

Bloodroot

</COMMON>

<BOTANICAL>

Sanguinaria canadensis

</BOTANICAL>

<ZONE>

4

</ZONE>

<LIGHT>

Mostly Shady

</LIGHT>

<PRICE>

$2.44

</PRICE>

<AVAILABILITY>

031599

</AVAILABILITY>

</PLANT>

We can see that this single PLANT object is still an XMLnode; its printed representation shows
us exactly what we’ve got. Notice that the individual elements don’t have any further tree
structure; this means we can use xmlValue to extract the values:

> xmlValue(oneplant[[’COMMON’]])

[1] "Bloodroot"

> xmlValue(oneplant[[’BOTANICAL’]])

[1] "Sanguinaria canadensis"

Of course, we don’t want to perform these tasks one by one for each node of the tree. You
may recall that when we were confronted with problems like this before, we used the sapply

function, which operates on every element of a list. If the object we want to process is
an xmlNode, the corresponding function to use is xmlSApply. For example, to get all the
common names of all the plants, we can use xmlValue on all the PLANT nodes like this:

> commons = xmlSApply(root,function(x)xmlValue(x[[’COMMON’]]))

> head(commons)

PLANT PLANT PLANT

"Bloodroot" "Columbine" "Marsh Marigold"

PLANT PLANT PLANT

"Cowslip" "Dutchman’s-Breeches" "Ginger, Wild"

We could repeat the process for each column manually, and then combine things into a data
frame, or we can automate the process using lapply and the names of the objects within
the plants:
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> getvar = function(x,var)xmlValue(x[[var]])

> res = lapply(names(root[[1]]),function(var)xmlSApply(root,getvar,var))

> plants = data.frame(res)

> names(plants) = names(root[[1]])

> head(plants)

COMMON BOTANICAL ZONE LIGHT PRICE

1 Bloodroot Sanguinaria canadensis 4 Mostly Shady $2.44

2 Columbine Aquilegia canadensis 3 Mostly Shady $9.37

3 Marsh Marigold Caltha palustris 4 Mostly Sunny $6.81

4 Cowslip Caltha palustris 4 Mostly Shady $9.90

5 Dutchman’s-Breeches Dicentra cucullaria 3 Mostly Shady $6.44

6 Ginger, Wild Asarum canadense 3 Mostly Shady $9.03

AVAILABILITY

1 031599

2 030699

3 051799

4 030699

5 012099

6 041899

8.3 More Complex Example

For more complex documents, a few other tools are useful. To illustrate, we’ll look at
a file that uses Geographic Markup Language, or GML. This file (which you can find at
http://www.stat.berkeley.edu/classes/s133/data/counties.gml contains the x- and y-coordinates
of the county centers for each state in the United States. Information like this would be dif-
ficult to store in a less structured environment, because each state has a different number
of counties. If we were going to read it into a database, we might want to have a separate
table for each state; in some programs, we’d have to force it into a rectangular form, even
though it wouldn’t be that efficient. If we were using a spreadsheet, we might want to put
all the information in a single spreadsheet, with a separate heading for each state. In R,
a reasonable way to store the data would be in a list, with a separate data frame for each
state. Thus, providing the data in a form that could be easily converted to any of those
formats is essential, and that’s just what XML does for us.

The first steps are the same as the previous example; loading the library, parsing the
tree, and extracting the root.

> doc = xmlTreeParse(’counties.gml’)

> root = xmlRoot(doc)

To see what’s in the root, we can get a table of the names found there:

> table(names(root))
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state

51

Let’s extract the first state node for further study:

> onestate = root[[1]]

> class(onestate)

[1] "XMLNode" "RXMLAbstractNode" "XMLAbstractNode" "oldClass"

> table(names(onestate))

county name

67 1

Here’s what the onestate object looks like – I’ve truncated it so that it only displays a
single county, but we can still see the general structure:

<state>

<gml:name abbreviation="AL">ALABAMA</gml:name>

<county>

<gml:name>Autauga County</gml:name>

<gml:location>

<gml:coord>

<gml:X>-86641472</gml:X>

<gml:Y>32542207</gml:Y>

</gml:coord>

</gml:location>

</county>

. . .

The name element (labeled as gml:name) is just the name of the state. We can extract them
from all of the states using xmlSApply:

> statenames = xmlSApply(root,function(x)xmlValue(x[[’name’]]))

> head(statenames)

state state state state state state

"ALABAMA" "ALASKA" "ARIZONA" "ARKANSAS" "CALIFORNIA" "COLORADO"

Note that in this example there is an attribute in the name tag, namely the state abbrevi-
ation. To access these attributes we can use the xmlAttrs function in a fashion similar to
xmlValue:

> stateabbs = xmlSApply(root,function(x)xmlAttrs(x[[’name’]]))

> head(stateabbs)

state.abbreviation state.abbreviation state.abbreviation state.abbreviation

"AL" "AK" "AZ" "AR"

state.abbreviation state.abbreviation

"CA" "CO"
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Since there was only one attribute, xmlSApply was used to extract directly into a vector. If
there were multiple attributes, then xmlApply would need to be used, since it will return a
list of attributes, preserving the structure of the data.

To process the county data further, we need to extract just the county nodes. The
xmlElementsByTagName function will extract just the elements that we want:

> counties = xmlElementsByTagName(onestate,’county’)

> class(counties)

[1] "list"

> length(counties)

[1] 67

Notice that extracting the elements in this way results in a list, not an xmlNode. But what’s
in the list?

> onecounty = counties[[1]]

> class(onecounty)

[1] "XMLNode" "RXMLAbstractNode" "XMLAbstractNode" "oldClass"

> names(onecounty)

[1] "name" "location"

> onecounty

<county>

<gml:name>

Autauga County

</gml:name>

<gml:location>

<gml:coord>

<gml:X>

-86641472

</gml:X>

<gml:Y>

32542207

</gml:Y>

</gml:coord>

</gml:location>

</county>

The elements inside the counties list are still xmlNodes. The fact that they are contained
in a list simply means that we’ll use sapply or lapply to process them instead of xmlSApply
or xmlApply. What we really want are the X and Y values within the coord nodes, so let’s
extract out those nodes from the full list of county nodes:

> coords = lapply(counties,function(x)x[[’location’]][[’coord’]])

> class(coords)

[1] "list"
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> class(coords[[1]])

[1] "XMLNode" "RXMLAbstractNode" "XMLAbstractNode" "oldClass"

> coords[[1]]

<gml:coord>

<gml:X>

-86641472

</gml:X>

<gml:Y>

32542207

</gml:Y>

</gml:coord>

Since there is only one coord node within the location nodes, I extracted it directly. I
could also have used xmlGetElementsByTagName, and used the first element of the resulting
list:

coords = lapply(counties,function(x)xmlElementsByTagName(x[[’location’]],’coord’)[[1]])

Notice that I used lapply to extract the coord nodes. Since xmlNodes are represented
internally as lists, I would have lost the structure of the data if I used sapply in this case.

Now we can extract the x and y values using xmlValue:

> x = as.numeric(sapply(coords,function(x)xmlValue(x[[’X’]])))

> y = as.numeric(sapply(coords,function(x)xmlValue(x[[’Y’]])))

That shows the process for extracting the county names and x- and y-coordinates for a single
state. Let’s summarize the steps in a function, which we can then apply to the root of the
tree to get a separate list for each state:

onestate = function(state){

counties = xmlElementsByTagName(state,’county’)

countynames = sapply(counties,function(x)xmlValue(x[[’name’]]))

coords = lapply(counties,function(x)x[[’location’]][[’coord’]])

x = as.numeric(sapply(coords,function(x)xmlValue(x[[’X’]])))

y = as.numeric(sapply(coords,function(x)xmlValue(x[[’Y’]])))

data.frame(county=countynames,x=x,y=y)

}

To combine everything together, and create a list with one data frame per state, we can do
the following:

> res = xmlApply(root,onestate)

> names(res) = xmlSApply(root,function(x)xmlValue(x[[’name’]]))
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Although these examples may seem simplistic, there are usable XML formats that are this
simple, or even simpler. For example, at the web site http://www.weather.gov/data/current obs/
there is a description of an XML format used to distribute weather information. Basically,
the XML document is available at http://www.weather.gov/data/current obs/XXXX.xml

where XXXX represents the four letter weather station code, usually related to a nearby air-
port.

A quick look at the data reveals that the format is very simple:

> library(XML)

> doc = xmlTreeParse(’http://www.weather.gov/data/current_obs/KOAK.xml’)

> root = xmlRoot(doc)

> names(root)

[1] "credit" "credit_URL"

[3] "image" "suggested_pickup"

[5] "suggested_pickup_period" "location"

[7] "station_id" "latitude"

[9] "longitude" "observation_time"

[11] "observation_time_rfc822" "weather"

[13] "temperature_string" "temp_f"

[15] "temp_c" "relative_humidity"

[17] "wind_string" "wind_dir"

[19] "wind_degrees" "wind_mph"

[21] "wind_gust_mph" "pressure_string"

[23] "pressure_mb" "pressure_in"

[25] "dewpoint_string" "dewpoint_f"

[27] "dewpoint_c" "heat_index_string"

[29] "heat_index_f" "heat_index_c"

[31] "windchill_string" "windchill_f"

[33] "windchill_c" "visibility_mi"

[35] "icon_url_base" "icon_url_name"

[37] "two_day_history_url" "ob_url"

[39] "disclaimer_url" "copyright_url"

[41] "privacy_policy_url"

Essentially, all the information is in the root node, so it can be extracted with xmlValue:

> xmlValue(root[[’temp_f’]])

[1] "49.0"

> xmlValue(root[[’wind_mph’]])

[1] "12.7"

To make this easy to use, we can write a function that will allow us to specify a location
and some variables that we want information about:
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getweather = function(loc=’KOAK’,vars=’temp_f’){

require(XML)

url = paste(’http://www.weather.gov/data/current_obs/’,loc,’.xml’,sep=’’)

doc = xmlTreeParse(url)

root = xmlRoot(doc)

sapply(vars,function(x)xmlValue(root[[x]]))

}

Let’s check to make sure it works with the defaults:

> getweather()

temp_f

"49.0"

That seems to be ok. To make it even more useful, we can create a vector of station names,
and use sapply to find weather information for each station:

> result = sapply(c(’KOAK’,’KACV’,’KSDM’),getweather,var=c(’temp_f’,’wind_mph’,’wind_dir’,’relative_humidity’))

> data.frame(t(result))

temp_f wind_mph wind_dir relative_humidity

KOAK 49.0 12.7 South 93

KACV 45.0 6.9 South 86

KSDM 66.0 6.9 Northwest 42

sapply has properly labeled all the stations and variables.
If information was recorded at different times, the observation time rfc822 variable

could be converted to an R POSIXct object as follows:

> as.POSIXct(getweather(’KOAK’,’observation_time_rfc822’),format=’%a, %d %b %Y %H:%M:%S %z’)

[1] "2011-03-18 14:53:00 PDT"
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9.1 Operating on Groups of Data

We’ve already seen how the aggregate function let’s us calculate data summaries for groups
in our data. For example, using the world data set, we could find the average value of each
variable, broken down by continent:

> world = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/world2.txt’,na.strings=’.’,comment=’#’)

> > names(world)

[1] "country" "cont" "gdp" "income" "literacy" "military" "phys"

[8] "un.date"

> aggregate(world[,-c(1,2,8)],world[’cont’],mean,na.rm=TRUE)

cont gdp income literacy military phys

1 AF 2723.404 3901.191 60.52979 356440000 26.31129

2 AS 7778.049 8868.098 84.25122 5006536341 161.83381

3 EU 19711.765 21314.324 98.40294 6311138235 311.18482

4 NA 8946.667 10379.143 85.52000 25919931267 187.08178

5 OC 14625.000 15547.500 87.50000 4462475000 127.63105

6 SA 6283.333 6673.083 92.29167 2137341667 154.81088

Since the aggregate function requires the grouping variables to be in a list, I took advantage
of the fact that data frames are also lists, and passed a single element (using single brackets)
to aggregate. Alternatively, I could have used a list directly:

> aggregate(world[,-c(1,2,8)],list(world$cont),mean,na.rm=TRUE)

Group.1 gdp income literacy military phys

1 AF 2723.404 3901.191 60.52979 356440000 26.31129

2 AS 7778.049 8868.098 84.25122 5006536341 161.83381

3 EU 19711.765 21314.324 98.40294 6311138235 311.18482

4 NA 8946.667 10379.143 85.52000 25919931267 187.08178

5 OC 14625.000 15547.500 87.50000 4462475000 127.63105

6 SA 6283.333 6673.083 92.29167 2137341667 154.81088

I would need to name the list element in order for its column in the output to be properly
labeled.

Now suppose I’d like to calculate both the mean and the median for each continent:

> answer = aggregate(world[,-c(1,2,8)],world[’cont’],function(x)c(mean(x,na.rm=TRUE),

+ median(x,na.rm=TRUE)))

> answer

cont gdp.1 gdp.2 income.1 income.2 literacy.1 literacy.2

1 AF 2723.404 1400.000 3901.191 1813.000 60.52979 65.50000

2 AS 7778.049 4300.000 8868.098 4561.000 84.25122 89.90000

3 EU 19711.765 18150.000 21314.324 19804.000 98.40294 99.70000

4 NA 8946.667 4900.000 NA NA 85.52000 87.70000

5 OC 14625.000 13700.000 15547.500 14970.000 87.50000 96.40000
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6 SA 6283.333 5000.000 6673.083 5563.500 92.29167 92.30000

military.1 military.2 phys.1 phys.2

1 356440000 101300000 26.31129 8.68680

2 5006536341 650000000 161.83381 139.92540

3 6311138235 1288500000 311.18482 317.88580

4 25919931267 147000000 187.08178 164.40130

5 4462475000 591500000 127.63105 128.11915

6 2137341667 742150000 154.81088 126.00035

There are eleven columns in the data, but when we look at the dimensions of the result,
things seem strange:

> dim(answer)

[1] 6 6

That’s because aggregate stores each set of the two values returned from the function we
passed to it in matrices inside the answer data frame:

> sapply(answer,class)

cont gdp income literacy military phys

"character" "matrix" "matrix" "matrix" "matrix" "matrix"

> names(answer)

[1] "cont" "gdp" "income" "literacy" "military" "phys"

> answer[,2]

[,1] [,2]

[1,] 2723.404 1400

[2,] 7778.049 4300

[3,] 19711.765 18150

[4,] 8946.667 4900

[5,] 14625.000 13700

[6,] 6283.333 5000

This actually makes it pretty easy to access the values that we want. For example, suppose
we want the mean for the variable military. Since the mean was the first element returned
by the function we passed to aggregate, it’s the first column in the military matrix:

> data.frame(answer$cont,military.mean=answer$military[,1])

answer.cont military.mean

1 AF 356440000

2 AS 5006536341

3 EU 6311138235

4 NA 25919931267

5 OC 4462475000

6 SA 2137341667
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The output from aggregate is often easier to use if we give names to the values calculated
by the function we pass to aggregate. For example, if we call aggregate like this:

> answer = aggregate(world[,-c(1,2,8)],world[’cont’],function(x)c(mean=mean(x,na.rm=TRUE),

+ median=median(x,na.rm=TRUE)))

> answer

cont gdp.mean gdp.median income.mean income.median literacy.mean

1 AF 2723.404 1400.000 3901.191 1813.000 60.52979

2 AS 7778.049 4300.000 8868.098 4561.000 84.25122

3 EU 19711.765 18150.000 21314.324 19804.000 98.40294

4 NA 8946.667 4900.000 10379.143 6753.000 85.52000

5 OC 14625.000 13700.000 15547.500 14970.000 87.50000

6 SA 6283.333 5000.000 6673.083 5563.500 92.29167

literacy.median military.mean military.median phys.mean phys.median

1 65.50000 356440000 101300000 26.31129 8.68680

2 89.90000 5006536341 650000000 161.83381 139.92540

3 99.70000 6311138235 1288500000 311.18482 317.88580

4 87.70000 25919931267 147000000 187.08178 164.40130

5 96.40000 4462475000 591500000 127.63105 128.11915

6 92.30000 2137341667 742150000 154.81088 126.00035

Now we can say, for example:

> data.frame(cont=answer$cont,literacy.median=answer$literacy[,’median’])

cont literacy.median

1 AF 65.5

2 AS 89.9

3 EU 99.7

4 NA 87.7

5 OC 96.4

6 SA 92.3

Another way to manage the output from aggregate takes advantage of the fact that when
the data.frame function is called with multiple data frames, it doesn’t store the data frames
as separate columns, but rather makes one big data frame with lots of columns. So if we
convert each of the matrices to data frames we can combine all of them into one big data
frame:

> answer1 = data.frame(answer[,1],data.frame(answer[,2]),data.frame(answer[,3]),

+ data.frame(answer[,4]),data.frame(answer[,5]),data.frame(answer[,6]))

> answer1

answer...1. mean median mean.1 median.1 mean.2 median.2 mean.3

1 AF 2723.404 1400 3901.191 1813.0 60.52979 65.5 356440000

2 AS 7778.049 4300 8868.098 4561.0 84.25122 89.9 5006536341

3 EU 19711.765 18150 21314.324 19804.0 98.40294 99.7 6311138235
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4 NA 8946.667 4900 10379.143 6753.0 85.52000 87.7 25919931267

5 OC 14625.000 13700 15547.500 14970.0 87.50000 96.4 4462475000

6 SA 6283.333 5000 6673.083 5563.5 92.29167 92.3 2137341667

median.3 mean.4 median.4

1 101300000 26.31129 8.6868

2 650000000 161.83381 139.9254

3 1288500000 311.18482 317.8858

4 147000000 187.08178 164.4013

5 591500000 127.63105 128.1191

6 742150000 154.81088 126.0003

> dim(answer1)

[1] 6 11

We’d need to rename the columns, but there are now actually eleven columns as we would
expect. Of course, we wouldn’t want to do all that typing in practice. We would use some
of R’s powerful tools to automate the process. For example, we could try to use sapply to
convert all the matrices to data frames

> sapply(answer[,-1],data.frame)

gdp income literacy military phys

mean Numeric,6 Numeric,6 Numeric,6 Numeric,6 Numeric,6

median Numeric,6 Numeric,6 Numeric,6 Numeric,6 Numeric,6

As we’ve seen before this is usually an indication that sapply has simplified things too much.
If we try lapply, this is what we get:

> lapply(answer[,-1],data.frame)

$gdp

mean median

1 2723.404 1400

2 7778.049 4300

3 19711.765 18150

4 8946.667 4900

5 14625.000 13700

6 6283.333 5000

$income

mean median

1 3901.191 1813.0

2 8868.098 4561.0

3 21314.324 19804.0

4 10379.143 6753.0

5 15547.500 14970.0

6 6673.083 5563.5
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We can convert the list to a data frame as follows:

> answer1= data.frame(answer[1],lapply(answer[,-1],data.frame))

> answer1

cont gdp.mean gdp.median income.mean income.median literacy.mean

1 AF 2723.404 1400 3901.191 1813.0 60.52979

2 AS 7778.049 4300 8868.098 4561.0 84.25122

3 EU 19711.765 18150 21314.324 19804.0 98.40294

4 NA 8946.667 4900 10379.143 6753.0 85.52000

5 OC 14625.000 13700 15547.500 14970.0 87.50000

6 SA 6283.333 5000 6673.083 5563.5 92.29167

literacy.median military.mean military.median phys.mean phys.median

1 65.5 356440000 101300000 26.31129 8.6868

2 89.9 5006536341 650000000 161.83381 139.9254

3 99.7 6311138235 1288500000 311.18482 317.8858

4 87.7 25919931267 147000000 187.08178 164.4013

5 96.4 4462475000 591500000 127.63105 128.1191

6 92.3 2137341667 742150000 154.81088 126.0003

As is often the case, R takes care of the names more effectively than if we labouriously
combined everything by hand. All that would be left to make this a truly useful display is to
add the number of countries in each continent. Since this will be the same for each variable,
it’s usually not a good idea to return this value in the function you pass to aggregate. Instead,
we can use the table, as.data.frame, and merge functions as follows:

> counts = as.data.frame(table(world$cont))

> names(counts) = c(’cont’,’N’)

> merge(counts,answer1)

cont N gdp.mean gdp.median income.mean income.median literacy.mean

1 AF 47 2723.404 1400 3901.191 1813.0 60.52979

2 AS 41 7778.049 4300 8868.098 4561.0 84.25122

3 EU 34 19711.765 18150 21314.324 19804.0 98.40294

4 NA 15 8946.667 4900 10379.143 6753.0 85.52000

5 OC 4 14625.000 13700 15547.500 14970.0 87.50000

6 SA 12 6283.333 5000 6673.083 5563.5 92.29167

literacy.median military.mean military.median phys.mean phys.median

1 65.5 356440000 101300000 26.31129 8.6868

2 89.9 5006536341 650000000 161.83381 139.9254

3 99.7 6311138235 1288500000 311.18482 317.8858

4 87.7 25919931267 147000000 187.08178 164.4013

5 96.4 4462475000 591500000 127.63105 128.1191

6 92.3 2137341667 742150000 154.81088 126.0003

Even though aggregate can handle cases with more than one value being calculated, it
still can only work with one variable at a time. There are two approaches to solve the cases
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where you need to work with more than one variable. The first, uses the split function that
we’ve seen for making boxplots. Suppose we want to find the two variables with the highest
correlation within each continent. First, we can write a function that will find the variables
for with the highest correlation in a data frame:

hicorr = function(x){

x = x[,sapply(x,function(col)mode(col) == ’numeric’ & class(col) != ’factor’)]

cc = cor(x,use=’complete.obs’)

diag(cc) = 0

wh = which(cc == max(cc),arr.ind=TRUE)

c(rownames(cc)[wh[1]],colnames(cc)[wh[2]])

}

Now we can use sapply and split to find the variables with the highest correlation in each
continent:

> as.data.frame(t(sapply(split(world,world$cont),hicorr)))

V1 V2

AF phys military

AS income gdp

EU income gdp

NA income gdp

OC income gdp

SA income gdp

The other way to solve problems like this is with the by function. The by function
produces nicely formatted output, but its output can be manipulated if necessary. Here’s
the basic approach for a problem like this.

> byvals = by(world,world$cont,hicorr)

> byvals

world$cont: AF

[1] "phys" "military"

------------------------------------------------------------

world$cont: AS

[1] "income" "gdp"

------------------------------------------------------------

world$cont: EU

[1] "income" "gdp"

------------------------------------------------------------

world$cont: NA

[1] "income" "gdp"

------------------------------------------------------------

world$cont: OC

[1] "income" "gdp"
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------------------------------------------------------------

world$cont: SA

[1] "income" "gdp"

Since each piece of the byvals object looks like part of a data frame we want, we can use
do.call with rbind:

> ans = do.call(rbind,byvals)

> ans

[,1] [,2]

AF "phys" "military"

AS "income" "gdp"

EU "income" "gdp"

NA "income" "gdp"

OC "income" "gdp"

SA "income" "gdp"

As another example of do.call, consider the task of sorting a data frame by its first
column, then using the second column to break any ties, and so on for each ofthe columns
of the data frame. For example:

> x = data.frame(matrix(sample(1:5,100,replace=TRUE),ncol=5))

> head(x)

X1 X2 X3 X4 X5

1 4 4 1 3 4

2 2 4 2 4 1

3 1 1 1 3 2

4 4 3 3 2 2

5 5 2 2 4 3

6 4 2 5 4 5

Since a data frame is a list, with each element representing a column, we can order the data
frame as follows:

> x[do.call(order,x),]

X1 X2 X3 X4 X5

3 1 1 1 3 2

17 1 2 3 5 5

10 1 4 5 1 5

20 2 4 2 1 1

2 2 4 2 4 1

11 3 1 4 4 2

16 3 4 1 1 3

8 4 2 1 1 1

14 4 2 2 3 5
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18 4 2 3 4 2

13 4 2 5 1 1

6 4 2 5 4 5

7 4 3 1 4 2

4 4 3 3 2 2

1 4 4 1 3 4

9 4 5 3 1 2

5 5 2 2 4 3

12 5 3 4 2 4

15 5 3 5 1 5

19 5 4 5 1 3

Another interesting R function is Reduce. This function works with any binary function,
that is, one which accepts two arguments, and repeatedly applies the binary function until
the list is reduced to a single answer. One of the most important uses of Reduce is to merge
more than two data frames at a time. Suppose we have three data frames that we wish to
merge:

> one = data.frame(id=sample(LETTERS[1:10]),a=rnorm(10))

> two = data.frame(id=sample(LETTERS[1:10]),b=rnorm(10))

> three = data.frame(id=sample(LETTERS[1:10]),c=rnorm(10))

Of course, we could call merge twice:

> both = merge(one,two)

> both = merge(both,three)

But what if we had 20 such data frames:

> twenty = lapply(letters[1:20],function(i){

+ z = data.frame(id=sample(LETTERS[1:10]),rnorm(10))

+ names(z)[2] = i

+ z})

> twenty[[1]]

id a

1 D 1.9112203

2 F -0.7198699

3 J -0.4290842

4 E 0.7849467

5 B 1.5758446

6 I 0.4998762

7 H 0.3568294

8 A -0.8567896

9 G -0.7182695

10 C -0.6894396
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> twenty[[2]]

id b

1 C 2.03416915

2 J 0.69535618

3 E -0.66387813

4 H -0.25343952

5 D -1.04782198

6 G 1.56147090

7 B -0.28126409

8 F -0.30900749

9 I 0.52277648

10 A 0.03841634

We simply pass Reduce the merge function and the list of data frames, and it does the rest:

> all = Reduce(merge,twenty)

id a b c d e f

1 A -0.8567896 0.03841634 1.1137667 -0.6139491 -1.2893453 0.5760507

2 B 1.5758446 -0.28126409 0.2777182 -0.1615362 0.8221153 -0.3328126

3 C -0.6894396 2.03416915 0.6990830 0.9430438 -0.7059770 -0.1309771

4 D 1.9112203 -1.04782198 -0.1040303 0.2433795 0.7645007 -0.3161749

5 E 0.7849467 -0.66387813 0.0683588 -0.5752617 -0.4059950 -1.2280617

6 F -0.7198699 -0.30900749 -1.0955231 -0.8593922 0.1585112 0.5434146

g h i j k l m

1 1.1469512 1.8675396 -1.0730001 -0.6306937 2.5853058 0.2524264 0.67496861

2 0.3483675 0.6846907 -1.7896035 0.7710611 1.9890408 0.6174135 0.16124957

3 -0.9972951 -0.7140730 0.7919375 0.3678690 1.2336345 -0.2323708 -0.52465997

4 0.1179205 -0.1865189 -1.0364221 0.6013162 1.3426701 -0.3513651 0.48844598

5 -0.1171988 -0.1514659 0.2650891 0.1813734 0.9233442 -1.7945477 -0.07855065

6 -0.2897749 -0.5888773 1.8274135 -0.3195992 0.6230858 -0.4897521 -0.49559174

n o p q r s t

1 0.5551094 1.6335976 -1.6149968 -0.0601484 0.1622304 0.1624207 -1.1408366

2 1.3832478 -0.8993505 -0.3657969 -0.2817061 0.2501859 -0.2096964 -0.5082768

3 -0.7369804 0.2675346 -0.3801290 2.2369038 1.7701125 0.6809073 -1.1597869

4 1.4028788 -0.9317347 0.1623700 -2.8401085 -2.0066582 -0.5500940 1.9968541

5 -0.2516113 -1.1269027 2.2224559 -0.2109566 1.6218192 -0.7154724 1.8204627

6 2.0342595 -0.1864191 -0.7241448 1.4295025 -2.1206024 0.4883462 -0.1468977

Another useful R function is reshape. This function reorganizes data in either the so-
called wide or long format. In the wide format, all observations for a single individual are
recorded in one row of a data frame, while in the long view, each observation is a separate
row, with an additional variable to identify the observation. For example, here is a data set,
in long format, representing test scores on several different observations:
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> data = data.frame(id=rep(1:3,rep(3,3)),time=rep(1:3,3),x=rnorm(9))

> data

id time x

1 1 1 -0.85519374

2 1 2 -0.60227681

3 1 3 0.47671168

4 2 1 0.28097796

5 2 2 -2.20903570

6 2 3 0.08311228

7 3 1 -0.56753562

8 3 2 0.65588709

9 3 3 0.42419294

To convert to wide format, the following statements could be used:

> reshape(data,idvar=’id’,timevar=’time’,v.names=’x’,direction=’wide’)

id x.1 x.2 x.3

1 1 -0.8551937 -0.6022768 0.47671168

4 2 0.2809780 -2.2090357 0.08311228

7 3 -0.5675356 0.6558871 0.42419294

Notice that not all possible combinations of observations need to be present:

> data1 = data[-7,]

> reshape(data1,idvar=’id’,timevar=’time’,v.names=’x’,direction=’wide’)

id x.1 x.2 x.3

1 1 -0.8551937 -0.6022768 0.47671168

4 2 0.2809780 -2.2090357 0.08311228

8 3 NA 0.6558871 0.42419294

The missing observations are represented as NA in the output data frame.
To illustrace the wide-to-long transformation, consider the following data:

> data = data.frame(id = rep(1:3),x1=c(1,2,3),x2=c(10,20,30),x3=c(100,200,300))

> data

id x1 x2 x3

1 1 1 10 100

2 2 2 20 200

3 3 3 30 300

> reshape(data,idvar=’id’,varying=list(c(’x1’,’x2’,’x3’)),direction=’long’)

id time x1

1.1 1 1 1

2.1 2 1 2

3.1 3 1 3

1.2 1 2 10
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2.2 2 2 20

3.2 3 2 30

1.3 1 3 100

2.3 2 3 200

3.3 3 3 300

The trickiest part is noticing that the names of the three varying variables have to be placed
in a list.

As another example of the use of reshape, consider a study looking at the BMI (Body Mass
Index) of girls over time, measured for two different races. This data can be found in a tab-
delimited file at http://www.stat.berkeley.edu/classes/s133/data/bmi.tab. The variables in
the file are ID, RACE, BMI, and VISIT. Suppose we wish to produce a plot of the average BMI
versus visit, with separate lines for the two races. We could use xyplot from the lattice

package as follows:

> bmi = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/bmi.tab’)

> avgbmi = aggregate(list(BMI=bmi$BMI),list(Race=bmi$RACE,Visit=bmi$VISIT),

+ mean,na.rm=TRUE)

> library(lattice)

> xyplot(BMI~Visit,group=Race,type=’l’,auto.key=TRUE,

+ main=’BMI vs. Visit’,data=avgbmi)
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The plot appears below:
Now suppose we wish to calculate the correlations between the BMIs at the different

visits. The cor function expects all of the variables for which we want the correlations to be
separate columns in the data frame we pass to the function. We can rearrange the data to
make it suitable for calculating the correlations by calling reshape as follows:

> bmi1 = reshape(bmi,idvar=c(’ID’,’RACE’),timevar=’VISIT’,v.names=’BMI’,

+ direction=’wide’)

We can now calculate the correlations by race:

> by(bmi1,bmi1$RACE,function(x)cor(x[,-c(1,2)],use=’complete.obs’))

bmi1$RACE: 1

BMI.0 BMI.2 BMI.3 BMI.4 BMI.5 BMI.6 BMI.7

BMI.0 1.0000000 0.9513181 0.9238520 0.8871666 0.8489529 0.8227992 0.8018502

BMI.2 0.9513181 1.0000000 0.9490917 0.9144459 0.8625492 0.8339581 0.8110637

BMI.3 0.9238520 0.9490917 1.0000000 0.9517413 0.9025264 0.8612542 0.8327787

BMI.4 0.8871666 0.9144459 0.9517413 1.0000000 0.9458218 0.9054674 0.8781602

BMI.5 0.8489529 0.8625492 0.9025264 0.9458218 1.0000000 0.9530917 0.9105118

BMI.6 0.8227992 0.8339581 0.8612542 0.9054674 0.9530917 1.0000000 0.9568980
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BMI.7 0.8018502 0.8110637 0.8327787 0.8781602 0.9105118 0.9568980 1.0000000

BMI.8 0.7968433 0.8026011 0.8166798 0.8540803 0.8859762 0.9319712 0.9630340

BMI.9 0.7888784 0.7931164 0.8042629 0.8351485 0.8690846 0.9107269 0.9316619

BMI.10 0.7630397 0.7690169 0.7777677 0.8131666 0.8430350 0.8803034 0.8952306

BMI.8 BMI.9 BMI.10

BMI.0 0.7968433 0.7888784 0.7630397

BMI.2 0.8026011 0.7931164 0.7690169

BMI.3 0.8166798 0.8042629 0.7777677

BMI.4 0.8540803 0.8351485 0.8131666

BMI.5 0.8859762 0.8690846 0.8430350

BMI.6 0.9319712 0.9107269 0.8803034

BMI.7 0.9630340 0.9316619 0.8952306

BMI.8 1.0000000 0.9596225 0.9209648

BMI.9 0.9596225 1.0000000 0.9488572

BMI.10 0.9209648 0.9488572 1.0000000

------------------------------------------------------------

bmi1$RACE: 2

BMI.0 BMI.2 BMI.3 BMI.4 BMI.5 BMI.6 BMI.7

BMI.0 1.0000000 0.9628273 0.9281780 0.9010607 0.8646773 0.8410384 0.8173900

BMI.2 0.9628273 1.0000000 0.9607964 0.9334043 0.8940498 0.8730059 0.8543804

BMI.3 0.9281780 0.9607964 1.0000000 0.9656133 0.9300707 0.9081140 0.8886918

BMI.4 0.9010607 0.9334043 0.9656133 1.0000000 0.9605275 0.9378850 0.9130036

BMI.5 0.8646773 0.8940498 0.9300707 0.9605275 1.0000000 0.9722481 0.9465896

BMI.6 0.8410384 0.8730059 0.9081140 0.9378850 0.9722481 1.0000000 0.9751832

BMI.7 0.8173900 0.8543804 0.8886918 0.9130036 0.9465896 0.9751832 1.0000000

BMI.8 0.8051828 0.8423513 0.8746659 0.8979719 0.9293276 0.9561339 0.9769345

BMI.9 0.8003754 0.8389726 0.8689569 0.8868970 0.9147281 0.9410288 0.9582904

BMI.10 0.7862279 0.8224567 0.8464351 0.8640517 0.8894121 0.9157546 0.9316408

BMI.8 BMI.9 BMI.10

BMI.0 0.8051828 0.8003754 0.7862279

BMI.2 0.8423513 0.8389726 0.8224567

BMI.3 0.8746659 0.8689569 0.8464351

BMI.4 0.8979719 0.8868970 0.8640517

BMI.5 0.9293276 0.9147281 0.8894121

BMI.6 0.9561339 0.9410288 0.9157546

BMI.7 0.9769345 0.9582904 0.9316408

BMI.8 1.0000000 0.9767038 0.9460700

BMI.9 0.9767038 1.0000000 0.9675484

BMI.10 0.9460700 0.9675484 1.0000000

Not surprisingly, there’s a very high correlation between the BMI at the different visits for
both races.
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Chapter 10

Classification Analysis
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10.1 Introduction to Classification Methods

When we apply cluster analysis to a dataset, we let the values of the variables that were
measured tell us if there is any structure to the observations in the data set, by choosing a
suitable metric and seeing if groups of observations that are all close together can be found.
If we have an auxilliary variable (like the country of origin from the cars example), it may be
interesting to see if the natural clustering of the data corresponds to this variable, but it’s
important to remember that the idea of clustering is just to see if any groups form naturally,
not to see if we can actually figure out which group an observation belongs to based on the
values of the variables that we have.

When the true goal of our data analysis is to be able to predict which of several non-
overlapping groups an observation belongs to, the techniques we use are known as classifi-
cation techniques. We’ll take a look at three classification techniques: kth nearest neighbor
classification, linear discrimininant analysis, and recursive partitioning.

10.2 kth Nearest Neighbor Classification

The idea behind nearest neighbor classification is simple and somewhat intuitive – find other
observations in the data that are close to an observation we’re interested, and classify that
observation based on the class of its neighbors. The number of neighbors that we consider
is where the ”k” comes in – usually we’ll have to look at several different values of k to
determine which ones work well with a particular data set. Values in the range of one to ten
are usually reasonable choices.

Since we need to look at all of the distances between one observation and all the others
in order to find the neighbors, it makes sense to form a distance matrix before starting a
nearest neighbor classification. Each row of the distance matrix tells us the distances to all
the other observations, so we need to find the k smallest values in each row of the distance
matrix. Once we find those smallest values, we determine which observations they belong
to, and look at how those observations were classified. We assign whichever value of the
classification that was most common among the k nearest neighbors as our guess (predicted
value) for the current observation, and then move on to the next row of the distance matrix.
Once we’ve looked at every row of the distance matrix, we’ll have classified every observation,
and can compare the predicted classification with the actual classification. To see how well
we’ve done, various error rates can be examined. If the observations are classified as TRUE
/ FALSE, for example disease or no disease, then we can look at two types of error rates.
The first type of error rate, known as Type I error, occurs when we say that an observation
should be classified as TRUE when it really should have been FALSE. The other type of error
(Type II) occurs when we say that an observation should be classified as FALSE when it
should have been TRUE. When the classification is something other than TRUE/FALSE, we
can report an overall error rate, that is, the fraction of observations for which our prediction
was not correct. In either case, the error rates can be calculated in R by using the table

function. As a simple example, suppose we have two vectors: actualvalues, which contains
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the actual values of a classification variable, and predvalues, the value that our classification
predicted:

> actualvalues = c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE)

> predvalues = c(TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE)

> tt = table(actualvalues,predvalues)

> tt

predvalues

actualvalues FALSE TRUE

FALSE 3 2

TRUE 1 4

The observations that contribute to Type I error (the actual value is false but we predicted
true) can be found in the first row and second column; those that contribute to Type II error
can be found in the second row and first column. Since the table function returns a matrix,
we can calculate the rows as follows:

> tot = sum(tt)

> type1 = tt[’FALSE’,’TRUE’] / tot

> type2 = tt[’TRUE’,’FALSE’] / tot

> type1

[1] 0.2

> type2

[1] 0.1

10.3 Cross Validation

There’s one problem with the above scheme. We used the data that we’re making predictions
about in the process of making those predictions. In other words, the data that we’re making
predictions for is not independent of the data that we’re using to make the predictions. As
might be expected, it’s been shown in practice that calculating error rates this way will
almost always make our classification method look better than it should be. If the data
can be naturally (or even artificially) divided into two groups, then one can be used as a
training set, and the other can be used as a test set – we’d calculate our error rates only
from the classification of the test set using the training set to make our predictions. Many
statisticians don’t like the idea of having to “hold back” some of their data when building
models, so an alternative way to bring some independence to our predictions known as v-
fold cross validation has been devised. The idea is to first divide the entire data set into v
groups. To classify objects in the first group, we don’t use any of the first group to make our
predictions; in the case of k-th nearest neighbor classification, that would mean that when
we’re looking for the smallest distances in order to classify an observation, we don’t consider
any of the distances corresponding to other members of the same group that the current
one belongs to. The basic idea is that we want to make the prediction for an observation as
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independent from that observation as we can. We continue through each of the v groups,
classifying observations in each group using only observations from the other groups. When
we’re done we’ll have a prediction for each observation, and can compare them to the actual
values as in the previous example.

Another example of cross-validation is leave-out-one cross-validation. With this method,
we predict the classification of an observation without using the observation itself. In other
words, for each observation, we perform the analysis without using that observation, and
then predict where that observation would be classified using that analysis.

10.4 Linear Discriminant Analysis

One of the oldest forms of classification is known as linear discriminant analysis. The idea
is to form linear combinations of predictor variables (similar to a linear regression model) in
such a way that the average value of these linear combinations will be as different as possible
for the different levels of the classification variable. Based on the values of the linear com-
binations, linear discriminant analysis reports a set of posterior probabilities for every level
of the classification, for each observation, along with the level of the classification variable
that the analysis predicted. Suppose we have a classification variable that can take one of
three values: after a linear discriminant analysis, we will have three probabilities (adding
up to one) for each variable that tell how likely it is that the observation be categorized
into each of the three categories; the predicted classificiation is the one that had the highest
probability, and we can get insight into the quality of the classification by looking at the
values of the probabilities.

To study the different classification methods, we’ll use a data set about different wines.
This data set contains various measures regarding chemical and other properties of the wines,
along with a variable identifying the Cultivar (the particular variety of the grape from which
the wine was produced). We’ll try to classify the observations based on the Cultivar, using the
other variables. The data is available at http://www.stat.berkeley.edu/classes/s133/data/wine.data;
information about the variables is at http://www.stat.berkeley.edu/classes/s133/data/wine.names

First, we’ll read in the wine dataset:

wine = read.csv(’http://www.stat.berkeley.edu/classes/s133/data/wine.data’,header=FALSE)

names(wine) = c("Cultivar", "Alcohol", "Malic.acid", "Ash", "Alkalinity.ash",

"Magnesium", "Phenols", "Flavanoids", "NF.phenols", "Proanthocyanins",

"Color.intensity","Hue","OD.Ratio","Proline")

wine$Cultivar = factor(wine$Cultivar)

Notice that I set wine$Cultivar to be a factor. Factors are very important and useful in
modeling functions because categorical variables almost always have to be treated differently
than numeric variables, and turning a categorical variable into a factor will insure that they
are always used properly in modeling functions. Not surprisingly, the dependent variable for
lda must be a factor.
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The class library of R provides two functions for nearest neighbor classification. The
first, knn, takes the approach of using a training set and a test set, so it would require holding
back some of the data. The other function, knn.cv uses leave-out-one cross-validation, so
it’s more suitable to use on an entire data set.

Let’s use knn.cv on the wine data set. Since, like cluster analysis, this technique is
based on distances, the same considerations regarding standardization as we saw with cluster
analysis apply. Let’s examine a summary for the data frame:

> summary(wine)

Cultivar Alcohol Malic.acid Ash Alkalinity.ash

1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60

2:71 1st Qu.:12.36 1st Qu.:1.603 1st Qu.:2.210 1st Qu.:17.20

3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50

Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49

3rd Qu.:13.68 3rd Qu.:3.083 3rd Qu.:2.558 3rd Qu.:21.50

Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00

Magnesium Phenols Flavanoids NF.phenols

Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300

1st Qu.: 88.00 1st Qu.:1.742 1st Qu.:1.205 1st Qu.:0.2700

Median : 98.00 Median :2.355 Median :2.135 Median :0.3400

Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619

3rd Qu.:107.00 3rd Qu.:2.800 3rd Qu.:2.875 3rd Qu.:0.4375

Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600

Proanthocyanins Color.intensity Hue OD.Ratio

Min. :0.410 Min. : 1.280 Min. :0.4800 Min. :1.270

1st Qu.:1.250 1st Qu.: 3.220 1st Qu.:0.7825 1st Qu.:1.938

Median :1.555 Median : 4.690 Median :0.9650 Median :2.780

Mean :1.591 Mean : 5.058 Mean :0.9574 Mean :2.612

3rd Qu.:1.950 3rd Qu.: 6.200 3rd Qu.:1.1200 3rd Qu.:3.170

Max. :3.580 Max. :13.000 Max. :1.7100 Max. :4.000

Proline

Min. : 278.0

1st Qu.: 500.5

Median : 673.5

Mean : 746.9

3rd Qu.: 985.0

Max. :1680.0

Since the scale of the variables differ widely, standardization is probably a good idea. We’ll
divide each variable by its standard deviation to try to give each variable more equal weight
in determining the distances:

> wine.use = scale(wine[,-1],scale=apply(wine[,-1],2,sd))

> library(class)
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> res = knn.cv(wine.use,wine$Cultivar,k=3)

> names(res)

NULL

> length(res)

[1] 178

Since there are no names, and the length of res is the same as the number of observations,
knn.cv is simply returning the classifications that the method predicted for each observation
using leave-out-one cross validation. This means we can compare the predicted values to the
true values using table:

> table(res,wine$Cultivar)

res 1 2 3

1 59 4 0

2 0 63 0

3 0 4 48

To calculate the proportion of incorrect classifications, we can use the row and col

functions. These unusual functions don’t seem to do anything very useful when we simply
call them:

> tt = table(res,wine$Cultivar)

> row(tt)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 2 2

[3,] 3 3 3

> col(tt)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 2 3

[3,] 1 2 3

However, if you recall that the misclassified observations are those that are off the diagonal,
we can find those observations as follows:

> tt[row(tt) != col(tt)]

[1] 0 0 4 4 0 0

and the proportion of misclassified observations can be calculated as:

> sum(tt[row(tt) != col(tt)]) / sum(tt)

[1] 0.04494382

or a missclassification rate of about 4.5
Could we have done better if we used 5 nearest neighbors instead of 3?
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> res = knn.cv(wine.use,wine$Cultivar,k=5)

> tt = table(res,wine$Cultivar)

> sum(tt[row(tt) != col(tt)]) / sum(tt)

[1] 0.02808989

How about using just the single nearest neighbor?

> res = knn.cv(wine.use,wine$Cultivar,k=1)

> tt = table(res,wine$Cultivar)

> sum(tt[row(tt) != col(tt)]) / sum(tt)

[1] 0.04494382

For this data set, using k=5 did slightly better than 1 or 3.
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In R, linear discriminant analysis is provided by the lda function from the MASS library,
which is part of the base R distribution.

Like many modeling and analysis functions in R, lda takes a formula as its first argument.
A formula in R is a way of describing a set of relationships that are being studied. The
dependent variable, or the variable to be predicted, is put on the left hand side of a tilda
(~) and the variables that will be used to model or predict it are placed on the right hand
side of the tilda, joined together by plus signs (+). To save typing, you an provide the name
of a data frame through the data= argument, and use the name of the variables in the data
frame in your formula without retyping the data frame name or using the with function.

A convenience offered by the modeling functions is that a period (.) on the right-hand
side of the tilda in a formula is interpreted as meaning “all the other variables in the data
frame, except the dependent variable”. So a very popular method of specifying a formula is
to use the period, and then use subscripting to limit the data= argument to just the variables
you want to fit. In this example, we don’t need to do that, because we really do want to use
all the variables in the data set.

> wine.lda = lda(Cultivar ~ .,data=wine)

We’ll see that most of the modeling functions in R share many things in common. For
example, to predict values based on a model, we pass the model object to the predict

function along with a data frame containing the observations for which we want predictions:

> pred = predict(wine.lda,wine)

To see what’s available from the call to predict, we can look at the names of the pred object:

> names(pred)

[1] "class" "posterior" "x"

The predicted classification is stored in the class component of the object returned by
predict Now that we’ve got the predicted classes, we can see how well the classification
went by making a cross-tabulation of the real Cultivar with our prediction, using the table

function:

> table(wine$Cultivar,pred$class)

predclass

1 2 3

1 59 0 0

2 0 71 0

3 0 0 48

Before we get too excited about these results, remember the caution about predicting values
based on models that were built using those values. The error rate we see in the table
(0) is probably an overestimate of how good the classification rule is. We can use v-fold
cross validation on the data, by using the lda command repeatedly to classify groups of
observations (folds) using the rest of the data to build the model. We could write this out
“by hand”, but it would be useful to have a function that could do this for us. Here’s such
a function:
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vlda = function(v,formula,data,cl){

require(MASS)

grps = cut(1:nrow(data),v,labels=FALSE)[sample(1:nrow(data))]

pred = lapply(1:v,function(i,formula,data){

omit = which(grps == i)

z = lda(formula,data=data[-omit,])

predict(z,data[omit,])

},formula,data)

wh = unlist(lapply(pred,function(pp)pp$class))

table(wh,cl[order(grps)])

}

This function accepts four arguments: v, the number of folds in the cross classification,
formula which is the formula used in the linear discriminant analysis, data which is the
data frame to use, and cl, the classification variable (wine$Cultivar in this case).

By using the sample function, we make sure that the groups that are used for cross-
validation aren’t influenced by the ordering of the data – notice how the classification variable
(cl) is indexed by order(grps) to make sure that the predicted and actual values line up
properly.

Applying this function to the wine data will give us a better idea of the actual error rate
of the classifier:

> vlda(5,Cultivar~.,wine,wine$Cultivar)

wh 1 2 3

1 59 1 0

2 0 69 1

3 0 1 47

While the error rate is still very good, it’s not quite perfect:

> error = sum(tt[row(tt) != col(tt)]) / sum(tt)

> error

[1] 0.01685393

Note that because of the way we randomly divide the observations, you’ll see a slightly
different table every time you run the vlda function.

We could use a similar method to apply v-fold cross-validation to the kth nearest neighbor
classification. Since the knn function accepts a training set and a test set, we can make each
fold a test set, using the remainder of the data as a training set. Here’s a function to apply
this idea:

vknn = function(v,data,cl,k){

grps = cut(1:nrow(data),v,labels=FALSE)[sample(1:nrow(data))]

pred = lapply(1:v,function(i,data,cl,k){

211



omit = which(grps == i)

pcl = knn(data[-omit,],data[omit,],cl[-omit],k=k)

},data,cl,k)

wh = unlist(pred)

table(wh,cl[order(grps)])

}

Let’s apply the function to the standardized wine data:

> tt = vknn(5,wine.use,wine$Cultivar,5)

> tt

wh 1 2 3

1 59 2 0

2 0 66 0

3 0 3 48

> sum(tt[row(tt) != col(tt)]) / sum(tt)

[1] 0.02808989

Note that this is the same misclassification rate as acheived by the “leave-out-one” cross
validation provided by knn.cv.

Both the nearest neighbor and linear discriminant methods make it possible to classify
new observations, but they don’t give much insight into what variables are important in
the classification. The scaling element of the object returned by lda shows the linear
combinations of the original variables that were created to distinguish between the groups:

> wine.lda$scaling

LD1 LD2

Alcohol -0.403399781 0.8717930699

Malic.acid 0.165254596 0.3053797325

Ash -0.369075256 2.3458497486

Alkalinity.ash 0.154797889 -0.1463807654

Magnesium -0.002163496 -0.0004627565

Phenols 0.618052068 -0.0322128171

Flavanoids -1.661191235 -0.4919980543

NF.phenols -1.495818440 -1.6309537953

Proanthocyanins 0.134092628 -0.3070875776

Color.intensity 0.355055710 0.2532306865

Hue -0.818036073 -1.5156344987

OD.Ratio -1.157559376 0.0511839665

Proline -0.002691206 0.0028529846

It’s really not that easy to interpret them, but variables with large absolute values in the
scalings are more likely to influence the process. For this data, Flavanoids, NF.phenols,
Ash, and Hue seem to be among the important variables.
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A different way to get some insight into this would be to examine the means of each of the
variables broken down by the classification variable. Variables which show a large difference
among the groups would most likely be the ones that are useful in predicting which group an
observation belongs in. One graphical way of displaying this information is with a barplot.
To make sure we can see differences for all the variables, we’ll use the standardized version
of the data:

> mns = aggregate(wine.use,wine[’Cultivar’],mean)

> rownames(mns) = mns$Cultivar

> mns$Cultivar = NULL

> barplot(as.matrix(mns),beside=TRUE,cex.names=.8,las=2)

The las parameter rotates the labels on the x-axis so that we can see them all. Here’s the
plot:

It seems like the big differences are found in Flavanoids, Hue and OD.Ratio

Now let’s take a look at a method that makes it very clear which variables are useful in
distinguishing among the groups.
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10.5 Recursive Partitioning

An alternative classification method, developed in the 1980s, has attracted a lot of attention
in a variety of different fields. The technique, known as recursive partitioning or CART
(Classification and Regression Trees), can be use for either classification or regression – here
we’ll concentrate on its use for classification. The basic idea is to examine, for each of the
variables that we’re using in our classification model, the results of splitting the data set
based on one of the values of that variable, and then examining how that split helps us
distinguish between the different classes of interest. For example, suppose we’re using just
one variable to help distinguish between two classes:

> mydata = data.frame(x=c(7,12,8,3,4,9,2,19),grp=c(1,2,1,1,1,2,2,2))

> mydata

x grp

1 7 1

2 12 2

3 8 1

4 3 1

5 4 1

6 9 2

7 2 2

8 19 2

We’d consider each value of x in the data, and split the data into two groups: one where x

was less than or equal to the value and the other where x is greater than the value. We then
look at how our classification variable (grp in this example) breaks down when the data is
split this way. For this example, we can look at all the possible cross-tabulations:

> tbls = sapply(mydata$x,function(val)table(mydata$x <= val,mydata$grp))

> names(tbls) = mydata$x

> tbls

> tbls

$"7"

1 2

FALSE 1 3

TRUE 3 1

$"12"

1 2

FALSE 0 1
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TRUE 4 3

$"8"

1 2

FALSE 0 3

TRUE 4 1

$"3"

1 2

FALSE 3 3

TRUE 1 1

$"4"

1 2

FALSE 2 3

TRUE 2 1

$"9"

1 2

FALSE 0 2

TRUE 4 2

$"2"

1 2

FALSE 4 3

TRUE 0 1

$"19"

1 2

TRUE 4 4

If you look at each of these tables, you can see that when we split with the rule x <= 8, we
get the best separation; all three of the cases where x is greater than 8 are classified as 2,
and four out of five of the cases where x is less than 8 are classified as 1. For this phase of a
recursive partitioning, the rule x <= 8 would be chosen to split the data.
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In real life situations, where there will always be more than one variable, the process
would be repeated for each of the variables, and the chosen split would the one from among
all the variables that resulted in the best separation or node purity as it is sometimes known.
Now that we’ve found the single best split, our data is divided into two groups based on that
split. Here’s where the recursive part comes in: we keep doing the same thing to each side of
the split data, searching through all values of all variables until we find the one that gives us
the best separation, splitting the data by that value and then continuing. As implemented
in R through the rpart function in the rpart library, cross validation is used internally to
determine when we should stop splitting the data, and present a final tree as the output.
There are also options to the rpart function specifying the minimum number of observations
allowed in a split, the minimum number of observations allowed in one of the final nodes and
the maximum number of splits allowed, which can be set through the control= argument
to rpart. See the help page for rpart.control for more information.

To show how information from recursive partitioning is displayed, we’ll use the same data
that we used with lda. Here are the commands to run the analysis:

> library(rpart)

> wine.rpart = rpart(Cultivar~.,data=wine)

> wine.rpart

n= 178

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 178 107 2 (0.33146067 0.39887640 0.26966292)

2) Proline>=755 67 10 1 (0.85074627 0.05970149 0.08955224)

4) Flavanoids>=2.165 59 2 1 (0.96610169 0.03389831 0.00000000) *

5) Flavanoids< 2.165 8 2 3 (0.00000000 0.25000000 0.75000000) *

3) Proline< 755 111 44 2 (0.01801802 0.60360360 0.37837838)

6) OD.Ratio>=2.115 65 4 2 (0.03076923 0.93846154 0.03076923) *

7) OD.Ratio< 2.115 46 6 3 (0.00000000 0.13043478 0.86956522)

14) Hue>=0.9 7 2 2 (0.00000000 0.71428571 0.28571429) *

15) Hue< 0.9 39 1 3 (0.00000000 0.02564103 0.97435897) *

The display always starts at the root (all of the data), and reports the splits in the order
they occured. So after examining all possible values of all the variables, rpart found that
the Proline variable did the best job of dividing up the observations into the different
cultivars; in particular of the 67 observations for which Proline was greater than 755, the
fraction that had Cultivar == 1 was .8507. Since there’s no asterisk after that line, it
indicates that rpart could do a better job by considering other variables. In particular if
Proline was >= 755, and Flavanoids was >= 2.165, the fraction of Cultivar 1 increases
to .9666; the asterisk at the end of a line indicates that this is a terminal node, and, when
classifying an observation if Proline was >= 755 and Flavanoids was >= 2.165, rpart
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would immediately assign it to Cultivar 1 without having to consider any other variables.
The rest of the output can be determined in a similar fashion.

An alternative way of viewing the output from rpart is a tree diagram, available through
the plot function. In order to identify the parts of the diagram, the text function also needs
to be called.

> plot(wine.rpart)

> text(wine.rpart,use.n=TRUE,xpd=TRUE)

The xpd=TRUE is a graphics parameter that is useful when a plot gets truncated, as sometimes
happens with rpart plots. There are other options to plot and text which will change the
appearance of the output; you can find out more by looking at the help pages for plot.rpart
and text.rpart. The graph appears below.

In order to calculate the error rate for an rpart analysis, we once again use the predict

function:

> pred.rpart = predict(wine.rpart,wine)

As usual we can check for names to see how to access the predicted values:

> names(pred.rpart)

NULL

Since there are no names, we’ll examine the object directly:

> head(pred.rpart)

1 2 3
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1 0.96610169 0.03389831 0.00000000

2 0.96610169 0.03389831 0.00000000

3 0.96610169 0.03389831 0.00000000

4 0.96610169 0.03389831 0.00000000

5 0.03076923 0.93846154 0.03076923

6 0.96610169 0.03389831 0.00000000

All that predict returns in this case is a matrix with estimated probabilities for each cultivar
for each observation; we’ll need to find which one is highest for each observation. Doing it
for one row is easy:

> which.max(rped.rpart[1,])

1

1

To repeat this for each row, we can pass which.max to apply, with a second argument of 1
to indicate we want to apply the function to each row:

> table(apply(pred.rpart,1,which.max),wine$Cultivar)

1 2 3

1 57 2 0

2 2 66 4

3 0 3 44

To compare this to other methods, we can again use the row and col functions:

> sum(tt[row(tt) != col(tt)]) / sum(tt)

[1] 0.06179775

Since rpart uses cross validation internally to build its decision rules, we can probably
trust the error rates implied by the table.
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Chapter 11

Random Numbers and Simulations
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11.1 Hypothesis Testing

Much of classical statistics is concerned with the idea of hypothesis testing. This is a formal
framework that we can use to pose questions about a variety of topics in a consistent form
that lets us apply statistical techniques to make statements about how results that we’ve
gathered relate to questions that we’re interested in. If we carefully follow the rules of
hypothesis testing, then we can confidently talk about the probability of events that we’ve
observed under a variety of hypotheses, and put our faith in those hypotheses that seem
the most reasonable. Central to the idea of hypothesis testing is the notion of null and
alternative hypotheses. We want to present our question in the form of a statement that
assumes that nothing has happened (the null hypothesis) versus a statement that describes
a specific relation or condition that might better explain our data.

For example, suppose we’ve got a coin, and we want to find out if it’s true, that is, if,
when we flip the coin, are we as likely to see heads as we are to see tails. A null hypothesis
for this situation could be

H0: We’re just as likely to get heads as tails when we flip the coin.

A suitable alternative hypothesis might be:

Ha: We’re more likely to see either heads or tails when we flip the coin.

An alternative hypothesis such as this is called two-sided, since we’ll reject the null hypothesis
if heads are more likely or if tails are more likely. We could use a one-sided alternative
hypothesis like ”We’re more likely to see tails than heads,” but unless you’ve got a good
reason to believe that it’s absolutely impossible to see more heads than tails, we usually
stick to two-sided alternative hypotheses.

Now we need to perform an experiment in order to help test our hypothesis. Obviously,
tossing the coin once or twice and counting up the results won’t help very much. Suppose I
say that in order to test the null hypothesis that heads are just as likely as tails, I’m going
to toss the coin 100 times and record the results. Carrying out this experiment, I find that
I saw 55 heads and 45 tails. Can I safely say that the coin is true? Without some further
guidelines, it would be very hard to say if this deviation from 50/50 really provides much
evidence one way or the other. To proceed any further, we have to have some notion of what
we’d expect to see in the long run if the null hypothesis was true. Then, we can come up
with some rule to use in deciding if the coin is true or not, depending on how willing we are
to make a mistake. Sadly, we can’t make statements with complete certainty, because there’s
always a chance that, even if the coin was true, we’d happen to see more heads than tails,
or, conversely, if the coin was weighted, we might just happen to see nearly equal numbers of
heads and tails when we tossed the coin many times. The way we come up with our rule is
by stating some assumptions about what we’d expect to see if the null hypothesis was true,
and then making a decision rule based on those assumptions. For tossing a fair coin (which is
what the null hypothesis states), most statisticians agree that the number of heads (or tails)
that we would expect follows what is called a binomial distribution. This distribution takes
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two parameters: the theoretical probability of the event in question (let’s say the event of
getting a head when we toss the coin), and the number of times we toss the coin. Under the
null hypothesis, the probability is .5. In R, we can see the expected probability of getting
any particular number of heads if we tossed a coin 100 times by plotting the density function
for the binomial distribution with parameters 100 and .5 .

> barplot(dbinom(1:100,100,.5),names.arg=1:100)

As you’d probably expect, the most common value we’d see would be 50, but there are
lots of reasonable values that aren’t exactly 50 that would also occur pretty often. So to
make a decision rule for when we will reject the null hypothesis, we would first decide how
often we’re willing to reject the null hypothesis when it was actually true. For example,
looking at the graph, there’s a tiny probability that we’d see as few as 30 heads or as many
as 70 heads when we tossed a true coin 100 times. But if we tossed a coin 100 times and
only saw 30 heads, we’d be wise if we said the coin wasn’t true because 30 heads out of 100
is such a rare event. On the other hand, we can see on the graph that the probability of
getting, say 45 heads is still pretty high, and we might very well want to accept the null
hypothesis in this case. Without any compelling reason to choose otherwise, people usually
will accept an error of 5% when performing a hypothesis test, although you might want to
alter that value in situations when making such an error is more or less of a problem than
usual. With a two-sided hypothesis like this one, to come up with a decision rule that would
be wrong only 5% of the time, we’d need to find the number of heads for which we’d see
fewer heads 2.5% of the time, and the number of heads for which we’d see more heads 2.5%
of the time. To find quantities like this for the binomial distribution, we can use the qbinom

function. The lower limit we want is the result of calling qbinom with an argument of 0.025,
and the upper limit is the result of calling qbinom with an argument of 0.975:
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> qbinom(.025,100,.5)

[1] 40

> qbinom(.975,100,.5)

[1] 60

So in this experiment, if the number of heads we saw was between 40 and 60 (out of 100
tosses), we would tentatively accept the null hypothesis; formally we would say that there’s
not enough evidence to reject the null hypothesis. If we saw fewer than 40 or more than
60 tosses, we would say we had enough evidence to reject the null hypothesis, knowing that
we would be wrong only 5% of the time. When we reject the null hypothesis when it was
actually true, it’s said to be a Type I error. So in this example, we’re setting the Type I
error rate to 5%.

To summarize, the steps for performing a hypothesis test are:

1. Describe a null hypothesis and an alternative hypothesis.

2. Specify a significance or alpha level for the hypothesis test. This is the percent of the
time that you’re willing to be wrong when you reject the null hypothesis.

3. Formulate some assumptions about the distribution of the statistic that’s involved in
the hypothesis test. In this example we made the assumption that a fair coin follows
a binomial distribution with p=0.50.

4. Using the assumptions you made and the alpha level you decided on, construct the
rejection region for the test, that is, the values of the statistic for which you’ll be willing
to reject the null hypothesis. In this example, the rejection region is broken up into
two sections: less than 40 heads and more than 60 heads.

Although it’s not always presented in this way, one useful way to think about hypothesis
testing is that if you follow the above steps, and your test statistic is in the rejection region
then either the null hypothesis is not reasonable or your assumptions are wrong. By following
this framework, we can test a wide variety of hypotheses, and it’s always clear exactly what
we’re assuming about the data.

Most of hypothesis testing is focused on the null hypothesis, and on possibly rejecting
it. There are two main reasons for this. First, there is only one null hypothesis, so we don’t
have to consider a variety of possibilities. Second, as we’ve seen, it’s very easy to control the
error rate when rejecting the null hypothesis. The other side of the coin has to do with the
case where the null hypothesis is not true. This case is much more complicated because there
are many different ways to reject the null hypothesis, and it would be naive to believe that
they’d all behave the same way. When the null hypothesis is not true, we might mistakenly
accept the null hypothesis anyway. Just as we might see an unusually high number of heads
for a true coin, we might coincidentally see nearly equal numbers of heads and tails with a
coin that was actually weighted. The case where the null hypothesis is not true, but we fail
to reject it results in a Type II error. Type II error is usually expressed as power, which is
1 minus the probability of making an error. Power is the proportion of the time that you
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correctly reject the null hypothesis when it isn’t true. Notice that the power of a hypothesis
test changes depending on what the alternative is. In other words, it makes sense that if we
had a coin that was so heavily weighted that it usually had a probability of 0.8 of getting
heads, we’d have more power in detecting the discrepancy from the null distribution than if
our coin was only weighted to give a 0.55 probability of heads. Also, unlike Type I error,
we can’t set a Type II error rate before we start the analysis – the only way to change the
Type II error rate is to get more samples or redesign the experiment.

11.2 Determining Power

For many years, the only way to answer questions about power required complex mathe-
matical computations, and power was often ignored because sometimes it was too difficult
or even impossible to calculate. Even if it was easy to calculate, the fact that power varies
depending on the alternative hypothesis would make considering power a much more difficult
task than thinking about Type I error. But more recently, statisticians have come to realize
that it’s often a good idea to estimate power for alternative hypotheses of interest.

Using computers, we can calculate the power of any alternative hypothesis we please by
doing the following:

1. Follow the general hypothesis testing procedure outlined above.

2. Repeatedly generate simulated data which corresponds to an alternative hypothesis
that you’re interested in. For each set of data that you simulate (sometimes refered to
as a trial), calculate the statistic, and decide whether to reject the null hypothesis or
not.

3. When you’re done with all the trials, count how often you (correctly) rejected the
null hypothesis, and divide by the total number of trials to obtain the power of the
experiment for that specific alternative distribution.

To generate random values from the binomial distribution, to simulate a coin toss, we can
use the rbinom function. You pass this function the number of samples you’d like, the size
of the sample, and the probability. Before diving into the power computation, let’s verify
that, when the null hypothesis is true, using the rejection region we developed previously
will actually result in a Type I error rate of 5%. First, let’s simulate a single set of 100 tosses
a few times to see if it makes sense

> rbinom(1,100,.5)

[1] 45

> rbinom(1,100,.5)

[1] 52

> rbinom(1,100,.5)

[1] 52

> rbinom(1,100,.5)

[1] 46
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That seems reasonable. Now let’s generate 1000 such samples, and count how many of them
had less than 40 heads or more than 60 heads:

> rr = rbinom(1000,100,.5);sum(rr<40|rr>60)/1000

[1] 0.042

> rr = rbinom(1000,100,.5);sum(rr<40|rr>60)/1000

[1] 0.03

> rr = rbinom(1000,100,.5);sum(rr<40|rr>60)/1000

[1] 0.043

> rr = rbinom(1000,100,.5);sum(rr<40|rr>60)/1000

[1] 0.029

The values are a little low, but it’s because we’ve got a discrete distribution and we had to
choose the nearest integer value of heads. To see the exact probabilities that the values 40
and 60 represent, we can use the pbinom function:

> pbinom(40,100,.5)

[1] 0.02844397

> pbinom(60,100,.5)

[1] 0.9823999

If we make the rejection region larger, then the probability will become too high:

> rr = rbinom(1000,100,.5);sum(rr<41|rr>59)/1000

[1] 0.054

> rr = rbinom(1000,100,.5);sum(rr<41|rr>59)/1000

[1] 0.064

> rr = rbinom(1000,100,.5);sum(rr<41|rr>59)/1000

[1] 0.056

> rr = rbinom(1000,100,.5);sum(rr<41|rr>59)/1000

[1] 0.068

> rr = rbinom(1000,100,.5);sum(rr<41|rr>59)/1000

[1] 0.064

So it seems that the idea of using less than 40 or greater than 60 as a rejection region will
give us a Type I error as close to 5% as is possible.

Now let’s ask a much more interesting question. If I had a coin that really had a 55%
chance of heads instead of a 50% chance, and I tossed the coin 100 times, how often would
I correctly reject the null hypothesis? In other words, what is the power of the test against
an alternative that the actual chances of getting heads is 55%? I can do exactly the same
thing:

> rr = rbinom(1000,100,.55);sum(rr<40|rr>60)/1000

[1] 0.139

> rr = rbinom(1000,100,.55);sum(rr<40|rr>60)/1000
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[1] 0.112

> rr = rbinom(1000,100,.55);sum(rr<40|rr>60)/1000

[1] 0.134

> rr = rbinom(1000,100,.55);sum(rr<40|rr>60)/1000

[1] 0.133

We’d only correctly identify the coin as being untrue in about 13% of the cases. It’s better
than the 5% we’d expect when the coin was true, but not very impressive. Maybe tossing
more coins would help. Let’s see what happens to the power when we do 500 tosses instead
of just 100. First we need to find the correct rejection region:

> qbinom(.975,500,.5)

[1] 272

> qbinom(.025,500,.5)

[1] 228

Now we can try the simulation:

> rr = rbinom(1000,500,.55);sum(rr<228|rr>272)/1000

[1] 0.595

> rr = rbinom(1000,500,.55);sum(rr<228|rr>272)/1000

[1] 0.587

> rr = rbinom(1000,500,.55);sum(rr<228|rr>272)/1000

[1] 0.577

> rr = rbinom(1000,500,.55);sum(rr<228|rr>272)/1000

[1] 0.61

> rr = rbinom(1000,500,.55);sum(rr<228|rr>272)/1000

[1] 0.611

That’s quite a bit better. But suppose we wanted to find out how big of a sample size we’d
need to be able to detect the 55% coin 95% of the time. Probably the easiest way is to
try a bunch of different numbers in the simulation. It’s getting complicated enough that we
should probably write a function:

> coin.power = function(ntoss=100,nsim=1000,prob=.5){

+ lower = qbinom(.025,ntoss,.5)

+ upper = qbinom(.975,ntoss,.5)

+ rr = rbinom(nsim,ntoss,prob)

+ sum(rr < lower | rr > upper) / nsim

+ }

We can use sapply to call the coin.power function for a variety of number of tosses:

> ntosses = c(10,100,200,500,600,800,1000,1500,2000,2500)

> res = sapply(ntosses,coin.power,prob=.55)

> names(res) = ntosses

225



> res

10 100 200 500 600 800 1000 1500 2000 2500

0.040 0.135 0.289 0.583 0.697 0.773 0.884 0.967 0.989 0.999

Intuitively, if the coin was more dishonest, we’d expect our test to have better power. Let’s
try the same thing with a coin that’s weighted to give 70% heads:

> res = sapply(ntosses,coin.power,prob=.70)

> names(res) = ntosses

> res

10 100 200 500 600 800 1000 1500 2000 2500

0.153 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

With just 100 tosses, we’re pretty much guaranteed to be able to recognize the coin as
weighted. What if the coin was just barely weighted, say 51% instead of 50%:

> res = sapply(ntosses,coin.power,prob=.51)

> names(res) = ntosses

> res

10 100 200 500 600 800 1000 1500 2000 2500

0.019 0.035 0.051 0.067 0.071 0.087 0.084 0.129 0.125 0.158

Even after 2500 tosses, we’d only have about a 16% chance of detecting the weighted coin.

11.3 Probability Distributions

The naming conventions that were used for the binomial probability functions in the previous
section are used consistently with all of the different distributions that are supported by R.
To summarize:

1. To get an overall idea of how values are distributed, we can examine (usually graph-
ically), the probability density function for a distribution. For example, the familiar
bell curve is the density function for a normal distribution. In R, density functions
begin with the letter “d”.

2. To find out what value corresponds to a particular probability (like 0.025 and 0.975 in
the previous example), we can call the quantile function for the distribution. These
functions accept an argument between 0 and 1 (i.e. a probability) and return the value
for that distribution where the probability that an observation would be smaller than
that value is equal to the probability passed to the function. When you perform a
statistical test, choose a significance level, and look up the statistic’s value in a table,
you’re actually using the quantile function. Quantile functions in R begin with the
letter “q”.
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beta Beta binom Binomial
cauchy Cauchy chisq Chi-squared
exp Exponential exp Exponential
f F gamma Gamma
geom Geometric hyper Hypergeometric
lnorm Lognormal logis Logistic
nbinom Negative Binomial norm Normal
pois Poisson signrank Signed Rank
t Student’s t unif Uniform
weibull Weibull wilcox Wilcoxon’s Rank Sum

3. If you’ve got a value for an observation that comes from a particular distribution, and
you want to know the probability that observations from the distribution would be less
than that value, you can pass the value to a probability function (like pbinom) and it
will return the probability. In R, these functions begin with the letter “p”.

4. When you want to generate random numbers from a distribution, you can call the
appropriate random number generator. Random number generators in R begin with
the letter “r”.

The following table shows the distributions for which these four types of functions are avail-
able in R. In each case, precede the name in the table with a d, q, p, or r to get the function
you want.

11.4 A Note about Random Numbers in R

Some people like to make a distinction between truly random numbers (like those formed
from physically tossing dice or counting the number of clicks of a Geiger counter in a given
time interval) and the kinds of random numbers that are generated on a computer. (If you
think the second example is impractical, take a look at http://www.fourmilab.ch/hotbits/.
Another source of truly random numbers can be found at http://www.lavarnd.org.)

Some chip manufacturers are developing chips which allow noise in the circuitry (which
is truly random) to be measured and used as a source of random numbers. But the programs
in R that generate random numbers produce them by applying a reproducible set of rules
(a computer program), so they are not really random, and some people refer to them as
psuedo-random numbers for that reason. In general, we won’t make any such distinction
between truly random numbers and the ones we get from the computer.

In R and most other computer programs, all of the random number generators are based
on the uniform distribution. By developing programs that are guaranteed to give random
numbers with the right distribution if they are provided by a uniform random number gener-
ator, only one distribution (the uniform) needs to be studied to insure that it’s truly random.
The uniform random number generator in R has been extensively tested, so you can have
confidence that all the random number generators in R are reliable.
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While it’s obviously a useful feature that R’s default behaviour is to give you a different set
of random numbers each time that you call any of the random number generators, sometimes
it creates problems or misunderstandings. Because of this, R provides a simple way to set
the random number generators to a reproducible state, so that the exact same sequence of
random numbers will be generated every time a program is run. By passing an integer to the
set.seed function, you can insure that the sequence of random numbers that are generated
will be the same everytime you run an identical program.
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11.5 t-tests

One of the most common tests in statistics is the t-test, used to determine whether the means
of two groups are equal to each other. The assumption for the test is that both groups are
sampled from normal distributions with equal variances. The null hypothesis is that the two
means are equal, and the alternative is that they are not. It is known that under the null
hypothesis, we can calculate a t-statistic that will follow a t-distribution with n1 + n2 - 2
degrees of freedom. There is also a widely used modification of the t-test, known as Welch’s
t-test that adjusts the number of degrees of freedom when the variances are thought not to
be equal to each other. Before we can explore the test much further, we need to find an easy
way to calculate the t-statistic.

The function t.test is available in R for performing t-tests. Let’s test it out on a simple
example, using data simulated from a normal distribution.

> x = rnorm(10)

> y = rnorm(10)

> t.test(x,y)

Welch Two Sample t-test

data: x and y

t = 1.4896, df = 15.481, p-value = 0.1564

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.3221869 1.8310421

sample estimates:

mean of x mean of y

0.1944866 -0.5599410

Before we can use this function in a simulation, we need to find out how to extract the
t-statistic (or some other quantity of interest) from the output of the t.test function. For
this function, the R help page has a detailed list of what the object returned by the function
contains. A general method for a situation like this is to use the class and names functions
to find where the quantity of interest is. In addition, for some hypothesis tests, you may
need to pass the object from the hypothesis test to the summary function and examine its
contents. For t.test it’s easy to figure out what we want:

> ttest = t.test(x,y)

> names(ttest)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

The value we want is named “statistic”. To extract it, we can use the dollar sign notation,
or double square brackets:
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> ttest$statistic

t

1.489560

> ttest[[’statistic’]]

t

1.489560

Of course, just one value doesn’t let us do very much – we need to generate many such
statistics before we can look at their properties. In R, the replicate function makes this
very simple. The first argument to replicate is the number of samples you want, and the
second argument is an expression (not a function name or definition!) that will generate
one of the samples you want. To generate 1000 t-statistics from testing two groups of 10
standard random normal numbers, we can use:

> ts = replicate(1000,t.test(rnorm(10),rnorm(10))$statistic)

Under the assumptions of normality and equal variance, we’re assuming that the statistic
will have a t-distribution with 10 + 10 - 2 = 18 degrees of freedom. (Each observation
contributes a degree of freedom, but we lose two because we have to estimate the mean of
each group.) How can we test if that is true?

One way is to plot the theoretical density of the t-statistic we should be seeing, and
superimposing the density of our sample on top of it. To get an idea of what range of x
values we should use for the theoretical density, we can view the range of our simulated data:

> range(ts)

> range(ts)

[1] -4.564359 4.111245

Since the distribution is supposed to be symmetric, we’ll use a range from -4.5 to 4.5. We
can generate equally spaced x-values in this range with seq:

> pts = seq(-4.5,4.5,length=100)

> plot(pts,dt(pts,df=18),col=’red’,type=’l’)

Now we can add a line to the plot showing the density for our simulated sample:

> lines(density(ts))

The plot appears below.
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Another way to compare two densities is with a quantile-quantile plot. In this type of
plot, the quantiles of two samples are calculated at a variety of points in the range of 0 to 1,
and then are plotted against each other. If the two samples came from the same distribution
with the same parameters, we’d see a straight line through the origin with a slope of 1; in
other words, we’re testing to see if various quantiles of the data are identical in the two
samples. If the two samples came from similar distributions, but their parameters were
different, we’d still see a straight line, but not through the origin. For this reason, it’s very
common to draw a straight line through the origin with a slope of 1 on plots like this. We
can produce a quantile-quantile plot (or QQ plot as they are commonly known), using the
qqplot function. To use qqplot, pass it two vectors that contain the samples that you want
to compare. When comparing to a theoretical distribution, you can pass a random sample
from that distribution. Here’s a QQ plot for the simulated t-test data:

> qqplot(ts,rt(1000,df=18))

> abline(0,1)
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We can see that the central points of the graph seems to agree fairly well, but there are
some discrepancies near the tails (the extreme values on either end of the distribution). The
tails of a distribution are the most difficult part to accurately measure, which is unfortunate,
since those are often the values that interest us most, that is, the ones which will provide
us with enough evidence to reject a null hypothesis. Because the tails of a distribution
are so important, another way to test to see if a distribution of a sample follows some
hypothesized distribution is to calculate the quantiles of some tail probabilities (using the
quantile function) and compare them to the theoretical probabilities from the distribution
(obtained from the function for that distribution whose first letter is “q”). Here’s such a
comparison for our simulated data:

> probs = c(.9,.95,.99)

> quantile(ts,probs)

90% 95% 99%

1.427233 1.704769 2.513755

> qt(probs,df=18)

[1] 1.330391 1.734064 2.552380

The quantiles agree fairly well, especially at the .95 and .99 quantiles. Performing more
simulations, or using a large sample size for the two groups would probably result in values
even closer to what we have theoretically predicted.

One final method for comparing distributions is worth mentioning. We noted previously
that one of the assumptions for the t-test is that the variances of the two samples are
equal. However, a modification of the t-test known as Welch’s test is said to correct for this
problem by estimating the variances, and adjusting the degrees of freedom to use in the test.
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This correction is performed by default, but can be shut off by using the var.equal=TRUE

argument. Let’s see how it works:

> t.test(x,y)

Welch Two Sample t-test

data: x and y

t = -0.8103, df = 17.277, p-value = 0.4288

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.0012220 0.4450895

sample estimates:

mean of x mean of y

0.2216045 0.4996707

> t.test(x,y,var.equal=TRUE)

Two Sample t-test

data: x and y

t = -0.8103, df = 18, p-value = 0.4284

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.9990520 0.4429196

sample estimates:

mean of x mean of y

0.2216045 0.4996707

Since the statistic is the same in both cases, it doesn’t matter whether we use the correction
or not; either way we’ll see identical results when we compare the two methods using the
techniques we’ve already described. Since the degree of freedom correction changes depend-
ing on the data, we can’t simply perform the simulation and compare it to a different number
of degrees of freedom. The other thing that changes when we apply the correction is the
p-value that we would use to decide if there’s enough evidence to reject the null hypothesis.
What is the behaviour of the p-values? While not necessarily immediately obvious, under
the null hypothesis, the p-values for any statistical test should form a uniform distribution
between 0 and 1; that is, any value in the interval 0 to 1 is just as likely to occur as any
other value. For a uniform distribution, the quantile function is just the identity function.
A value of .5 is greater than 50% of the data; a value of .95 is greater than 95% of the data.
As a quick check of this notion, let’s look at the density of probability values when the null
hypothesis is true:

> tps = replicate(1000,t.test(rnorm(10),rnorm(10))$p.value)
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> plot(density(tps))

The graph appears below.

Another way to check to see if the probabilities follow a uniform distribution is with a
QQ plot:

> qqplot(tps,runif(1000))

> abline(0,1)

The graph appears below.
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The idea that the probabilities follow a uniform distribution seems reasonable.
Now, let’s look at some of the quantiles of the p-values when we force the t.test function

to use var.equal=TRUE:

> tps = replicate(1000,t.test(rnorm(10),rnorm(10),var.equal=TRUE)$p.value)

> probs = c(.5,.7,.9,.95,.99)

> quantile(tps,probs)

50% 70% 90% 95% 99%

0.4873799 0.7094591 0.9043601 0.9501658 0.9927435

The agreement actually looks very good. What about when we let t.test decide whether
to make the correction or not?

> tps = replicate(1000,t.test(rnorm(10),rnorm(10))$p.value)

> quantile(tps,probs)

50% 70% 90% 95% 99%

0.4932319 0.7084562 0.9036533 0.9518775 0.9889234

There’s not that much of a difference, but, of course, the variances in this example were
equal. How does the correction work when the variances are not equal?

> tps = replicate(1000,t.test(rnorm(10),rnorm(10,sd=5),var.equal=TRUE)$p.value)

> quantile(tps,probs)

50% 70% 90% 95% 99%

0.5221698 0.6926466 0.8859266 0.9490947 0.9935562

> tps = replicate(1000,t.test(rnorm(10),rnorm(10,sd=5))$p.value)

> quantile(tps,probs)
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50% 70% 90% 95% 99%

0.4880855 0.7049834 0.8973062 0.9494358 0.9907219

There is an improvement, but not so dramatic.

11.6 Power of the t-test

Of course, all of this is concerned with the null hypothesis. Now let’s start to investigate
the power of the t-test. With a sample size of 10, we obviously aren’t going to expect truly
great performance, so let’s consider a case that’s not too subtle. When we don’t specify a
standard deviation for rnorm it uses a standard deviation of 1. That means about 68% of
the data will fall in the range of -1 to 1. Suppose we have a difference in means equal to just
one standard deviation, and we want to calculate the power for detecting that difference.
We can follow the same procedure as the coin tossing experiment: specify an alpha level,
calculate the rejection region, simulate data under the alternative hypothesis, and see how
many times we’d reject the null hypothesis. As in the coin toss example, a function will
make things much easier:

t.power = function(nsamp=c(10,10),nsim=1000,means=c(0,0),sds=c(1,1)){

lower = qt(.025,df=sum(nsamp) - 2)

upper = qt(.975,df=sum(nsamp) - 2)

ts = replicate(nsim,

t.test(rnorm(nsamp[1],mean=means[1],sd=sds[1]),

rnorm(nsamp[2],mean=means[2],sd=sds[2]))$statistic)

sum(ts < lower | ts > upper) / nsim

}

Let’s try it with our simple example:

> t.power(means=c(0,1))

[1] 0.555

Not bad for a sample size of 10!
Of course, if the differences in means are smaller, it’s going to be harder to reject the

null hypothesis:

> t.power(means=c(0,.3))

[1] 0.104

How large a sample size would we need to detect that difference of .3 with 95% power?
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> samps = c(100,200,300,400,500)

> res = sapply(samps,function(n)t.power(means=c(0,.3),nsamp=c(n,n)))

> names(res) = samps

> res

100 200 300 400 500

0.567 0.841 0.947 0.992 0.999

It would take over 300 samples in each group to be able to detect such a difference.
Now we can return to the issue of unequal variances. We saw that Welch’s adjustment

to the degrees of freedom helped a little bit under the null hypothesis. Now let’s see if the
power of the test is improved using Welch’s test when the variances are unequal. To do this,
we’ll need to modify our t.power function a little:

t.power1 = function(nsamp=c(10,10),nsim=1000,means=c(0,0),sds=c(1,1),var.equal=TRUE){

tps = replicate(nsim,

t.test(rnorm(nsamp[1],mean=means[1],sd=sds[1]),

rnorm(nsamp[2],mean=means[2],sd=sds[2]))$p.value)

sum(tps < .025 | tps > .975) / nsim

}

Since I set var.equal=TRUE by default, Welch’s adjustment will not be used unless we specify
var.equal=FALSE. Let’s see what the power is for a sample of size 10, assuming the mean
of one of the groups is 1, and its standard deviation is 2, while the other group is left at the
default of mean=0 and sd=1:

> t.power1(nsim=10000,sds=c(1,2),mean=c(1,2))

[1] 0.1767

> t.power1(nsim=10000,sds=c(1,2),mean=c(1,2),var.equal=FALSE)

[1] 0.1833

There does seem to be an improvement, but not so dramatic.
We can look at the same thing for a variety of sample sizes:

> res1 = sapply(sizes,function(n)t.power1(nsim=10000,sds=c(1,2),

+ mean=c(1,2),nsamp=c(n,n)))

> names(res1) = sizes

> res1

10 20 50 100

0.1792 0.3723 0.8044 0.9830

> res2 = sapply(sizes,function(n)t.power1(nsim=10000,sds=c(1,2),

+ mean=c(1,2),nsamp=c(n,n),var.equal=FALSE))

> names(res2) = sizes

> res2

10 20 50 100

0.1853 0.3741 0.8188 0.9868
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Chapter 12

Graphical User Interfaces (GUIs)
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12.1 Graphical User Interfaces

While using R through the command line provides a great deal of flexibility, there are times
when a simpler interface would be useful. For example, you may develop an R program that
performs a complex analysis, and you’d like others to be able to run the program by, say
just specifying a file to be read, and choosing a couple of options through checkboxes or a
drop down list. There may be a set of operations that your routinely do when first studying
a data set, and you’d like to be presented with a list of available data, and just click on the
one that you want.

There are several different options available in R to produce graphical user interfaces
(GUIs); we are going to focus on a simple, portable one based on the Tcl/Tk library originally
developed by John Ousterhout when he was in the Computer Science department here at
Berkeley. Tcl is a scripting language (like perl or python), and Tk is a graphical toolkit
designed to work with that language. Since the Tk toolkit is portable, easy-to-use, and
provides most of the basic elements needed to create GUIs, interfaces to it are available
in many languages, so if you understand the basics of Tk GUIs, you may see the same
techniques used later on in your career by some other program. To use the Tcl/Tk library
in R, you must load the library with the library(tcltk) command. This library is part of
the base R distribution, so you don’t have to download anything in order to use it (although
you may choose to download some optional components later on.)

If you look at the help pages for the functions in the tcltk library, you’ll probably be
surprised to see how little information or guidance there is. However, once you work with
the library for a while, you’ll get accustomed to the way Tk functions are mapped to R
functions, and you’ll be able to use any documentation about Tk that you can find on the
web or elsewhere to get more information. There are a wide variety of sample programs at
http://www.sciviews.org/ rgui/tcltk/, but they use a different geometry method and some
require external packages. I’ll try to provide examples here to help you get started, but don’t
hesitate to look around the web for more examples and ideas.

The process of creating a GUI can be broken down into two parts: choosing the elements
(often refered to as widgets) that will make up the GUI, and arranging for the elements to be
placed in the appropriate positions and displayed. This second step is sometimes known as
geometry management. Tk actually offers several different geometry management methods;
we are going to focus on one known as packing. In the packing geometry model, the GUI is
considered a collection of separate frames, each containing some of the widgets that make up
the final GUI. The widgets are loaded into the frames in a carefully chosen order, and they
“spread out” to fill the frame. When you pack a widget into a frame, you can specify the
side to which to pack it, choosing among left, right, top or bottom. With a little practice
and experimentation, you can usually get the widgets to line up the way you want them to.

Most of the widgets that are available through the Tk toolbox should look familiar, as
common applications like email clients and web browser use these same elements in their
GUIs. Some examples of available widgets are:

• text entry fields
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• drop down menus

• check buttons

• radio buttons

• file selection browsers

• sliding scales

Since the Tk toolbox is not integrated entirely into R, it’s necessary to use special tech-
niques to get information out of the Tcl/Tk environment and into R. Many of the widgets,
for example a text entry widget, will need a Tcl variable associated with them to hold nec-
essary information. All of the variables that will be captured by the GUI will be character
variables. The tclVar function can be used to create an empty tcl variable which can then
be used in call to functions in the tcltk library as follows:

myvar = tclVar(’’)

Later, when you need to get the information that was put into the Tk variable back into the
R environment, you can use the tclvalue function:

rmyvar = tclvalue(myvar)

Another aspect of GUI programming that is different from regular programs has to do
with associating actions with certain GUI elements. An obvious example is a button, which
when pressed needs to do something. Widgets like this will have an argument, usually called
command= which will accept the name of a function that will be called when the button (or
other action) is recognized. Such functions, often called callbacks, should be written using
the ... notation for their argument lists, and should not have any returned values. It
sometimes becomes necessary to “remember” things over the course of a GUI’s execution.
For example, you may want to count the number of times a button is pressed, or display a
different message based on the value of a previous response. Since all of the actions which
the GUI will initiate are carried out in functions, any modifications to variables that are
made in those functions will be lost when the function returns. While not usually a good
practice, you can use the special assignment operator <<- inside a function to modify global
variables, which will retain their values after the function exits.

To make some of these concepts clearer, let’s consider the construction of a GUI to
accept input to the coin.power program that we developed earlier. Recall that the program
accepts the number of simulations, number of coin tosses, probability of getting heads for
the coin, and returns the power. We want to make a GUI with three entries, one for each
of the parameters, a place to display the answer, and buttons to run the simulation or close
the window. The first step in creating a GUI with the tcltk library in R is loading the
library and calling the tktoplevel function, which creates an initial window into which we
will pack the frames containing the widgets. Since we can control the order of packing into
individual frames, each set of related elements can be put into a separate frame. For this
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example, we’ll create a separate frame for each entry and its associated label, as well as a
frame to hold those entries and another frame for the two buttons; the area for the answer
can be packed into the toplevel frame.

In the code that follows, you’ll notice that usually widgets are packed directly into their
enclosing frames, but the label widget that will hold the answer is assigned to a variable
before being packed. If you’ll need to communicate with the widget at some point in the
running of the program, it’s vital to store the widget in a variable. In this example, we’ll
create a blank label, and use the tkconfigure function when we have an answer to change
what the label displays. Here’s the code to create the GUI:

require(tcltk)

coin.power = function(ntoss=100,nsim=1000,prob=.5){

lower = qbinom(.025,ntoss,.5)

upper = qbinom(.975,ntoss,.5)

rr = rbinom(nsim,ntoss,prob)

sum(rr < lower | rr > upper) / nsim

}

destroy = function(...)tkdestroy(base)

tst = function(...){

nsim = as.numeric(tclvalue(nsim_))

ntoss = as.numeric(tclvalue(ntoss_))

prob = as.numeric(tclvalue(prob_))

res = coin.power(ntoss=as.numeric(ntoss),nsim=as.numeric(nsim),prob=as.numeric(prob))

tkconfigure(ans,text=paste(res))

}

base = tktoplevel()

tkwm.title(base,’Coin Toss’)

# create a frame to hold the three entries

nfrm = tkframe(base)

# create tcl variables to associate with the

# entry fields -- to include starting values

# replace the ’’ with the desired value

nsim_ = tclVar(’’)

ntoss_ = tclVar(’’)

prob_ = tclVar(’’)

f1 = tkframe(nfrm)

tkpack(tklabel(f1,text=’Nsim’,width=8),side=’left’)
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tkpack(tkentry(f1,width=10,textvariable=nsim_),side=’left’)

f2 = tkframe(nfrm)

tkpack(tklabel(f2,text=’Ntoss’,width=8),side=’left’)

tkpack(tkentry(f2,width=10,textvariable=ntoss_),side=’left’)

f3 = tkframe(nfrm)

tkpack(tklabel(f3,text=’Prob’,width=8),side=’left’)

tkpack(tkentry(f3,width=10,textvariable=prob_),side=’left’)

# the widgets were packed in the frames, but the frames have

# not yet been packed. Remember that nothing can actually be

# displayed unless it’s been packed.

tkpack(f1,side=’top’)

tkpack(f2,side=’top’)

tkpack(f3,side=’top’)

tkpack(nfrm)

# now we can repeat the process for the label to hold the

# answer, and the frame containing the buttons

ans = tklabel(base,text=’ ’)

tkpack(ans,side=’top’)

bfrm = tkframe(base)

tkpack(tkbutton(bfrm,text=’Run’,command=tst),side=’left’)

tkpack(tkbutton(bfrm,text=’Quit’,command=destroy),side=’right’)

tkpack(bfrm,side=’bottom’)

When we run the program (for example by using the source command inside of R), we see
the left hand image; after making some entries and hitting the Run button, we see the image
on the right.
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12.2 Making a Calculator

The basic idea behind writing a calculator in R is very simple: create a set of buttons which
will build up a text string that represents the calculation we wish to perform, and then use
the eval and parse functions in R to perform the calculation. These two functions allow
us to evaluate a character string as if we typed it into the R console. For example, consider
the string ”29*43”. We could calculate the value of that expression as follows:

> txt = "29*43"

> eval(parse(text=txt))

[1] 1247

Using this as the core of the calculator, we can set up rows of buttons arranged in the
usual calculator fashion, each of which will add a character to a character string through the
command= option, and then call parse and eval to do the calculation when the “=” key is
pressed. We need to use a few of the concepts we’ve already seen to make the calculator work.
First, we will need to create a global variable that represents the input to the calculator,
and have each of the keys add its input using the “<<-” operator. To change the value of
the calculator’s display, we’ll use the tkconfigure function as in the previous example.

We could define the callback functions separately for each key, but most of the keys will
do exactly the same thing – add a character to the string that we’ll eventually calculate.
The only difference is that different keys will naturally add different characters. So it would
make sense to write a function to generate the different callbacks. Let’s call the calculator’s
input calcinp. We initialize calcinp to an empty string, and then define a function which
will take a symbol and add it to the calculator’s input:

calcinp = ’’
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mkput = function(sym){

function(...){

calcinp <<- paste(calcinp,sym,sep=’’)

tkconfigure(display,text=calcinp)

}

}

Notice that we’re refering to an object called display, even though we haven’t defined it
yet. R uses a technique called lazy evaluation which means that an object doesn’t have to
exist when we use it in a function definition – it only needs to be available when the function
is actually called. Keeping this in mind, we can define two more functions, one to clear the
calculator’s display and one to do the actual calculation:

clearit = function(...){

tkconfigure(display,text=’’)

calcinp <<- ’’

}

docalc = function(...){

result = try(eval(parse(text=calcinp)))

if(class(result) == ’try-error’)calcinp <<- ’Error’ else calcinp <<- result

tkconfigure(display,text=calcinp)

calcinp <<- ’’

}

A new concept that’s introduced in the docalc function is the try function. This function
allows us to try any operation in R, without worrying that an error will stop our program. If
there’s an error when we pass an R statement to the try function, it will return an object of
class try-error. Thus we can decide what to when an error occurs by examining the class
of the returned value.

Now we can build the calculator itself. The approach is to first pack the label which
will serve as the calculator’s display, then to create a separate frame for each row of keys,
packing them as they are created:

base = tktoplevel()

tkwm.title(base,’Calculator’)

display = tklabel(base,justify=’right’)

tkpack(display,side=’top’)

row1 = tkframe(base)

tkpack(tkbutton(row1,text=’7’,command=mkput(’7’),width=3),side=’left’)

tkpack(tkbutton(row1,text=’8’,command=mkput(’8’),width=3),side=’left’)

tkpack(tkbutton(row1,text=’9’,command=mkput(’9’),width=3),side=’left’)
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tkpack(tkbutton(row1,text=’+’,command=mkput(’+’),width=3),side=’left’)

tkpack(row1,side=’top’)

row2 = tkframe(base)

tkpack(tkbutton(row2,text=’4’,command=mkput(’4’),width=3),side=’left’)

tkpack(tkbutton(row2,text=’5’,command=mkput(’5’),width=3),side=’left’)

tkpack(tkbutton(row2,text=’6’,command=mkput(’6’),width=3),side=’left’)

tkpack(tkbutton(row2,text=’-’,command=mkput(’-’),width=3),side=’left’)

tkpack(row2,side=’top’)

row3 = tkframe(base)

tkpack(tkbutton(row3,text=’1’,command=mkput(’1’),width=3),side=’left’)

tkpack(tkbutton(row3,text=’2’,command=mkput(’2’),width=3),side=’left’)

tkpack(tkbutton(row3,text=’3’,command=mkput(’3’),width=3),side=’left’)

tkpack(tkbutton(row3,text=’*’,command=mkput(’*’),width=3),side=’left’)

tkpack(row3,side=’top’)

row4 = tkframe(base)

tkpack(tkbutton(row4,text=’0’,command=mkput(’0’),width=3),side=’left’)

tkpack(tkbutton(row4,text=’(’,command=mkput(’(’),width=3),side=’left’)

tkpack(tkbutton(row4,text=’)’,command=mkput(’)’),width=3),side=’left’)

tkpack(tkbutton(row4,text=’/’,command=mkput(’/’),width=3),side=’left’)

tkpack(row4,side=’top’)

row5 = tkframe(base)

tkpack(tkbutton(row5,text=’.’,command=mkput(’.’),width=3),side=’left’)

tkpack(tkbutton(row5,text=’^’,command=mkput(’^’),width=3),side=’left’)

tkpack(tkbutton(row5,text=’C’,command=clearit,width=3),side=’left’)

tkpack(tkbutton(row5,text=’=’,command=docalc,width=3),side=’left’)

tkpack(row5,side=’top’)

Here’s what the calculator looks like in several stages of a computation:
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12.3 Improving the Calculator

While the calculator is capable of doing basic operations, it’s easy to incorporate any function
in R which takes a single argument, by creating a callback using this function:

mkfun = function(fun){

function(...){

calcinp <<- paste(fun,’(’,calcinp,’)’,sep=’’)

tkconfigure(display,text=calcinp)

}

}

So, for example, we could add the sqrt, exp, and qnorm functions to our calculator like this:

row6 = tkframe(base)

tkpack(tkbutton(row6,text=’sqrt’,command=mkfun(’sqrt’),width=3),side=’left’)

tkpack(tkbutton(row6,text=’exp’,command=mkfun(’exp’),width=3),side=’left’)

tkpack(tkbutton(row6,text=’qnorm’,command=mkfun(’qnorm’),width=3),side=’left’)

tkpack(row6,side=’top’)

Here are screenshots of a qnorm calculation:

12.4 Appearance of Widgets

The previous example was a very minimalistic approach, with no concern with the actual
appearance of the final product. One simple way to improve the appearance is to add a little
space around the widgets when we pack them. The tkpack function accepts two arguments,
padx= and pady= to control the amount of space around the widgets when they are packed.
Each of these arguments takes a scalar or a vector of length 2. When a scalar is given, that
much space (in pixels) is added on either side of the widget in the specified dimension. When
a list is given the first number is the amount of space to the left (padx) or the top (pady),
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and the second number is the amount of space to the right (padx) or the bottom (pady).
Like most aspects of GUI design, experimentation is often necessary to find the best solution.
The following code produces a version of the coin power GUI with additional padding:

base = tktoplevel()

tkwm.title(base,’Coin Toss’)

nfrm = tkframe(base)

nsim_ = tclVar(’’)

ntoss_ = tclVar(’’)

prob_ = tclVar(’’)

f1 = tkframe(nfrm)

tkpack(tklabel(f1,text=’Nsim’,width=8),side=’left’,pady=c(5,10))

tkpack(tkentry(f1,width=10,textvariable=nsim_),side=’left’,padx=c(0,20),pady=c(5,10))

f2 = tkframe(nfrm)

tkpack(tklabel(f2,text=’Ntoss’,width=8),side=’left’,pady=c(5,10))

tkpack(tkentry(f2,width=10,textvariable=ntoss_),side=’left’,padx=c(0,20),pady=c(5,10))

f3 = tkframe(nfrm)

tkpack(tklabel(f3,text=’Prob’,width=8),side=’left’,pady=c(5,10))

tkpack(tkentry(f3,width=10,textvariable=prob_),side=’left’,padx=c(0,20),pady=c(5,10))

tkpack(f1,side=’top’)

tkpack(f2,side=’top’)

tkpack(f3,side=’top’)

tkpack(nfrm)

ans = tklabel(base,text=’ ’)

tkpack(ans,side=’top’)

bfrm = tkframe(base)

tkpack(tkbutton(bfrm,text=’Run’,command=tst),side=’left’)

tkpack(tkbutton(bfrm,text=’Quit’,command=destroy),side=’right’)

tkpack(bfrm,side=’bottom’,pady=c(0,10))

Here are side-by-side pictures showing the difference between the two versions:
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Another way to modify a GUI’s appearance is through three-dimensional effects. These
are controlled by an argument called relief=, which can take values of "flat", "groove",
"raised", "ridge", "solid", or "sunken". The following code produces a (non-functioning)
GUI showing the different relief styles applied to labels and buttons:

require(tcltk)

types = c(’flat’,’groove’,’raised’,’ridge’,’solid’,’sunken’)

base = tktoplevel()

tkwm.title(base,’Relief Styles’)

frms = list()

mkframe = function(type){

fr = tkframe(base)

tkpack(tklabel(fr,text=type,relief=type),side=’left’,padx=5)

tkpack(tkbutton(fr,text=type,relief=type),side=’left’,padx=5)

tkpack(fr,side=’top’,pady=10)

fr

}

sapply(types,mkframe)

Here’s a picture of how it looks:
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12.5 Fonts and Colors

Several arguments can be used to modify color. The background= argument controls the
overall color, while the foreground= argument controls the color of text appearing in the
widget. (Remember that things like this can be changed while the GUI is running us-
ing the tkconfigure command. Each of these arguments accepts colors spelled out (like
"lightblue", "red", or "green") as well as web-style hexadecimal values (like "#add8e6",
"#ff0000" or "#00ff00").

To change from the default font (bold Helvetica), you must first create a Tk font, using
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the tkfont.create function. This function takes a number of arguments, but only the
font family is required. The available font families will vary from platform to platform;
the as.character(tkfont.families()) command will display a list of the available fonts.
Some of the other possible arguments to tkfont.create include:

1. size=, the size of the font in points.

2. weight=, either "normal" or "bold"

3. slant=, either "roman" or "italic"

4. underline=, either TRUE or FALSE

5. overstrike=, either TRUE or FALSE

As mentioned earlier, colors can be specified as either names or web-style hexadecimal values.
Generally, the argument to change the color of a widget is background=; the argument to
change the color of any text appearing in the widget is foreground=. If these choices don’t
do what you expect, you may need to check the widget-specific documentation.

Here’s a simple program that chooses some randomly selected colors and fonts, and
displays them as labels.

require(tcltk)

allfonts = as.character(tkfont.families())

somefonts = sample(allfonts,9)

somecolors = c(’red’,’blue’,’green’,’yellow’,’lightblue’,’tan’,

’darkred’,’lightgreen’,’white’)

txt = ’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

base = tktoplevel()

tkwm.title(base,’Fonts’)

mkfonts = function(font,color){

thefont = tkfont.create(family=font,size=14)

tkpack(tklabel(base,text=paste(font,’:’,txt),

font=thefont,background=color),

side=’top’)

}

mapply(mkfonts,somefonts,somecolors)

Here’s how it looks:
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Note that only the specific widget for which background= was set changes – if you want
to change the background for the entire GUI, you’ll probably have to pass the background=

argument to every widget you use.
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12.6 Plotting

When developing a TK-based GUI for plotting, there are two possibilities available. The
first, which is the only choice if you need to interact with the graph using locator or
identify, is to create a GUI with the controls for the plot, and to let R open a normal
plotting window. The second option utilizes the tkrplot library, available from CRAN, to
create a label widget with an image of the plot; this label can be placed anywhere that any
other widget can be placed.

To illustrate the use of a GUI with plotting, consider the problem of mixtures of normal
distributions. Many times a sample will actually contain two separate distributions, even
though it will be treated as a single distribution. Obviously data like this will create problems
when we try to analyze it, so it’s important to be able to recognize such data, using, say
a density plot. To get an idea of how the density of mixtures of distributions would look,
we can create a GUI using a scale or slider widget that will allow us to control the fraction
of each of two distributions that will be combined. Many times the first step in making a
GUI is writing the function that the GUI will eventually call to actually do the work. This
helps to identify the parameters that need to be supplied to the function so that the GUI
can be designed in such a way to get all the necessary information. For this case, we’ll want
to specify the mean and standard deviation of the first distribution, the mean and standard
deviation of the second distribution, and the fraction of the second distribution to use. (The
fraction for the first distribution will just be 1 minus the fraction for the first distribution.)
Here’s such a function:

genplot = function(m1,s1,m2,s2,frac,n=100){

dat = c(rnorm((1-frac)*n,m1,s1),rnorm(frac*n,m2,s2))

plot(density(dat),type=’l’,main=’Density of Mixtures’)

}

Now we can create the interface. We’ll make three frames: the first will accept the mean and
standard deviation for the first distribution, the second will have the mean and standard
deviation for the second distribution, and the third will have the slider to determine the
fraction of each distribution to use. Recall that we need to create tcl variables, and then
convert them into R variables before we can call our function, so I’ll use an intermediate
function which will do the translations and then call genplot as a callback. Although there
is a fair amount of code, most of it is very similar.

require(tcltk)

doplot = function(...){

m1 = as.numeric(tclvalue(mean1))

m2 = as.numeric(tclvalue(mean2))

s1 = as.numeric(tclvalue(sd1))

s2 = as.numeric(tclvalue(sd2))

fr = as.numeric(tclvalue(frac))
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genplot(m1,s1,m2,s2,fr,n=100)

}

base = tktoplevel()

tkwm.title(base,’Mixtures’)

mainfrm = tkframe(base)

mean1 = tclVar(10)

mean2 = tclVar(10)

sd1 = tclVar(1)

sd2 = tclVar(1)

frac = tclVar(.5)

m1 = tkframe(mainfrm)

tkpack(tklabel(m1,text=’Mean1, SD1’,width=10),side=’left’)

tkpack(tkentry(m1,width=5,textvariable=mean1),side=’left’)

tkpack(tkentry(m1,width=5,textvariable=sd1),side=’left’)

tkpack(m1,side=’top’)

m2 = tkframe(mainfrm)

tkpack(tklabel(m2,text=’Mean2, SD2’,width=10),side=’left’)

tkpack(tkentry(m2,width=5,textvariable=mean2),side=’left’)

tkpack(tkentry(m2,width=5,textvariable=sd2),side=’left’)

tkpack(m2,side=’top’)

m3 = tkframe(mainfrm)

tkpack(tkscale(m3,command=doplot,from=0,to=1,showvalue=TRUE,

variable=frac,resolution=.01,orient=’horiz’))

tkpack(m3,side=’top’)

tkpack(mainfrm)

Here’s how the interface looks:
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To produce the same sort of GUI, but with the plot in the same frame as the slider, we
can use the tkrplot library. To place the plot in the same frame as the slider, we must first
create a tkrplot widget, using the tkrplot function. After loading the tkrplot library, we
call this function with two arguments; the frame in which the plot is to be displayed, and a
callback function (using ... as the only argument) that will draw the desired plot. In this
example, we can use the same function (doplot) as in the standalone version:

img = tkrplot(mainfrm,doplot)

Since the tkrplot widget works by displaying an image of the plot, the only way to change
the plot is to change this image, which is exactly what the tkrreplot function does. The
only argument to tkrreplot is the tkrplot widget that will need to be redrawn. Thus, the
slider can be constructed with the following statements:

scalefunc = function(...)tkrreplot(img)

s = tkscale(mainfrm,command=scalefunc,from=0,to=1,showvalue=TRUE,

variable=’frac’,resolution=.01,orient=’horiz’)

By packing the tkrplot object first, followed by the frames for the mean and standard
deviations, and packing the slider widget last, we can produce the GUI shown below:
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The complete code for this GUI is as follows:

require(tcltk)

require(tkrplot)

genplot = function(m1,s1,m2,s2,frac,n=100){

dat = c(rnorm((1-frac)*n,m1,s1),rnorm(frac*n,m2,s2))

plot(density(dat),type=’l’,main=’Density of Mixtures’)

}

doplot = function(...){

m1 = as.numeric(tclvalue(mean1))

m2 = as.numeric(tclvalue(mean2))

s1 = as.numeric(tclvalue(sd1))

s2 = as.numeric(tclvalue(sd2))

fr = as.numeric(tclvalue(frac))

genplot(m1,s1,m2,s2,fr,n=100)

}

base = tktoplevel()

tkwm.title(base,’Mixtures’)

mainfrm = tkframe(base)

mean1 = tclVar(10)

mean2 = tclVar(10)

sd1 = tclVar(1)

sd2 = tclVar(1)

frac = tclVar(.5)

img = tkrplot(mainfrm,doplot)

scalefunc = function(...)tkrreplot(img)

s = tkscale(mainfrm,command=scalefunc,from=0,to=1,showvalue=TRUE,

variable=frac,resolution=.01,orient=’horiz’)

tkpack(img)

m1 = tkframe(mainfrm)

tkpack(tklabel(m1,text=’Mean1, SD1’,width=10),side=’left’)

tkpack(tkentry(m1,width=5,textvariable=mean1),side=’left’)

tkpack(tkentry(m1,width=5,textvariable=sd1),side=’left’)

tkpack(m1,side=’top’)

m2 = tkframe(mainfrm)

tkpack(tklabel(m2,text=’Mean2, SD2’,width=10),side=’left’)
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<Return> <FocusIn>

<Key-x> <FocusOut>

<Alt-x> <Button-1>, <Button-2>, etc.
<Control-x> <ButtonRelease-1>, <ButtonRelease-2>, etc.
<Destroy> <Double-Button-1>, <Double-Button-2> , etc.

tkpack(tkentry(m2,width=5,textvariable=mean2),side=’left’)

tkpack(tkentry(m2,width=5,textvariable=sd2),side=’left’)

tkpack(m2,side=’top’)

tkpack(s)

tkpack(mainfrm)

12.7 Binding

For those widgets that naturally have an action or variable associated with them, the Tk
interface provides arguments like textvariable=, or command= to make it easy to get these
widgets working as they should. But we’re not limited to associating actions with only those
widgets that provide such arguments. By using the tkbind command, we can associate a
function (similar to those accepted by functions that use a command= argument) to any of
a large number of possible events. To indicate an event, a character string with the event’s
name surrounded by angle brackets is used. The following table shows some of the actions
that can have commands associated with them. In the table, a lower case x is used to
represent any key on the keyboard.

As an example, suppose we wish to create a GUI that will allow the user to type in the
name of a data frame, and when the user hits return in the entry field, a set of radio buttons,
one for each variable in the data frame, will open up below the entry field. Finally, a button
will allow for the creation of a histogram from the selected variable.

require(tcltk)

makehist = function(...){

df = get(tclvalue(dfname))

thevar = tclvalue(varname)

var = as.numeric(df[[thevar]])

hist(var,main=paste("Histogram of",thevar),xlab=thevar)

}

showb = function(...){

df = get(tclvalue(dfname))

vars = names(df)
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frms = list()

k = 1

mkframe = function(var){

fr = tkframe(base)

tkpack(tklabel(fr,width=15,text=var),side=’left’)

tkpack(tkradiobutton(fr,variable=varname,value=var),side=’left’)

tkpack(fr,side=’top’)

fr

}

frms = sapply(vars,mkframe)

tkpack(tkbutton(base,text=’Run’,command=makehist),side=’top’)

}

base = tktoplevel()

tkwm.title(base,’Chooser’)

dfname = tclVar()

varname = tclVar()

efrm = tkframe(base)

tkpack(tklabel(efrm,text=’Dataframe: ’),side=’left’)

dfentry = tkentry(efrm,textvariable=dfname,width=20)

tkbind(dfentry,’<Return>’,showb)

tkpack(dfentry,side=’left’)

tkpack(efrm)

Here’s a picture of the widget in both the “closed” and “open” views:
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As another example, recall the calculator we developed earlier. To allow us to enter
values from the keyboard in addition to clicking on the calculator “key”, we could modify
the mkput function from that example as follows:

mkput = function(sym){

fn = function(...){

calcinp <<- paste(calcinp,sym,sep=’’)

tkconfigure(display,text=calcinp)

}

tkbind(base,sym,fn)

fn

}

When we define each key, we also bind that key to the same action in the base window.
Similar actions could be done for the “C” and “=” keys:

tkbind(base,’c’,clearit)

tkbind(base,’=’,docalc)

Now input from the calculator can come from mouse clicks or the keyboard.

12.8 Checkbuttons

When we created radiobuttons, it was fairly simple, because we only needed to create one tcl
variable, which would contain the value of the single chosen radiobutton. With checkbuttons,
the user can choose as many selections as they want, so each button must have a separate tcl
variable associated with it. While it’s possible to do this by hand for each choice provided,
the following example shows how to use the sapply function to do this in a more general
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way. Notice that special care must be taken when creating a list of tcl variables to insure
that they are properly stored. In this simple example, we print the choices, by using sapply

to convert the list of tcl variables to R variables. Remember that all the toplevel variables
that you create in an R GUI are available in the console while the GUI is running, so you
examine them in order to see how their information is stored.

require(tcltk)

tt <- tktoplevel()

choices = c(’Red’,’Blue’,’Green’)

bvars = lapply(choices,function(i)tclVar(’0’))

# or bvars = rep(list(tclVar(’0’)),length(bvars))

names(bvars) = choices

mkframe = function(x){

nn = tkframe(tt)

tkpack(tklabel(nn,text=x,width=10),side=’left’)

tkpack(tkcheckbutton(nn,variable=bvars[[x]]),side=’right’)

tkpack(nn,side=’top’)

}

sapply(choices,mkframe)

showans = function(...){

res = sapply(bvars,tclvalue)

res = names(res)[which(res == ’1’)]

tkconfigure(result,text = paste(res,collapse=’ ’))

}

result = tklabel(tt,text=’’)

tkpack(result,side=’top’)

bfrm = tkframe(tt)

tkpack(tkbutton(bfrm,command=showans,text=’Select’),side=’top’)

tkpack(bfrm,side=’top’)

The figure below shows what the GUI looks like after two choices have been made, and
the button is pressed.
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12.9 Opening Files and Displaying Text

While it would be very simple (and not necessarily a bad idea) to use an entry field to specify
a file name, the Tk toolkit provides a file browser which will return the name of a file which
a user has chosen, and will usually be a better choice if you need to open a file.

Another issue that arises has to do with displaying output. If the output is a plot, it’s
simple to just open a graph window; if the output is text, you can just print it in the normal
way, and it will display in the same place as you typed the R command to display the GUI.
While this is useful while debugging your program, if there are printed results they should
usually be displayed in a separate window. For this purpose, Tk provides the tktext object.
To display output in this way, we can use the capture.output function, which takes the
output of any R command and, instead of displaying it to the screen, stores the output in
a vector of character values. Alternatively, the output could be written to a file, then read
back into a character vector.

The following example program invokes tkgetOpenFile to get the name of a file to be
opened; it then opens the file, reads it as a CSV file and displays the results in a text window
with scrollbars. The wrap=’none’ argument tells the text window not to wrap the lines;
this is appropriate when you have a scrollbar in the x-dimension. Finally, to give an idea of
how the text window can be modified, a button is added to change the text window’s display
from the listing of the data frame to a data frame summary.

require(tcltk)

summ = function(...){

thestring = capture.output(summary(myobj))

thestring = paste(thestring,collapse=’\n’)

tkdelete(txt,’@0,0’,’end’)

tkinsert(txt,’@0,0’,thestring)

}
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fileName<-tclvalue(tkgetOpenFile())

myobj = read.csv(fileName)

base = tktoplevel()

tkwm.title(base,’File Open’)

yscr <- tkscrollbar(base,

command=function(...)tkyview(txt,...))

xscr <- tkscrollbar(base,

command=function(...)tkxview(txt,...),orient=’horiz’)

txt <- tktext(base,bg="white",font="courier",

yscrollcommand=function(...)tkset(yscr,...),

xscrollcommand=function(...)tkset(xscr,...),

wrap=’none’,

font=tkfont.create(family=’lucidatypewriter’,size=14))

tkpack(yscr,side=’right’,fill=’y’)

tkpack(xscr,side=’bottom’,fill=’x’)

tkpack(txt,fill=’both’,expand=1)

tkpack(tkbutton(base,command=summ,text=’Summary’),side=’bottom’)

thestring = capture.output(print(myobj))

thestring = paste(thestring,collapse=’\n’)

tkinsert(txt,"end",thestring)

tkfocus(txt)

The first picture shows the file chooser (as displayed on a Linux system); the second
picture shows the diabetes data set displayed in a text window, and the third picture shows
the result of pressing the summary button.
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12.10 Using Images with the tcltk package

The current version of tcl that ships with R allows you to display images in your GUIs, but
only if they are in GIF format. Fortunately, it’s very easy to change the format of images if
they are, for example JPEG or PNG files. On any SCF machine, the command:

mogrify -format gif *.jpg

will convert all the files ending in .jpg to files with the same name, but in the GIF format.
You can then use the .gif files that are created to display in your GUI.

To use images with the tcltk library, first create a Tcl variable representing the image
with code like:

myimage = tclVar()

tcl("image","create","photo",myimage,file="picture.gif")

Next, create a tklabel using the image= argument pointing to the tcl variable that holds
the image:

img = tklabel(frame,image=myimage)

Like any other widget, you can change the image during the execution of your program using
the tkconfigure function. Suppose we have another tcl variable called otherimage that
has an image associated with it. To change the img widget to display that image, use

tkconfigure(img,image=otherimage)

If you have many pictures, it will be more convenient to store the tcl image variables in
a list. Suppose the R list pics contains the full pathname of several GIF files. (It’s usually
simplest to use setwd to change to the directory where you’re storing the GIF files, so that
you only need to type their names, not their full paths. The command

setwd(file.choose())

allows you to navigate to the directory with the GIF files.)
The following example displays pictures of three fruits, chosen from a list of five. When

the button is pressed, it uses tkconfigure to change each picture many times, to give the
illusion of a slot machine. Note the use of sapply to create a list of images, regardless of
the number of images used.

require(tcltk)

pics = list.files(’fruits’,pattern=’\\.gif$’)

pics = paste(’fruits/’,pics,sep=’’)

n = length(pics)

theimages = sapply(pics,function(pic)

tcl("image","create","photo",tclVar(),file=pic))
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spinner = function(...){

for(i in 1:50){

r = sample(1:n,size=3,replace=TRUE)

tkconfigure(img1,image=theimages[[r[1]]])

tkconfigure(img2,image=theimages[[r[2]]])

tkconfigure(img3,image=theimages[[r[3]]])

tcl(’update’)

Sys.sleep(.07)

}

}

top = tktoplevel()

f1 = tkframe(top)

f2 = tkframe(top)

r = sample(1:n,size=3,replace=TRUE)

img1 = tklabel(f1,image=theimages[[r[1]]])

img2 = tklabel(f1,image=theimages[[r[2]]])

img3 = tklabel(f1,image=theimages[[r[3]]])

tkpack(img1,side=’left’)

tkpack(img2,side=’left’)

tkpack(img3,side=’left’)

tkpack(tkbutton(f2,text=’Spin’,command=spinner),side=’bottom’)

tkpack(f1,side=’top’)

tkpack(f2,side=’bottom’)

A picture of the GUI before spinning is shown below
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Chapter 13

CGI Programming with R

13.1 Web Servers

We’re all familiar with the use of a webserver - we type an address or click on a link, and
then the page we want appears in our browser. But what actually happens when we type
in a web address? Web servers are simply programs that listen for requests on a particular
port (port 80 by default), and then send out information to the connection that requested it.
Such a two-way connection is known as a socket. To see what really happens when a request
is sent to a webserver, we can write an R program that creates a socket on an unused port,
and then try to access that port through a web browser. Then we can have our program
simply send back whatever it received in order to see what’s really going on. The program
is surprisingly simple:

webecho = function(){

xx = make.socket(’localhost’,port=1888,server=TRUE)

on.exit(close.socket(xx))

stuff = read.socket(xx,maxlen=1024)

write.socket(xx,stuff)

}

The function opens a socket to port 1888, reads whatever gets sent to it, and then sends it
right back to the same place as the request came from, so it can be displayed in a browser.
The call to on.exit makes sure that the socket is closed after the communication takes
place. To run the program so that it will be able to respond to requests, we place it in a
loop:

> while(1)webecho()

(If you run the program on a UNIX system, you’ll have to quit your R session (with control-
\) to stop it; on a Windows system you may be prompted to quit your R session when you
try to exit.)

Now let’s type the following address into a browser:
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http://localhost:1888/something

Here’s what appears in the browser:

GET /something HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12) Gecko/20051010 Galeon/1.3.21 (Debian package 1.3.21-6ubuntu3) (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

The output consists of the actual request (the line with the GET), and a series of headers.
This is all the information that is transmitted from the browser to the webserver when a
request is made for a particular page. Once a webserver receives a request like this, it returns
the page that the user requested (as specified in the GET directive). If that page contains
images, documents or additional programs, they would be sent to the browser through the
same mechanism.

This is fine for ordinary, static pages, but what about the case where we accept input
from the user? This would be the case when data is entered into a field, or checkboxes are
checked on a page, and then a button is clicked to send the information from the browser
to the web server. Web pages that accept information are known as forms. There are two
mechanisms that can be used to send information from a web browser to a webserver; GET
(which is the default, if you don’t explicitly state a method) and POST. (We’ll look at their
differences shortly.) For example, the HTML that would be used on a web page to accept a
text field and use the GET method to send the information would look like this:

<form action=’http://localhost:1888’ method=GET>

<input type=text name=myvar><br>

<input type=submit value=’GET’>

</form>

</html>

Notice the action= specification in the form tag; this specifies the program which will
be executed once the information is sent from the browser to the web server. The name=

specification, which must always be present in an HTML that will accept information from
a user, defines the name of a CGI variable. CGI stands for “Common Gateway Interface”,
and is a catch-all term for any program which is executed by a web server in response to a
request from a browser.

Here’s how this html would display in a browser:
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What happens if we enter something in the field, and click on the button? Let’s put the
words “hello, world” in the field and see:

First, notice that the address has changed, reflecting the address given in the action=

specification. Additionally, some text has been added to the end of the displayed URL, and
we can see that this same text was sent to the web server as part of the GET specification.

The extra text that’s in the URL and the GET specification is said to be urlencoded;
non-alphanumeric characters (like the comma) are replaced with a percent sign followed by
the two-digit hexadecimal representation of the character, and spaces are replaced with plus
signs. (A complete list of the encodings can be found at http://www.w3schools.com/tags/ref urlencode.asp).

This method of transfering information has its limitations. First of all, it’s obvious that it
won’t work for things like files, because there’s just not enough room in a URL to accomodate
files of arbitrary length. Secondly, it may not be prudent to display the information that
you’re transfering in the URL where it can easily be seen. An alternative to GET is known
as POST. Let’s see how it differs from GET by creating a form identical to the first one, but
with the method specified as POST. The html looks like this:

<form action=’http://localhost:1888’ method=post>

<input type=text name=myvar><br>

<input type=submit value=’POST’>

</form>

Here’s how it displays in the browser:
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Once again, we’ll enter “hello, world”, and click on the button:

Notice that the URL no longer has any information about the CGI variables; the urlen-
coded string with the values now appears after the header information that the web browser
sent. (Remember that for protocols like HTTP, a single completely blank line indicates the
end of the headers.) Since the information in the form is not placed in the URL, this should
allow us to upload local files to a CGI program. Here’s the HTML code for a form that will
upload a file:

<form action=’http://localhost:1888’ method=post enctype="multipart/form-data">

<input type=file name=’myfile’>

<input type=submit value=’POST’>

</form>

Here it is displayed in a browser:

The Browse... button is generated automatically when type=file is specified for an
input element. For file uploading, the method must be set to post; using get just won’t
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work. Now I’ll fill out the form with the name of the file that holds the source for the
webecho function that we’ve been using to see how it gets transfered.

The file is sent (after the headers) in a form very similar to an email attachment. One big
difference is that, if the file to be transmitted is a non-text file (like an image or document),
no encoding needs to be done – the HTTP protocol utilizes all 8 bits of each byte. You may
have noticed the enctype="multipart/form-data" specification in the previous form. This
is what causes the web browser to send it’s data in the “attachment” style, and is required
when you’re uploading a file. If you specify it in a normal form, it will send the CGI variable
information in a similar fashion. With a form like this:

<form action=’http://localhost:1888’ method=post enctype="multipart/form-data">

<input type=text name=myvar><br>

<input type=submit value=’POST’>

</form>

entering “hello, world” results in the following:

POST / HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12) Gecko/20051010 Firefox/1.0.7 StumbleUpon/1.9993 (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Content-Type: multipart/form-data; boundary=---------------------------14394547745218385925125258

Content-Length: 178
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-----------------------------14394547745218385925125258

Content-Disposition: form-data; name="myvar"

hello, world

-----------------------------14394547745218385925125258--

Note that in this case, there was no urlencoding of the variable’s value.

13.2 CGI Scripting

Before continuing, it’s worth making note of some very practical details that you’ll have to
consider before beginning a project that uses CGI scripting. The programs which a web
server will execute in response to a request need to be in specially designated directories,
or the web server will treat them as ordinary documents, not programs. In general, access
to such directories will be limited, both for financial and security reasons. In addition, a
program which requires large amounts of computer resources may make it difficult for others
who use the server to get anything done.

When you are writing CGI programs, it’s very important to avoid allowing users ma-
nipulate any input which might find its way outside of the web server’s slightly protected
environment. What this means is that programs that call operating system programs, (for
example calls to system in R), should generally be avoided.

Now that we’ve seen what’s going on behind the scenes, we can start to look at the
facilities in R that will allow us to write CGI scripts. The CGIwithR library provides a
“wrapper” script that sets up an environment in which R can run. The most important
function of the CGIwithR library is to gather all the information that the web browser has
sent to the web server (regardless of how it was sent to the browser) and to make it easily
available inside of R. The CGIwithR library takes all of the CGI variables (defined in the
forms that a user has responded to), and places them in a list called formData, which can
be manipulated like any other list in R. Note that the library resolves all issues regarding
which method (get or post) was used in the form that generated the variables, and that the
formData list is the only object you need to look at to get the values of the CGI variables
defined in the form.

Once your program has received the information from a user’s web browser, any printing
statements that you make in your program will be directed back to the browser. This means
that you need to follow the rules of HTML when you are displaying results, not the ordinary
rules that would apply for an regular R session. The cat function is very useful in this
regard, because it displays exactly what you tell it to, without any element numbering or
formatting. If you know the basics of HTML, you may prefer to simply use cat to generate
most or all of the HTML your CGI script creates. (There is a library called R2HTML that
automates the “HTML-ization” of R objects, and you may want to study it on your own,
but we won’t be using it here.) Here are some ideas for generating appropriate output in
CGI programs written with R.
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• The CGIwithR library provides a few helper functions that make generating useful
HTML much easier:

– HTMLheader - This function, called with no arguments, prints the appropriate
information at the beginning of your output so that all browsers will realize that
they’re receiving HTML. It’s recommended that you call this function before you
produce any output in an CGI script.

– tag and untag - These functions accept unquoted arguments and produce either
the opening or closing tag required for most HTML constructs. For example, a
large title line can be specified in HTML by beginning with <h1> and ending with
</h1>. You could generate a title using tag and untag as follows:

tag(h1)

cat(’Here’s my title’)

untag(h1)

– br - To indicate a line break in HTML, the <br> tag must be used; HTML pays
no attention to newline characters. The br function will print such a tag, so it can
be inserted into your CGI program wherever you want to insert line breaks. An
optional argument (defaulting to 1) tells br how many lines you want inserted.

• The HTML <pre> tag specifies that you don’t want the browser that displays the
output to perform any formatting. Suppose you want your CGI program to display
the results of the summary function for a variable x in a browser window just as it
would appear in a command-line R session. You could use the following:

tag(pre)

print(summary(x))

untag(pre)

• The <p> tag is an alternative way of placing line breaks into your output.

13.3 A First CGI program with R

As a simple way of getting started with CGI programming, let’s take the output from the
first simple form that we created and see how the information gets translated from the CGI
environment into the R environment. I’m assuming that your SCF account is s133xx and
that you’ve followed the instructions at
http://www.stat.berkeley.edu/classes/s133/projects/tech/Cgiprogs.html to prepare your ac-
count to use CGI scripting. Typically, you would put the page containing the html in your
public html directory. Suppose the following is placed in a file called form1.html in your
public html directory:
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<html>

<form action=’cgi-bin/R.cgi/test1.cgi’ method=get>

<input type=text name=myvar><br>

<input type=submit value=’GET’>

</form>

</html>

Since file names in HTML are interpreted relative to the directory that the HTML resides
in, we can refer to the CGI program relative to the cgi-bin directory. Notice that this
will allow you to use the same form whether you’re running on the SCF network or through
a tunnel. In addition to the formData list that holds the values of the CGI variables,
information is also passed to your CGI program through environmental variables. These
variables can be accessed with the Sys.getenv function, but for our purposes here, we can
use the showEnvironmentVariables function that’s part of the CGIwithR package. Here’s
a simple program that will just print out some information about the formData list and the
environmental variables that are transfered into the environment:

Here’s the test1.cgi program:

HTMLheader()

cat(’Class of formData=’,class(formData),’ Mode of formData=’,mode(formData),’<br>’)

cat(’Names of formData=’,names(formData),’<br>’)

tag(pre)

print(formData)

untag(pre)

showEnvironmentVariables()

cat(’</body></html>’)

If we run the program (by pointing a browser at http://springer/ s133xx/form1.html,
entering “hello, world” and pressing the button), here’s what the output looks like:

Class of formData= list Mode of formData= list

Names of formData= myvar

$myvar

[1] "hello, world"

SERVER_SIGNATURE Apache/2.0.54 (Ubuntu) Server at springer Port 80

R_INCLUDE_DIR /usr/local/linux/R-2.2.1/include

HTTP_KEEP_ALIVE 300

HTTP_USER_AGENT Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12) Gecko/20051010 Galeon/1.3.21 (Debian package 1.3.21-6ubuntu3) (Ubuntu package 1.0.7)
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SERVER_PORT 80

HTTP_HOST springer

LD_LIBRARY_PATH /usr/local/linux/R-2.2.1/lib:/usr/local/lib64:/usr/lib/gcc/x86_64-linux-gnu/3.4.5:/usr/X11R6/lib:/server/linux/j2sdk1.4.2_04/jre/lib/i386/client:/server/linux/j2sdk1.4.2_04/jre/lib/i386

DOCUMENT_ROOT /mirror/data/pub/html/classes/s133

HTTP_ACCEPT_CHARSET ISO-8859-1,utf-8;q=0.7,*;q=0.7

SCRIPT_FILENAME /class/u/s133/s133xx/public_html/cgi-bin/R.cgi

REQUEST_URI /~s133xx/cgi-bin/R.cgi/test1.cgi?myvar=hello%2C+world

SCRIPT_NAME /~s133xx/cgi-bin/R.cgi

R_GSCMD /usr/bin/gs

HTTP_CONNECTION keep-alive

PATH_INFO /test1.cgi

REMOTE_PORT 48242

PATH /usr/local/bin:/usr/bin:/bin

R_LIBS

PWD /class/u/s133/s133xx/public_html/cgi-bin

SERVER_ADMIN webmaster@localhost

R_SHARE_DIR /usr/local/linux/R-2.2.1/share

LANG

HTTP_ACCEPT_LANGUAGE en

PATH_TRANSLATED /class/u/s133/s133xx/public_html/cgi-bin/test1.cgi

HTTP_REFERER http://springer/~s133xx/form1.html

HTTP_ACCEPT text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

REMOTE_ADDR 128.32.135.22

SHLVL 1

SERVER_NAME springer

FORM_DATA myvar=hello%2C+world

SERVER_SOFTWARE Apache/2.0.54 (Ubuntu)

QUERY_STRING myvar=hello%2C+world

SERVER_ADDR 128.32.135.22

GATEWAY_INTERFACE CGI/1.1

R_HOME /usr/local/linux/R-2.2.1

SERVER_PROTOCOL HTTP/1.1

HTTP_ACCEPT_ENCODING gzip,deflate

R_DOC_DIR /usr/local/linux/R-2.2.1/doc

REQUEST_METHOD GET

R_SESSION_TMPDIR /tmp/RtmpPPrmxy

R_PLATFORM x86_64-unknown-linux-gnu

R_PAPERSIZE letter

R_PRINTCMD lpr

R_LATEXCMD /usr/bin/latex

R_DVIPSCMD /usr/bin/dvips

R_MAKEINDEXCMD /usr/bin/makeindex
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R_RD4DVI ae

R_RD4PDF times,hyper

R_UNZIPCMD /usr/bin/unzip

R_ZIPCMD /usr/bin/zip

R_BROWSER /usr/bin/firefox

EDITOR vi

PAGER /usr/bin/less

R_PDFVIEWER /usr/local/linux/bin/acroread

AWK gawk

EGREP grep -E

MAKE make

PERL /usr/bin/perl

TAR tar

LN_S ln -s

R_USE_AQUA_SUBDIRS no

You may have noticed that the URL we used for the action= specification makes it look
like R.cgi is a directory, not a file. What happens is that the R.cgi program gets invoked
by the web server, and it examines the PATH INFO variable to find the name of your script
(test1.cgi in this case.) It then loads up the formData list and calls your program.

If you examine the information that our simple web echoing program displayed, you’ll
see that each of the headers that were passed to the program have been transfered to envi-
ronmental variables with a prefix of HTTP . Although you most likely won’t need them, you
can examine the list of environmental variables to find information that you might want to
use in your CGI programs and then access the information by using Sys.getenv.

The most important thing to notice is that the myvar CGI variable, defined in the input
field of the HTML form, is available inside your R program, in unencoded form, in the
element with the name myvar. This is the mechanism by which all the CGI variables are
transfered into the R environment.
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13.4 Data

The R.cgi script calls your R program in such a way that it doesn’t automatically load any
data into the R environment. So if you want to have data available to your CGI program,
you’ll need to explicitly get the data into R’s environment. For reasons of efficiency, your
program should always use the load function to load a previously saved binary version of
the data you need. The most convenient place to store these objects is right in the cgi-bin

directory from which your program will execute.
Suppose we wish to create a CGI program that will accept the name of one of the variables

from the wine data frame, and then display a summary of the data. Before you plan to run
the script, the wine data should be saved in a simple R session that’s started after you’ve
changed your working directory to be your cgi-bin directory. The command to do this is

save(wine,file=’wine.rda’)

Next, we can create a form, which would be saved in the public html directory. Here’s a
simple example, which we’ll save in the file wine.html:

<html><body>

<h1>Summary for Wine Variables</h1>

<form action=’cgi-bin/R.cgi/dowine.cgi’>

Enter the name of the variable:

<input type=text name=winevar><br>

<center>

<input type=submit value=’Run’>

</center>

</form>

</body></html>

The dowine.cgi program would look like this:

load(’wine.rda’)

HTMLheader()

winevar = formData$winevar

tag(h1)

cat(’Summary for wine$’,winevar,sep=’’)

untag(h1)

tag(h2)

tag(pre)

print(summary(wine[[winevar]]))

untag(pre)

untag(h2)

cat(’</body></html>’)

276



Here’s the form:

Here’s the result of submitting the form:

13.5 Combo Forms

Of course, having the user remember the name of the variable they’re interested in isn’t a
very user-friendly strategy, but the thought of manually preparing a form that lists all the
variables isn’t very appealing either. The problem can be solved by having the CGI program
generate the form the first time it’s called, and then processing the form when it’s submitted
back to the web server. If we call the CGI program directly (not through a form submission),
the formData list will be empty, and we can use that condition to tell whether we need to
generate the form or respond to it. Since R will be generating the form, it’s very easy to
have it provide a choice for each variable. For this example, let’s use a drop down menu that
will display the names of each variable. Here’s a program that will both generate the form
and respond to it:

if(length(formData) == 0){

HTMLheader()

tag(h1)

cat(’Summary for Wine Variables’)

untag(h1)

cat("<form action=’dowine1.cgi’>")

cat("Choose the variable:")

cat("<select name=’winevar’>")

load("wine.rda")

sapply(names(wine),function(x)cat("<option value=’",x,"’>",x,"<br>\n",sep=’’))
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cat("</select>")

cat(’<input type="submit" value="Run">’)

cat("</form></body></html>")

} else {

load(’wine.rda’)

HTMLheader()

winevar = formData$winevar

tag(h1)

cat(’Summary for wine$’,winevar,sep=’’)

untag(h1)

tag(h2)

tag(pre)

print(summary(wine[[winevar]]))

untag(pre)

untag(h2)

untag(h2)

cat(’</body></html>’)

}

One very important thing to notice if you use this approach – the action= argument should
specify only the name of the program, without the usual R.cgi/; since R is already calling
your program, it thinks it’s in the R.cgi “directory”.

Here’s the result of calling the program directly:

and here’s the result after making a choice:
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13.6 Graphs

Certainly one of the most useful functions of CGI scripting with R is to display graphics
generated by R, based on a user’s choices as specified on a web form. This would provide
a simple way to allow people unfamiliar with R to produce attractive graphs; if a means is
provided for data input, and enough options are provided through checkboxes, drop-down
menus, radiobuttons, etc, a complete web-based graphing solution could be developed.

To properly create and display graphics with a CGI program, it’s necessary to understand
the difference between the internal paths (which your R program will see) and the external
paths (which are the addresses typed into the browser’s address field.) For example, the way
the class webserver is configured, the directory into which you would put HTML pages is
(once again assuming your SCF id is s133xx):

/class/u/s133/s133xx/public_html/

This directory provides a convenient place to place graphics generated by your scripts. To
the outside world, this directory would be indicated as:

http://springer/~s133xx/

or

http://localhost:8080/~s133xx/

So as far as the webserver is concerned (i.e. the way the outside world would find your files
through a URL), the directory is known as

/~s133xx/

To create graphics from your CGI script, you first create a variable called graphDir and
set it equal to the full internal name of the directory into which you’ll write your graphs.
In our example it would be /class/u/s133/s133xx/public html/. Then use the webPNG

function, specifying the name (without any leading directories) that you want to use for your
graph. In order to generate the appropriate HTML so that your image will be displayed,
you can use the img function of the CGIwithR library. This function takes two arguments.
The first is the name of the graphic you produced via webPNG, and the second is called
graphURLroot, and should be set to the “outside” view of your public html directory,
namely /~s133xx/. (Note the trailing slashes in both the graphDir and graphURLroot;
they are required.)

To illustrate, let’s create a simple CGI program that will generate some random data
and create a conditioning plot containing histograms.

library(lattice)

HTMLheader()

x = data.frame(z = rnorm(1000), g = factor(sample(1:5,size=1000,replace=TRUE)))

graphDir=’/class/u/s133/s133xx/public_html/’
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cat("Now I’m going to plot some histograms:<br>")

webPNG(file=’hist.png’)

histogram(~z|g,data=x)

invisible(dev.off())

img(src=’hist.png’,graphURLroot=’/~s133xx/’)

cat("</body></html>")

The size of the plot can be controlled by passing width= and height= arguments to
webPNG; the units for these arguments are pixels.

If you are using lattice graphics and your plot does not appear, try passing the call to
the lattice function to the print function.

Notice the call to dev.off; without it, your graph may not be properly terminated, and
only some (or possibly none) of the graph will be displayed.

13.7 Hidden Variables

Suppose we have a web page that displays a choice of data frames for possible further analysis.
Once a data frame is chosen, another page could display the variables that are available from
that data frame, and a choice of plots could be provided. Remember that each time our CGI
program is called, a new R process begins. So how can we “remember” the data set name
in between invocations of our program? The answer is to use hidden variables. Any time
you create an HTML form, you can create as many hidden variables as you need to store
information that needs to be available in the next step of processing. These hidden variables
are exactly like any other CGI variable, but there is no visible sign of the variable on the
form that is displayed in the user’s browser. To create a hidden variable, use code like the
following:

<input type="hidden" name="varname" value="the value">

Here’s an implementation of a program that looks in the current directory for any files
with an extension of .rda, provides a drop down menu of data set names, then allows a
choice of variables, and finally produces the requested plot:

HTMLheader()

if(length(formData) == 0){

datasources = list.files(’.’,pattern=’\\.rda$’)

datasources = sub(’\\.rda$’,’’,datasources)

cat(’<form action="doplot.cgi">’)

cat(’<select name=dataset>\n’)

sapply(datasources,function(x)cat(’<option value="’,x,’">’,x,’</option>\n’))

cat(’</select>\n’)

cat(’<center><button type="submit">Run</button></center></form>’)

} else if(’dataset’ %in% names(formData)){
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dataset = formData$dataset

dataset = gsub(’ ’,’’,dataset)

load(paste(dataset,’.rda’,sep=’’))

cat(’<form action="doplot.cgi">\n’)

cat(’<p>X-variable:<br>\n’)

sapply(names(get(dataset)),function(i)

cat(’<input type="radio" name="xvar" value="’,i,’">’,i,’<br>\n’))

cat(’<p>Y-variable:<br>\n’)

sapply(names(get(dataset)),function(i)

cat(’<input type="radio" name="yvar" value="’,i,’">’,i ,’<br>\n’))

cat(’<input type="hidden" name="set" value="’,dataset,’">\n’)

cat(’<center><button type="submit">Run</button></center></form>’)

cat(’</form>’)

} else{

dataset = gsub(’ ’,’’,formData$set)

load(paste(dataset,’.rda’,sep=’’))

xvar=gsub(’ ’,’’,formData$xvar)

yvar=gsub(’ ’,’’,formData$yvar)

graphDir = ’/home/spector/public_html/’

webPNG(file=’theplot.png’,graphDir=graphDir)

thedata = get(dataset)

plot(thedata[[xvar]],thedata[[yvar]],xlab=xvar,ylab=yvar)

img(src=’theplot.png’,graphURLroot=’/~spector/’)

invisible(dev.off())

}

cat(’</body></html>’)

This program has three sections: the first displays the initial form showing the data frame
names (invoked when no formData is available); the second displays the variable choices
(invoked when a dataframe variable is specified), and the third, which is invoked when
formData is available, but the dataset variable is not defined.

13.8 Outgoing HTTP Headers

We’ve already seen that when a web browser makes a request to a web server, it sends a
series of headers before the actual content (if any). The web server also sends headers to
the browser, but up until now we’ve let the R.cgi wrapper script take care of that detail for
us. In most cases, the only header that needs to be sent to a browser is one that informs
the browser that we’re sending it HTML (as opposed to, say an image or other binary file).
That header looks like this:

Content-type: text/html
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and it would be followed by a completely blank line to signal the end of the headers. The
R.cgi script examines what you’re about to send to the web browser, and, if it doesn’t find
the “Content-type” line, it inserts it before it sends your output to the browser. Thus, if you
do insert that line, you are taking responsibility for the outgoing headers, and, if desired,
you can add additional ones.

Just about the only header line that you might consider adding is one that specifies the
value of a cookie to the browser. Cookies are small pieces of text, associated with a particular
website, that are stored by a browser, and sent to web servers if they match the domain and
possibly the path of the URL that initially set them. There are two types of cookies: session
cookies, which expire when a particular browser session is ended and the browser is shut
down, and persistent cookies, that are stored in a text file on the computer on which the
browser is running, and will expire at a date specified in the header that defined the cookie.
For this example, we’ll create a session cookie, and then access it through a different script.
If every web transaction had a form associated with it, we could use hidden CGI variables
to do much of the work that cookies do, but, since they’re stored on the user’s computer,
they are more reliable, and don’t require any special programming. Here’s an example of a
script that sets a cookie:

if(length(formData) == 0){

HTMLheader()

cat("What is your name?")

cat(’<form action="setcookie.cgi">\n’)

cat(’<input type="entry" name="name"><br>\n’)

cat(’<button type="submit">Run</button>\n’)

} else if(’name’ %in% names(formData)){

name = formData$name

cat("Content-type: text/html\nSet-Cookie: thename=",name,

"; path=/~s133xx/\n\n",sep=’’)

cat("Hello there, ",name)

}

cat(’</body></html>’)

Since everyone in class is sharing the same webserver, I’ve added a path= specification to
the cookie header. For this class, it probably is a good idea to prevent people from getting
cookies set by other programs. Note the two newlines at the end of the header line – these
are essentially to make sure that the browser understands that the headers are done and the
content is following. If you want to create persistent headers, you need to add an expires=

specification to the Set-cookie header. The format of the expiration time must be followed
precisely; in particular, the parts of the date much be separated by dashes, and the only
allowable time zone is GMT. Here’s an example of a header containing a variable, path and
expiration date:
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Set-Cookie: thename=Somebody; path=/~s133xx/; expires=Monday, 09-May-10 00:00:00 GMT

Now let’s look at a program that will retrieve an already set cookie. When a browser
recognizes a domain/path/time combination for which it has an active cookie, it sends it
back to the webserver in a Cookie: header, not as a CGI variable. The format of the cookie
is name=value, similar to the format in which CGI variables are transmitted. This means
that we’ll need to use Sys.getenv to access the environmental variable called HTTP COOKIE.

HTMLheader()

cookie = Sys.getenv(’HTTP_COOKIE’)

name = gsub(’^ *thename=(.*)$’,’\\1’,cookie)

cat(’Welcome back, ’,name)

cat(’</body></html>’)

Notice that you can only access the cookies in a CGI program, not in ordinary HTML,
but you don’t need any form elements to get the cookie.

13.9 Creating Pretty Output

Since the output created by CGI programs is interpreted by the browser as HTML, we can
use any HTML commands by simply having our program generate the necessary HTML
statements. One simple way of organizing output in HTML is the HTML table. A table
begins with the string <table>, and ends with </table>. Each row of the table begins
with <tr>, and ends with </tr>; each element within a row begins with <td> and ends
with </td>. To specify headings, the th tag can be used in place of td. This suggests the
following function to produce one row of an HTML table:

makerow = function(x,tag=’td’){

st = paste(’<’,tag,’>’,sep=’’)

end= paste(’</’,tag,’>’,sep=’’)

cat(paste(paste(’<tr>’,st,sep=’’),

paste(x,collapse=paste(end,st,sep=’’)),

paste(end,’</tr>’,sep=’’)),"\n")

}

To print an entire data frame, we can first print the names as a header line, then use apply
to print the body of the data frame:

dftable = function(df){

cat(’<table border=1>’)

makerow(names(df),tag=’th’)

apply(df,1,makerow)

cat(’</table>’)

}

An example of using these functions will be presented in the next section.
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13.10 File Upload

We’ve already seen that that an input element with type=file will create an entry field
and browse button to allow a user to specify a file for upload. In the following program, we’ll
create such a field to allow a user to specify a local comma-separated file which will then be
read into R, and displayed as a table. File upload using the CGIwithR library simply places
the content of the uploaded file into a character string in the formData list corresponding to
the name of the CGI variable specified in the HTML form. To treat this character string as
a file, we can use the textConnection function.

The following program will upload a comma-separated file, which will then be read by
read.csv, and displayed using the dftable function from the previous section:

HTMLheader()

if(length(formData) == 0){

cat(’<form action="readcsv.cgi" method=post enctype="multipart/form-data">\n’)

cat(’<input type=file name=thefile><br>’)

cat(’<input type=submit value="Upload">’)

cat(’</form>’)

} else{

makerow = function(x,tag=’td’){

st = paste(’<’,tag,’>’,sep=’’)

end= paste(’</’,tag,’>’,sep=’’)

cat(paste(paste(’<tr>’,st,sep=’’),

paste(x,collapse=paste(end,st,sep=’’)),

paste(end,’</tr>’,sep=’’)),"\n")

}

dftable = function(df){

cat(’<table border=1>’)

makerow(names(df),tag=’th’)

apply(df,1,makerow)

cat(’</table>’)

}

txtcon = textConnection(formData$thefile)

df = read.csv(txtcon)

dftable(df)

}

cat(’</body></html>’)

13.11 Debugging CGI Programs

The first step in debugging an R program is to make sure that there are no obvious syntax
errors. This can be done easily by changing directories to the location of your CGI programs,
running R and using the source command to execute your program. If you see any syntax
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errors, they should be corrected before attempting to run your program through the web
server. You can simulate input from a form by creating a list called formData and loading
appropriate elements into named values in that list.

When a program is run as a CGI program through a webserver, the program’s standard
error, which contains error messages, is normally routed to the webserver’s error logs. Unless
you are the owner of the webserver, these logs are usually not readable. To redirect error
messages to your browser (which represents the standard output stream of a CGI program),
you can use the following command inside your CGI program:

sink(file=stdout(),type=’message’)

Remember that the error messages will not be displayed using HTML, so they may be
difficult to read.

If simulating your web data through an artificially constructed formData list is not suf-
ficient to resolve problems in getting your program to run properly through the webserver,
you can have a form generate the formData list, and save it to a file; then when you are
testing the program offline, you can load that copy of formData, giving you an interactive
session with the same data as would be generated by the web page.
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Chapter 14

Smoothers
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14.1 Smoothers

In many of the graphs we’ve looked at, we added a straight line representing the best linear
regression line that went through the data we were plotting. Such lines can be very helpful
when there are lots of points, or when outliers might detract from our seeing a relationship
among the points. But plotting the best linear regression line has some limitations. For
one thing, the regression has to fit all the data, so finding a good regression fit is often a
compromise between being true to the data in any given range, and trying to come up with a
single line that does reasonably well throughout the entire range. For some data, this may be
appropriate. For example, if we know that two variables really follow a linear relationship,
then we’d have to assume that deviations from that relationship are just noise, and the best
straight line would be a meaningful way to display their relationship on a graph. However,
situations like that are not that common. To come up with a way of visualizing relationships
between two variables without resorting to a regression lines, statisticians and mathemati-
cians have developed techniques for smoothing curves. Essentially this means drawing lines
through the points based only on other points from the surrounding neighborhood, not from
the entire set of points. There are many different types of smoothers available, and most of
them offer an option that controls how much smoothing they will do as well as options to
control the basic methods that they use, so it’s usually possible to find a smoother that will
work well for a particular set of data.

14.2 Kernel Smoothers

Kernel smoothers work by forming a weighted average of all the y-values corresponding
to points whose x-values are close to the x-value of a point being plotted. The function
that defines the weights is known as a kernel, and the number of points involved in the
weighted average is based on a parameter known as the bandwidth. The default kernel is
a box function; in other words, it simply averages together y-values which are within the
specified bandwidth of a given x-value, and uses that average as the y-value for the x-value
in question. With a very tiny bandwidth, this corresponds to a “connect-the-dots” type of
drawing. With a very large bandwidth, it will basically estimate every y-value as the mean
of all the y-values. However, even when the bandwidth is carefully chosen, using the box
kernel rarely will result in a truly smooth graph. For example, consider a plot of OD.Ratio
versus Proanthocyanins from the wine data set that we’ve used in previous examples. The
following code produces a plot of the variables, and superimposes a line representing a box
kernel smooth with the default bandwidth:

> plot(wine$Proanthocyanins,wine$OD.Ratio)

> lines(ksmooth(wine$Proanthocyanins,wine$OD.Ratio))

Here’s the graph:
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Notice how choppy the line is, especially where there isn’t much data. That’s because
the box kernel is too extreme – it either adds in a point or not. So using the box kernel is
like stacking up a bunch of square boxes around each point, and we don’t really get a smooth
result.

More commonly, kernels will have a maximum at distances that are very small, and
will decrease gradually as the (absolute value) of the distance from the center of the kernel
increases. This means that nearby points will have lots of influence on the weighted estimate
that will be plotted, but as we move away from a particular point, the neighboring points
will have less and less influence. We can modify how many points are considered through
the bandwidth – including more points tends to give smoother curves that don’t respond
as well to local variation, while decreasing the bandwidth tends to make the curve look
“choppier”. One of the most common kernels used in smoothing is the Gaussian or normal
kernel. This kernel is the familiar “bell curve” – largest in the middle (corresponding in
this cases to distances of zero from a particular point), and gradually decreasing over it’s
supported range. The width of that range is determined by the bandwith when using a
kernel smoother. Here’s the Proanthocyanins vs. OD.Ratio plot, smoothed with a normal
kernel using the default bandwidth:
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Notice the change in the line when switching to the normal kernel; the line is now smooth,
and we can see that a linear relationship that holds up until around a Proanthocyanin

concentration of about 2.
The argument that controls the size of the neighborhood that’s used by ksmooth to

estimate the smoothed value at each point is called bandwidth. We can examine the effect
of changing the bandwidth as follows;

kplotfn = function(bw){

plot(wine$Proanthocyanins,wine$OD.Ratio,main=bw)

lines(ksmooth(wine$Proanthocyanins,wine$OD.Ratio,bandwidth=bw),col=’green’)

}

bws = seq(.1,1,by=.1)

par(mfrow=c(5,2),mar=c(2,4,2,1)+.1)

sapply(bws,kplotfn)
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After adjusting the margins, the plot we got looks something like a lattice plot. But how
could we produce an actual lattice plot with this data? We would need a data frame with x
and y values for each bandwidth. What does ksmooth return?

> result = ksmooth(wine$Proanthocyanins,wine$OD.Ratio)

> class(result)

[1] "list"

> names(result)

[1] "x" "y"

Since the lengths of x and y must be equal, we can convert the output to a data frame
directly. Let’s write a function which will generate a data frame with x, y and bandwidth

values for a single bandwidth:

kfun = function(bw)

data.frame(bw=bw,as.data.frame(ksmooth(wine$Proanthocyanins,wine$OD.Ratio,bandwidth=bw)))

Notice that R realized it had to repeat the single bw value to make it compatible with x and
y. As always, we should test the function:

> result = kfun(.5)

> head(result)

bw x y

1 0.5 0.4100000 1.881429

2 0.5 0.4279096 1.881429

3 0.5 0.4458192 1.812500

4 0.5 0.4637288 1.812500

5 0.5 0.4816384 1.879000

6 0.5 0.4995480 1.879000
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Now we can create a list of data frames, one for each bandwidth:

> frames = lapply(seq(.1,1,by=.1),kfun)

> allbws = do.call(rbind,frames)

> dim(allbws)

[1] 1780 3

Notice the use of the do.call function, which is used here to call rbind with the data frames
for all of the different bandwidths.

To get both points and lines on each panel, we can create a custom panel function:

mypanel = function(x,y,...){

panel.xyplot(wine$Proanthocyanins,wine$OD.Ratio);

panel.xyplot(x,y,type=’l’,col=’red’)

}

xyplot(y~x|factor(bw),data=allbws,type=’l’,as.table=TRUE,layout=c(2,5),panel=mypanel)

The resulting plot appears below:

14.3 Locally Weighted Regression Smoothers

Another approach that is often used to smooth curves is locally weighted regression. Instead
of taking a weighted average of y-values near the x-values we want to plot, the nearby
points are used in a (usually quadratic) weighted regression, and predicted values from
these local regressions are used as the y-values that are plotted. The lowess function in
R implements this technique by using the reciprocal of the residuals of successive fits as
the weights, downgrading those points that don’t contribute to a smooth fit. In the lowess

function, the argument f= specifies the fraction of the data to be used in the local regressions.
Specifying a larger value results in a smoother curve.
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To illustrate, consider a plot of literacy versus phys, the number of physicians per
100000 people, from the world data set that we’ve used in previous examples. The following
code produces a plot of the data with a lowess smoothed curve superimposed:

> plot(world$literacy,world$phys)

> lines(lowess(world$literacy,world$phys))

The graph appears below:

The argument to lowess that controls the level of smoothing is f, the fraction of the
data which will be used in the local regressions. Let’s compare the results of smoothing the
literacy/physician curve using different values of f

lplotfn = function(f){

plot(world$literacy,world$phys,main=f)

lines(lowess(world$literacy,world$phys,f=f),col=’orange’)

}

fs = seq(.1,1,by=.1)

par(mfrow=c(5,2),mar=c(2,4,2,1)+.1)

sapply(fs,lplotfn)

For this particular data set, there’s not much difference in the appearance of the smoothed
curve, although there is a bit of noise when using the lowest value of f
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14.4 Spline Smoothers

Another type of smoothing is known as spline smoothing, named after a tool formerly used
by draftsmen. A spline is a flexible piece of metal (usually lead) which could be used as a
guide for drawing smooth curves. A set of points (known as knots) would be selected, and
the spline would be held down at a particular x,y point, then bent to go through the next
point, and so on. Due to the flexibility of the metal, this process would result in a smooth
curve through the points.

Mathematically, the process can be reproduced by choosing the knot points and using
(usually cubic) regression to estimate points in between the knots, and using calculus to make
sure that the curve is smooth whenever the individual regression lines are joined together.
The smooth.spline function in R performs these operations. The degree of smoothness is
controlled by an argument called spar=, which usually ranges between 0 and 1. To illustrate,
consider a data set consisting of the wheat production of the United States from 1910 to 2004.
The data set can be found at http://www.stat.berkeley.edu/classes/s133/data/wheat.txt.
The following lines will produce a plot of the data, and superimpose a spline smooth.

> wheat = read.table(’http://www.stat.berkeley.edu/classes/s133/data/wheat.txt’,

+ header=TRUE)

> plot(wheat$year,wheat$production)

> lines(smooth.spline(wheat$year,wheat$production))

Here’s the result:

The amount of smoothing that smooth.spline applies is controlled by the argument
spar. We can examine the effect of spar by producing several plots, each with a different
value of spar.

plotfn = function(spar){

plot(wheat$year,wheat$production,main=spar)
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lines(smooth.spline(wheat$year,wheat$production,spar=spar),col=’red’)

}

spars = seq(.1,1,by=.1)

par(mfrow=c(5,2),mar=c(2,4,2,1)+.1)

sapply(spars,plotfn)

The plot appears below:

14.5 Supersmoother

While most smoothers require specification of a bandwidth, fraction of data, or level of
smoothing, supersmoother is different in that it figures these things out for itself. Thus, it’s
an excellent choice for situations where smoothing needs to be done without any user inter-
vention. Supersmoother works by performing lots of simple local regression smooths, and,
at each x-value it uses those smooths to decide the best y-value to use. In R, supersmoother
is made available through the supsmu function.

To illustrate, consider the car data which we used earlier when we were studying cluster
analysis. The following lines produce a plot of weight versus MPG, and superimposes a
supersmoother line.

> plot(cars$Weight,cars$MPG)

> lines(supsmu(cars$Weight,cars$MPG))

The plot appears below:
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14.6 Smoothers with Lattice Plots

When working with lattice graphics, we’ve already seen the use of panel.lmline, which dis-
plays the best regression line in each panel of a lattice plot. A similar function, panel.loess,
is available to superimpose a locally weighted regression smoother in each panel of a plot.
As a simple illustration, consider the built-in Orange data set, which has information about
the age and circumference of several orange trees. First, let’s look at a plot with the best
regression line smoother superimposed on the plot of age versus circumference for each
Tree:

> library(lattice)

> xyplot(circumference~age|Tree,data=Orange,

+ panel=function(x,y,...){panel.xyplot(x,y,...);panel.lmline(x,y,...)})

Here’s the plot:
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To create the same plot, but using the panel.loess function, we can use the following:

> xyplot(circumference~age|Tree,data=Orange,

+ panel=function(x,y,...){panel.xyplot(x,y,...);panel.loess(x,y,...)})

Here’s how the plot looks:

If a panel. function doesn’t exist for a smoother you’d like to use, you can use the
panel.lines function to plot it directly:

> xyplot(circumference~age|Tree,data=Orange,

+ panel=function(x,y,...){panel.xyplot(x,y,...);

+ z=supsmu(x,y);panel.lines(z$x,z$y,...)})

In this case supersmoother came closer to a straight line than lowess.
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Chapter 15

Linear Regression
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15.1 Linear Regression

Linear regression is a very popular procedure for modeling the value of one variable on the
value(s) of one or more other variables. The variable that we’re trying to model or predict
is known as the dependent variable, and the variables that we use to make predictions are
known as independent variables, or covariates. Linear regression makes the assumption that
the changes in the dependent variable can be modeled as a monotonic linear function of
the independent variables; that is, we assume that a change of a certain amount in the
independent variables will result in a change in the dependent variable, and the amount of
change in the dependent variable is constant across the range of the independent variables.
As a simple example, suppose we’re interested in the relationship between the horsepower
of a car (the independent variable) and the miles per gallon of gas (MPG) of the car. When
we fit a linear regression model, we’re saying that a change of one horsepower will have the
same effect on the MPG regardless of the value of horsepower that we’re changing. In other
words, a linear regression model would assume that if we had a car with 100 horsepower, and
compared it to a car with 101 horsepower, we’d see the same difference in MPG as if we had
a car with 300 horsepower and compared it to a car with 301 horsepower. Relationships like
this often hold for a limited range of independent variable values, but the linear regression
model assumes that it applies for the entire range of the independent variables.

Even with these limitations, linear regression has proven itself to be a very valuable tool
for modeling, and it’s widely used in many branches of research. There are also a variety of
diagnostic measures, both numerical and graphical, that can help us to determine whether
the regression is doing a good job, so it’s not unreasonable that many people use linear
regression as their first tool when trying to model a variable of interest.

15.2 The lm command

The lm command uses the model-based formula interface that we’ve already seen in the
context of lattice graphics. The dependent variable is placed on the left-hand side of the
tilde (~), and the independent variables are placed on the right-hand side, joined together
with plus signs (+). When you want to use all the variables in a data frame (except for the
dependent variable) as independent variables, you can use a period (.) for the right-hand
side of the equation.

These models correspond to a mathematical model that looks like this:

yi = β0 + β1x1 + β2x2 + ... + βpxp + ei fori = 1, ..., n (15.1)

The βs represent coefficients that measure how much the dependent variable changes for
each unit of change in the independent variable, and are often refered to as the slopes. The
term β0 is often known as the intercept. (To omit the intercept in a formula in R, insert
the term -1.) The e’s represent the part of the observed dependent variable that can’t be
explained by the regression model, and in order to do hypothesis testing, we assume that
these errors follow a normal distribution. For each term in the model, we test the hypothesis
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that the β corresponding to that term is equal to 0, against the alternative that the β is
different from 0.

To illustrate the use of the lm command, we’ll construct a regression model to predict
the level of Alcohol in the wine data set, using several of the other variables as independent
variables. First, we’ll run lm to create an lm object containing all the information about the
regression:

> wine.lm = lm(Alcohol~Malic.acid+Alkalinity.ash+Proanthocyanins+Color.intensity+

+ OD.Ratio+Proline,data=wine[-1])

To see a very brief overview of the results, we can simply view the lm object:

> wine.lm

Call:

lm(formula = Alcohol ~ Malic.acid + Alkalinity.ash + Proanthocyanins + Color.intensity + OD.Ratio + Proline, data = wine[-1])

Coefficients:

(Intercept) Malic.acid Alkalinity.ash Proanthocyanins

11.333283 0.114313 -0.032440 -0.129636

Color.intensity OD.Ratio Proline

0.158520 0.225453 0.001136

To get more information about the model, the summary function can be called:

> summary(wine.lm)

Call:

lm(formula = Alcohol ~ Malic.acid + Alkalinity.ash + Proanthocyanins +

Color.intensity + OD.Ratio + Proline, data = wine[-1])

Residuals:

Min 1Q Median 3Q Max

-1.502326 -0.342254 0.001165 0.330049 1.693639

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.3332831 0.3943623 28.738 < 2e-16 ***

Malic.acid 0.1143127 0.0397878 2.873 0.00458 **

Alkalinity.ash -0.0324405 0.0137533 -2.359 0.01947 *

Proanthocyanins -0.1296362 0.0846088 -1.532 0.12732

Color.intensity 0.1585201 0.0231627 6.844 1.32e-10 ***

OD.Ratio 0.2254528 0.0834109 2.703 0.00757 **

Proline 0.0011358 0.0001708 6.651 3.76e-10 ***

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5295 on 171 degrees of freedom

Multiple R-Squared: 0.5889, Adjusted R-squared: 0.5745

F-statistic: 40.83 on 6 and 171 DF, p-value: < 2.2e-16

The probability levels in the last column of the bottom table are for testing the null hy-
potheses that the slopes for those variables are equal to 0; that is, we’re testing the null
hypothesis that changes in the independent variable will not result in a linear change in the
dependent variable. We can see that most of the variables in the model do seem to have an
effect on the dependent variable.

One useful measure of the efficacy of a regression model is the multiple R-Squared statis-
tic. This essentially measures the squared correlation of the dependent variable values with
the values that the model would predict. The usual interpretation of this statistic is that
it measures the fraction of variability in the data that is explained by the model, so values
approaching 1 mean that the model is very effective. Since adding more variables to a model
will always inflate the R-Squared value, many people prefer using the adjusted R-Squared
value, which has been adjusted to account for the number of variables included in the model.

When you pass a model object to the plot function, it will display one or more plots that
the author of the model fitting function felt were appropriate for studying the effectiveness
of the model. For the lm object, four plots are created by default:

1. A plot of residuals versus fitted (predicted) values - The residuals are the part of the
dependent variable that the model couldn’t explain, and they are our best available
estimate of the error term from the regression model. They’re calculated by subtracting
the predicted value from the actual value of the dependent variable. Under the usual
assumptions for the linear regression model, we don’t expect the variability of the
residuals to change over the range of the dependent variable, so there shouldn’t be any
discernable pattern to this plot. Note that outliers in the plot will be labeled by their
observation number making it easy to track them down.

2. A normal quantile-quantile plot of the standardized residuals - For the probabilities
we saw in the summary table to be accurate, we have assumed that the errors of the
model follow a normal distribution. Thus, we’d expect a normal quantile-quantile plot
of the residuals to follow a straight line. Deviations from a straight line could mean
that the errors don’t follow a normal distribution.

3. A scale-location plot - This plot is similar to the residuals versus fitted values plot, but
it uses the square root of the standardized residuals. Like the first plot, there should
be no discernable pattern to the plot.

4. A Cook’s distance plot - Cook’s distance is a statistic that tries to identify points
which have more influence than other points. Generally these are points that are
distant from other points in the data, either for the dependent variable or one or
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more independent variables. Each observation is represented as a line whose height is
indicative of the value of Cook’s distance for that observation. There are no hard and
fast rules for interpreting Cook’s distance, but large values (which will be labeled with
their observation numbers) represent points which might require further investigation.

Here are the four plots for the wine.lm object:

15.3 Using the model object

The design of the R modeling functions makes it very easy to do common tasks, regardless of
the method that was used to model the data. We’ll use lm as an example, but most of these
techniques will work for other modeling functions in R. We’ve already seen that the plot

function will produce useful plots after a model is fit. Here are some of the other functions
that are available to work with modeling objects. In each case, the modeling object is passed
to the function as its first argument.

1. Coefficients - The coef function will return a vector containing the coefficients that
the model estimated, in this case, the intercept and the slopes for each of the variables:

> coef(wine.lm)

(Intercept) Malic.acid Alkalinity.ash Proanthocyanins Color.intensity

11.333283116 0.114312670 -0.032440473 -0.129636226 0.158520051

OD.Ratio Proline

0.225452840 0.001135776

2. Predicted Values - The predict function, called with no additional arguments, will
return a vector of predicted values for the observations that were used in the modeling
process. To get predicted values for observations not used in building the model, a data
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frame containing the values of the observations can be passed to predict through the
newdata= argument. The variables in the data frame passed to predict must have the
same names as the variables used to build the model. For example, to get a predicted
value of Alcohol for a mythical wine, we could use a statement like this:

> predict(wine.lm,newdata=data.frame(Malic.acid=2.3,Alkalinity.ash=19,

+ Proanthocyanins=1.6,Color.intensity=5.1,OD.Ratio=2,6,Proline=746.9))

[1] 12.88008

3. Residuals - The residuals function will return a vector of the residuals from a model.

In addition, the summary function, which is usually used to display a printed summary of a
model, often contains useful information. We can see what it contains by using the names

function:

> names(summary(wine.lm))

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled"

15.4 Regression Diagnostics

Two statistics which have proven to be useful in identifying influential observations are
Cook’s distance and a statistic known as the hat statistic. Cook’s distance is calculated for
each observation by comparing the results of the regression with that observation included to
the results when that particular observation is removed. Thus, it can find observations which
are outliers with regard to both the dependent variables and the independent variables. In
R, the cooks.distance function calculates the statistics given an lm model object. The
hat statistic is based entirely on the independent variables of the model, so it focuses on
observations which are distant from the others with regard to the independent variables in
the model. In R, the lm.influence function will return a list, including a component named
hat, which contains the hat statistic. For simple regressions, with just one independent
variable, influential observations are usually at the far reaches of the range of either the
dependent or independent variables. For example, for the wine.lm model, Proline was one
of the independent variables which seemed effective in predicting alcohol. Let’s perform a
simple regression using this variable, and then plot the results, highlighting those points that
had unusually high Cook’s distances or hat statistic values:

> simple.lm = lm(Alcohol~Proline,data=wine)

> cooks = cooks.distance(simple.lm)

> hat = lm.influence(simple.lm)$hat

> par(mfrow=c(2,1))

> plot(wine$Proline,wine$Alcohol,col=ifelse(cooks > quantile(cooks,.90),’red’,’black’))

> plot(wine$Proline,wine$Alcohol,col=ifelse(hat > quantile(hat,.90),’blue’,’black’))

304



The plots are displayed below:

In the top graph, the points displayed in red represent the observations with large Cook’s
distances; in the bottom graph, the blue points are those with high hat statistic values. Of
course, with more variables in the model, things are not so simple. Let’s look at a plot of
predicted values versus actual values for the full regression model for this data, using the
same coloring conventions:

> cooks = cooks.distance(wine.lm)

> hat = lm.influence(wine.lm)$hat

> par(mfrow=c(2,1))
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> plot(wine$Alcohol,predict(wine.lm),col=ifelse(cooks > quantile(cooks,.9),’red’,’black’))

> plot(wine$Alcohol,predict(wine.lm),col=ifelse(hat > quantile(hat,.9),’blue’,’black’))

Here are the plots:

The extreme Cook’s distance points seem to congregate at the outer edges of the predicted
values, but the extreme hat statistics points don’t follow a simple pattern. In practice, many
statisticians use the rule of thumb that Cook’s distances bigger than the 10th percentile of
an F distribution with p and n-p degrees of freedom represent potential problems, where n
is the number of observations, and p is the number of parameters estimated. For the wine
data, that cutoff point can be calculated as follows:
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> qf(.1,7,178-7)

[1] 0.4022056

In fact, for this data set none of the Cook’s distances are greater than this value.
For the hat statistic, a cutoff of 2 ∗ p/n has been proposed; for the wine data this

corresponds to a value of 0.079. With the wine example, there are ten such points. Plotting
each independent variable against the dependent variable, and highlighting the extreme
points in orange helps to show where these points are:

> par(mfrow=c(3,2))

> sapply(names(coef(wine.lm)[-1]),

+ function(x)plot(wine[[x]],wine$Alcohol,

+ col=ifelse(hat >.0786 ,’orange’,’black’),xlab=x))

Here are the plots:

15.5 Collinearity

Another problem which might occur when using linear regression is known as collinearity.
This problem occurs when the independent variables are so highly correlated that they con-
tain redundant information, which confuses the regression process. When data is collinear,
the standard errors of the parameter estimates get very large, and removing one or two
variables may make the coefficients change dramatically. In addition, collinearity can mask
important relationships in the data. The classic data set to illustrate collinearity is known
as the Longley data set, available in R under the name longley. This data set contains a
variety of measurements about the population of the US in an attempt to predict employ-
ment. Let’s take a look at the result of regressing Employed against the other variables in
the Longley data set:
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> lreg = lm(Employed ~ .,data=longley)

> summary(lreg)

Call:

lm(formula = Employed ~ ., data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.41011 -0.15767 -0.02816 0.10155 0.45539

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **

GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141

GNP -3.582e-02 3.349e-02 -1.070 0.312681

Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **

Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***

Population -5.110e-02 2.261e-01 -0.226 0.826212

Year 1.829e+00 4.555e-01 4.016 0.003037 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3049 on 9 degrees of freedom

Multiple R-squared: 0.9955,Adjusted R-squared: 0.9925

F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10

On the surface, nothing seems wrong – in fact, with an adjusted R-squared of .9925, it
seems great. We can see the problem with the data by looking at the pairwise scatterplots,
using the pairs function:

> pairs(longley)

Here’s the plot:
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Many of the variables seem to be correlated with each other, so it’s difficult to see which is
causing the problem. A statistic known as VIF (Variance Inflation Factor) can be very useful
in situations like this. In R, the vif function in the car package will provide this statistic.
Before using vif on the Longley data, let’s look at the wine data we used previously:

> wine.lm = lm(Alcohol~.,data=subset(wine,select=-Cultivar))

> library(car)

> vif(wine.lm)

Malic.acid Ash Alkalinity.ash Magnesium Phenols

1.575916 2.180108 2.179282 1.417855 4.330552

Flavanoids NF.phenols Proanthocyanins Color.intensity Hue

7.029040 1.793883 1.947243 2.493007 2.542273

OD.Ratio Proline

3.736818 2.441810

None of the inflation factors is bigger than 10, which indicates collinearity is not a problem
with the data set, confirmed by looking at the pairs plot for the wine data set:
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There does seem to be a linear relationship between Flavanoids and Phenols – not sur-
prisingly those two variables have the highest VIFs.

Now let’s return to the Longley data.

> vif(lreg)

GNP.deflator GNP Unemployed Armed.Forces Population Year

135.53244 1788.51348 33.61889 3.58893 399.15102 758.98060

The two largest VIFs are for GNP and Year. Let’s eliminate them from the model, and see
how the VIFs change:

> lreg1 = lm(Employed ~ .,data=subset(longley,select=-c(GNP,Year)))

> summary(lreg1)
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Call:

lm(formula = Employed ~ ., data = subset(longley, select = -c(GNP,

Year)))

Residuals:

Min 1Q Median 3Q Max

-0.6561730 -0.2576601 -0.0008123 0.1213544 1.2225443

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.781314 6.886470 2.001 0.070657 .

GNP.deflator 0.207046 0.081376 2.544 0.027270 *

Unemployed -0.012412 0.002780 -4.465 0.000955 ***

Armed.Forces -0.005968 0.003325 -1.795 0.100170

Population 0.306601 0.123795 2.477 0.030755 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5671 on 11 degrees of freedom

Multiple R-squared: 0.9809,Adjusted R-squared: 0.9739

F-statistic: 141.1 on 4 and 11 DF, p-value: 2.26e-09

> vif(lreg1)

GNP.deflator Unemployed Armed.Forces Population

35.970754 3.147600 2.497795 34.588299

The reduced model is probably more realistic than the full model, but GNP.deflator and
Population are still highly correlated

> with(longley,cor(GNP.deflator,Population))

[1] 0.9791634

Removing GNP.deflator results in a model that seems to make sense:

> lreg2 = lm(Employed ~ .,data=subset(longley,select=-c(GNP,Year,GNP.deflator)))

> summary(lreg2)

Call:

lm(formula = Employed ~ ., data = subset(longley, select = -c(GNP,

Year, GNP.deflator)))

Residuals:

Min 1Q Median 3Q Max
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-1.3835 -0.2868 -0.1353 0.3596 1.3382

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.323091 4.211566 -0.314 0.75880

Unemployed -0.012292 0.003354 -3.665 0.00324 **

Armed.Forces -0.001893 0.003516 -0.538 0.60019

Population 0.605146 0.047617 12.709 2.55e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6843 on 12 degrees of freedom

Multiple R-squared: 0.9696,Adjusted R-squared: 0.962

F-statistic: 127.7 on 3 and 12 DF, p-value: 2.272e-09

> vif(lreg2)

Unemployed Armed.Forces Population

3.146686 1.918225 3.514335

Now let’s look at some alternatives to ordinary linear regression.

15.6 Generalized Additive Models (gam)

One of the most useful alternative methods to regression is known as a generalized additive
model. Instead of fitting a single linear parameter to try to explain the relationship between
independent variables and dependent variables, GAM models perform spline smooths on
selected variables, and use these smoothed versions of the independent variables to try to
explain the values of the dependent variables. To try to make the information from the
analysis similar to the familiar lm output, an estimated number of degrees of freedom is
calculated for each variable, based on how different the fitted spline smooth for that variable
is from the strictly linear relationship that lm uses for prediction, and an F-statistic is
produced for each independent variable to test whether the smoothed version of the variable
made a significant contribution to the predicted value of the dependent variable. In R, the
gam function is provided by the mgcv library. This library also provides the s function,
which is used by gam to identify the variables that should be smoothed before they are used
to predict the dependent variable. Without prior knowledge, it’s not unreasonable to try
smoothing on all the variables. We can fit a gam model by using the same formula as we
used with lm, passing each variable in the model to the s function:

> library(mgcv)

> wine.gam = gam(Alcohol~s(Malic.acid)+s(Alkalinity.ash)+

+ s(Proanthocyanins)+s(Color.intensity)+

+ s(OD.Ratio)+s(Proline),data=wine[-1])
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> wine.gam

Family: gaussian

Link function: identity

Formula:

Alcohol ~ s(Malic.acid) + s(Alkalinity.ash) + s(Proanthocyanins) +

s(Color.intensity) + s(OD.Ratio) + s(Proline)

Estimated degrees of freedom:

1 7.920717 3.492826 4.022189 1 3.567478 total = 22.00321

GCV score: 0.2314599

Like the lm function, gam provides a more familiar table when the summary method is
invoked:

> summary(wine.gam)

Family: gaussian

Link function: identity

Formula:

Alcohol ~ s(Malic.acid) + s(Alkalinity.ash) + s(Proanthocyanins) +

s(Color.intensity) + s(OD.Ratio) + s(Proline)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.00062 0.03376 385.1 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Malic.acid) 1.000 1.000 14.133 0.000240 ***

s(Alkalinity.ash) 7.921 9.000 4.403 3.84e-05 ***

s(Proanthocyanins) 3.493 9.000 1.844 0.064387 .

s(Color.intensity) 4.022 9.000 8.391 3.66e-10 ***

s(OD.Ratio) 1.000 1.000 2.246 0.135990

s(Proline) 3.567 9.000 5.508 1.42e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.692 Deviance explained = 72.9%
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GCV score = 0.23146 Scale est. = 0.20285 n = 178

The relative importance of the variables has changed somewhat from the linear regression
results. Notice that the adjusted R-squared value is 0.692, as compared to 0.575 for linear
regression, showing an improvement in prediction by using the smoothed versions of the
independent variable.

Applying the plot function to a gam model is often the most useful part of the analysis.
The plots produced show how the independent variable was smoothed before fitting, so a
straight (or nearly straight) line for a particular variable means a truly linear relationship
was found, while deviations from linearity describe the nature of non-linear relationships
that exist. Here’s the results of using plot on our gam model. For convenience, I’ve put all
the plots in a single graphic; in practice, you might want to examine each plot separately.
I’ve used the par function to adjust the margins so that the individual plots will be a little
larger:

> par(mfrow=c(3,2),mar=c(2,4,1,2)+.1,oma=c(0,0,4,0),xpd=FALSE)

> plot(wine.gam)

Here’s the plot:
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For the variables Malic.acid and OD.ratio, the relationships do seem to be linear; this
is supported by the fact that gam only used a single degree of freedom to fit these terms.
For some of the other variables, it’s clear that linear relationships hold only over a limited
range of the data. The Alkalinity.ash plot is particularly interesting, but it may indicate
oversmoothing.
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15.7 Recursive Partitioning

We’ve already seen how recursive partitioning can be used for classification, but it can also
be used for regression if the dependent variable passed to rpart is not a factor. When used
for regression, rpart follows a similar strategy as for classification; each variable is tested
for all possible splits, looking for large separation between the dependent variable values
for one side of the split as opposed to the other. As is the case for classification, rpart

presents its results as a tree, with terminal nodes representing the best prediction the model
can provide. Here are the results of using recursive partitioning on the wine data frame to
predict Alcohol. I’m using a period on the right hand side of the model to indicate that
rpart should consider all of the variables in the data frame (except Cultivar):

> library(rpart)

> wine.rpart = rpart(Alcohol ~ . ,data=wine[-1])

> wine.rpart

n= 178

node), split, n, deviance, yval

* denotes terminal node

1) root 178 116.654000 13.00062

2) Color.intensity< 3.325 50 9.161498 12.13980

4) Ash>=2.41 13 1.269369 11.86846 *

5) Ash< 2.41 37 6.598724 12.23514 *

3) Color.intensity>=3.325 128 55.969350 13.33687

6) Proline< 900 79 28.974900 13.05013

12) Color.intensity< 8.315 61 21.586760 12.93197

24) Proline< 722.5 43 14.291710 12.80209

48) Malic.acid< 3.1 27 8.142067 12.62889

96) NF.phenols>=0.33 14 2.388493 12.30929 *

97) NF.phenols< 0.33 13 2.783477 12.97308 *

49) Malic.acid>=3.1 16 3.972794 13.09437 *

25) Proline>=722.5 18 4.837111 13.24222 *

13) Color.intensity>=8.315 18 3.650294 13.45056 *

7) Proline>=900 49 10.025970 13.79918

14) Color.intensity< 4.44 10 0.787410 13.27700 *

15) Color.intensity>=4.44 39 5.812631 13.93308 *

Since rpart doesn’t actually estimate any coefficients, we can’t produce a table of hy-
pothesis tests as we did for lm or gam, but we can get a sort of multiple R-squared value by
squaring the correlation between the true value of the dependent variable and the value that
rpart predicts:

> cor(wine$Alcohol,predict(wine.rpart))^2
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[1] 0.7248247

This unadjusted R-squared value is a little higher than the adjusted R-squared value from
the gam model.

15.8 Comparison of the 3 Methods

A very simple way to get an idea of how the three methods compare with each other is to
make a plot of predicted versus actual values for the three methods, using a different color
for each:

> plot(predict(wine.lm),wine$Alcohol,col=’red’,xlab=’Predicted’,ylab=’Actual’)

> points(predict(wine.gam),wine$Alcohol,col=’blue’)

> points(predict(wine.rpart),wine$Alcohol,col=’green’)

> legend(’topleft’,legend=c(’lm’,’gam’,’rpart’),col=c(’red’,’blue’,’green’),

+ pch=1,cex=.8)

Here’s the plot:
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Chapter 16

Analysis of Variance
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16.1 Analysis of Variance

In its simplest form, analysis of variance (often abbreviated as ANOVA), can be thought of
as a generalization of the t-test, because it allows us to test the hypothesis that the means
of a dependent variable are the same for several groups, not just two as would be the case
when using a t-test. This type of ANOVA is known as a one-way ANOVA.

In cases where there are multiple classification variables, more complex ANOVAs are
possible. For example, suppose we have data on test scores for students from four schools,
where three different teaching methods were used. This would describe a two-way ANOVA.
In addition to asking whether the means for the different schools were different from each
other, and whether the means for the different teaching methods were different from each
other, we could also investigate whether the differences in teaching methods were different
depending on which school we looked at. This last comparison is known as an interaction,
and testing for interactions is one of the most important uses of analysis of variance.

Before getting to the specifics of ANOVA, it may be useful to ask why we perform
an analysis of variance if our interest lies in the differences between means. If we were to
concentrate on the differences between the means, we would have many different comparisons
to make, and the number of comparisons would increase as we increased the number of
groups we considered. Thus, we’d need different tests depending on how many groups we
were looking at. The reasoning behind using variance to test for differences in means is
based on the following idea: Suppose we have several groups of data, and we calculate their
variance in two different ways. First, we put together all the data, and simply calculate its
variance disregarding the groups from which the data arose. In other words, we evaluate the
deviations of the data relative to overall mean of the entire data set. Next, we calculate the
variance by adding up the deviations around the mean of each of the groups. The idea of
analysis of variance is that if the two variance calculations give us very similar results, then
each of the group means must have been about the same, because using the group means to
measure variation didn’t result in a big change than from using the overall mean. But if the
overall variance is bigger than the variance calculated using the group means, then at least
one of the group means must have been different from the overall mean, so it’s unlikely that
the means of all the groups were the same. Using this approach, we only need to compare
two values (the overall variance, and the variance calculated using each of the group means)
to test if any of the means are different, regardless of how many groups we have.

To illustrate how looking at variances can tell us about differences in means, consider a
data set with three groups, where the mean of the first group is 3, and the mean for the
other groups is 1. We can generate a sample as follows:

> mydf = data.frame(group=rep(1:3,rep(10,3)),x=rnorm(30,mean=c(rep(3,10),rep(1,20))))

Under the null hypothesis of no differences among the means, we can center each set of
data by the appropriate group mean, and then compare the data to the same data centered
by the overall mean. In R, the ave function will return a vector the same length as its’
input, containing summary statistics calculated by grouping variables. Since ave accepts an
unlimited number of grouping variables, we must identify the function that calculates the
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statistic as the FUN= argument. Let’s look at two histograms of the data, first centered by
the overall mean, and then by the group means. Recall that under the null hypothesis, there
should be no difference.

> ovall = mydf$x - mean(mydf$x)

> group = mydf$x - ave(mydf$x,mydf$group,FUN=mean)

> par(mfrow=c(2,1))

> hist(ovall,xlim=c(-2,2.5))

> hist(group,xlim=c(-2,2.5))

Notice how much more spread out the data is when we centered by the overall mean. To
show that this isn’t a trick, let’s generate some data for which the means are all equal:

> mydf1 = data.frame(group=rep(1:3,rep(10,3)),x=rnorm(30))

> ovall = mydf1$x - mean(mydf1$x)

> group = mydf1$x - ave(mydf1$x,mydf1$group,FUN=mean)

> par(mfrow=c(2,1))

> hist(ovall,xlim=c(-2.5,3.2))

> hist(group,xlim=c(-2.5,3.2))
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Notice how the two histograms are very similar.
To formalize the idea of a one-way ANOVA, we have a data set with a dependent variable

and a grouping variable. We assume that the observations are independent of each other,
and the errors (that part of the data not explained by an observation’s group mean) follow
a normal distribution with the same variance for all the observations. The null hypothesis
states that the means of all the groups are equal, against an alternative that at least one of
the means differs from the others. We can test the null hypothesis by taking the ratio of the
variance calculated in the two ways described above, and comparing it to an F distribution
with appropriate degrees of freedom (more on that later).

In R, ANOVAs can be performed with the aov command. When you are performing an
ANOVA in R, it’s very important that all of the grouping variables involved in the ANOVA
are converted to factors, or R will treat them as if they were just independent variables in a
linear regression.

As a first example, consider once again the wine data frame. The Cultivar variable rep-
resents one of three different varieties of wine that have been studied. As a quick preliminary
test, we can examine a dotplot of Alcohol versus Cultivar:
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It does appear that there are some differences, even though there is overlap. We can test
for these differences with an ANOVA:

> wine.aov = aov(Alcohol~Cultivar,data=wine)

> wine.aov

Call:

aov(formula = Alcohol ~ Cultivar, data = wine)

Terms:

Cultivar Residuals
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Sum of Squares 70.79485 45.85918

Deg. of Freedom 2 175

Residual standard error: 0.5119106

Estimated effects may be unbalanced

> summary(wine.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Cultivar 2 70.795 35.397 135.08 < 2.2e-16 ***

Residuals 175 45.859 0.262

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The summary function displays the ANOVA table, which is similar to that produced by
most statistical software. It indicates that the differences among the means are statistically
significant. To see the values for the means, we can use the aggregate function:

> aggregate(wine$Alcohol,wine[’Cultivar’],mean)

Cultivar x

1 1 13.74475

2 2 12.27873

3 3 13.15375

The default plots from an aov object are the same as those for an lm object. They’re
displayed below for the Alcohol/Cultivar ANOVA we just calculated:
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16.2 Multiple Comparisons

In the previous example, notice that the test for Cultivar is simply answering the question
“Are there any significant differences among the cultivars?”. This is because the F-test which
is used to determine significant is based on the two different ways of calculating the variance,
not on any particular differences among the means. Having seen that there is a significant
effect for Cultivar in the previous example, a natural questions is “Which cultivars are
different from each other”. One possibility would be to look at all possible t-tests between

325



the levels of the cultivar, i.e. do t-tests for 1 vs. 2, 1 vs. 3, and 2 vs. 3. This is a very bad
idea for at least two reasons:

1. One of the main goals of ANOVA is to combine together all our data, so that we
can more accurately estimate the residual variance of our model. In the previous
example, notice that there were 175 degrees of freedom used to estimate the residual
variance. Under the assumptions of ANOVA, the variance of the dependent variable
doesn’t change across the different levels of the independent variables, so we can (and
should) use the estimate from the ANOVA for all our tests. When we use a t-test,
we’ll be estimating the residual variance only using the observations for the two groups
we’re comparing, so we’ll have fewer degrees of freedom, and less power in determining
differences.

2. When we’re comparing several groups using t-tests, we have to look at all possible
combinations among the groups. This will sometimes result in many tests, and we can
no longer be confident that the probability level we use for the individual tests will
hold up across all of those comparisons we’re making. This is a well-known problem
in statistics, and many techniques have been developed to adjust probability values to
handle this case. However, these techniques tend to be quite conservative, and they
may prevent us from seeing differences that really exist.

To see how probabilities get adjusted when many comparisons are made, consider a data
set on the nitrogen levels in 5 varieties of clover. We wish to test the hypothesis that the
nitrogen level of the different varieties of clover is the same.

> clover = read.table(’http://www.stat.berkeley.edu/classes/s133/data/clover.txt’,

+ header=TRUE)

> clover.aov = aov(Nitrogen~Strain,data=clover)

> summary(clover.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Strain 5 847.05 169.41 14.370 1.485e-06 ***

Residuals 24 282.93 11.79

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Let’s say that we want to look at all the possible t-tests among pairs of the 6 strains. First,
we can use the combn function to show us all the possible 2-way combinations of the strains:

> combs = combn(as.character(unique(clover$Strain)),2)

> combs

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] "3DOK1" "3DOK1" "3DOK1" "3DOK1" "3DOK1" "3DOK5" "3DOK5" "3DOK5"

[2,] "3DOK5" "3DOK4" "3DOK7" "3DOK13" "COMPOS" "3DOK4" "3DOK7" "3DOK13"

[,9] [,10] [,11] [,12] [,13] [,14] [,15]

[1,] "3DOK5" "3DOK4" "3DOK4" "3DOK4" "3DOK7" "3DOK7" "3DOK13"

[2,] "COMPOS" "3DOK7" "3DOK13" "COMPOS" "3DOK13" "COMPOS" "COMPOS"
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Let’s focus on the first column:

> x = combs[,1]

> tt = t.test(Nitrogen~Strain,data=clover)

> names(tt)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

This suggests a function which would return the probability for each combination of strains:

> gettprob = function(x)t.test(Nitrogen~Strain,

data=clover[clover$Strain %in% x,])$p.value

We can get the probabilities for all the tests, and combine them with the country names for
display:

> probs = data.frame(t(combs),probs=apply(combs,2,gettprob))

> probs

X1 X2 probs

1 3DOK1 3DOK5 1.626608e-01

2 3DOK1 3DOK4 2.732478e-03

3 3DOK1 3DOK7 2.511696e-02

4 3DOK1 3DOK13 3.016445e-03

5 3DOK1 COMPOS 1.528480e-02

6 3DOK5 3DOK4 5.794178e-03

7 3DOK5 3DOK7 7.276336e-02

8 3DOK5 3DOK13 1.785048e-03

9 3DOK5 COMPOS 3.177169e-02

10 3DOK4 3DOK7 4.331464e-02

11 3DOK4 3DOK13 5.107291e-01

12 3DOK4 COMPOS 9.298460e-02

13 3DOK7 3DOK13 4.996374e-05

14 3DOK7 COMPOS 2.055216e-01

15 3DOK13 COMPOS 4.932466e-04

These probabilities are for the individual t-tests, each with an alpha level of 0.05, but that
doesn’t guarantee that the experiment-wise alpha will be .05. We can use the p.adjust

function to adjust these probabilities:

> probs = data.frame(probs,adj.prob=p.adjust(probs$probs,method=’bonferroni’))

> probs

X1 X2 probs adj.prob

1 3DOK1 3DOK5 1.626608e-01 1.000000000

2 3DOK1 3DOK4 2.732478e-03 0.040987172

3 3DOK1 3DOK7 2.511696e-02 0.376754330
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4 3DOK1 3DOK13 3.016445e-03 0.045246679

5 3DOK1 COMPOS 1.528480e-02 0.229272031

6 3DOK5 3DOK4 5.794178e-03 0.086912663

7 3DOK5 3DOK7 7.276336e-02 1.000000000

8 3DOK5 3DOK13 1.785048e-03 0.026775721

9 3DOK5 COMPOS 3.177169e-02 0.476575396

10 3DOK4 3DOK7 4.331464e-02 0.649719553

11 3DOK4 3DOK13 5.107291e-01 1.000000000

12 3DOK4 COMPOS 9.298460e-02 1.000000000

13 3DOK7 3DOK13 4.996374e-05 0.000749456

14 3DOK7 COMPOS 2.055216e-01 1.000000000

15 3DOK13 COMPOS 4.932466e-04 0.007398699

Notice that many of the comparisons that seemed significant when using the t-test are no
longer significant. Plus, we didn’t take advantage of the increased degrees of freedom. One
technique that uses all the degrees of freedom of the combined test, while still correcting
for the problem of multiple comparisons is known as Tukey’s Honestly Significant Difference
(HSD) test. The TukeyHSD function takes a model object and the name of a factor, and
provides protected probability values for all the two-way comparisons of factor levels. Here’s
the output of TukeyHSD for the clover data:

> tclover = TukeyHSD(clover.aov,’Strain’)

> tclover

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Nitrogen ~ Strain, data = clover)

$Strain

diff lwr upr p adj

3DOK13-3DOK1 -15.56 -22.27416704 -8.845833 0.0000029

3DOK4-3DOK1 -14.18 -20.89416704 -7.465833 0.0000128

3DOK5-3DOK1 -4.84 -11.55416704 1.874167 0.2617111

3DOK7-3DOK1 -8.90 -15.61416704 -2.185833 0.0048849

COMPOS-3DOK1 -10.12 -16.83416704 -3.405833 0.0012341

3DOK4-3DOK13 1.38 -5.33416704 8.094167 0.9870716

3DOK5-3DOK13 10.72 4.00583296 17.434167 0.0006233

3DOK7-3DOK13 6.66 -0.05416704 13.374167 0.0527514

COMPOS-3DOK13 5.44 -1.27416704 12.154167 0.1621550

3DOK5-3DOK4 9.34 2.62583296 16.054167 0.0029837

3DOK7-3DOK4 5.28 -1.43416704 11.994167 0.1852490

COMPOS-3DOK4 4.06 -2.65416704 10.774167 0.4434643

3DOK7-3DOK5 -4.06 -10.77416704 2.654167 0.4434643

COMPOS-3DOK5 -5.28 -11.99416704 1.434167 0.1852490
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COMPOS-3DOK7 -1.22 -7.93416704 5.494167 0.9926132

> class(tclover)

[1] "multicomp" "TukeyHSD"

> names(tclover)

[1] "Strain"

> class(tclover$Strain)

[1] "matrix"

These probabilities seem more reasonable. To combine these results with the previous ones,
notice that tclover$Strain is a matrix, with row names indicating the comparisons being
made. We can put similar row names on our earlier results and then merge them:

> row.names(probs) = paste(probs$X2,probs$X1,sep=’-’)

> probs = merge(probs,tclover$Strain[,’p adj’,drop=FALSE],by=0)

> probs

Row.names X1 X2 probs adj.prob p adj

1 3DOK13-3DOK1 3DOK1 3DOK13 0.0030164452 0.045246679 2.888133e-06

2 3DOK4-3DOK1 3DOK1 3DOK4 0.0027324782 0.040987172 1.278706e-05

3 3DOK5-3DOK1 3DOK1 3DOK5 0.1626608271 1.000000000 2.617111e-01

4 3DOK7-3DOK1 3DOK1 3DOK7 0.0251169553 0.376754330 4.884864e-03

5 3DOK7-3DOK4 3DOK4 3DOK7 0.0433146369 0.649719553 1.852490e-01

6 3DOK7-3DOK5 3DOK5 3DOK7 0.0727633570 1.000000000 4.434643e-01

7 COMPOS-3DOK1 3DOK1 COMPOS 0.0152848021 0.229272031 1.234071e-03

8 COMPOS-3DOK13 3DOK13 COMPOS 0.0004932466 0.007398699 1.621550e-01

9 COMPOS-3DOK4 3DOK4 COMPOS 0.0929845957 1.000000000 4.434643e-01

10 COMPOS-3DOK5 3DOK5 COMPOS 0.0317716931 0.476575396 1.852490e-01

11 COMPOS-3DOK7 3DOK7 COMPOS 0.2055215679 1.000000000 9.926132e-01

Finally, we can display the probabilities without scientific notation as follows:

> format(probs,scientific=FALSE)

Row.names X1 X2 probs adj.prob p adj

1 3DOK13-3DOK1 3DOK1 3DOK13 0.0030164452 0.045246679 0.000002888133

2 3DOK4-3DOK1 3DOK1 3DOK4 0.0027324782 0.040987172 0.000012787061

3 3DOK5-3DOK1 3DOK1 3DOK5 0.1626608271 1.000000000 0.261711120046

4 3DOK7-3DOK1 3DOK1 3DOK7 0.0251169553 0.376754330 0.004884863746

5 3DOK7-3DOK4 3DOK4 3DOK7 0.0433146369 0.649719553 0.185248969392

6 3DOK7-3DOK5 3DOK5 3DOK7 0.0727633570 1.000000000 0.443464260597

7 COMPOS-3DOK1 3DOK1 COMPOS 0.0152848021 0.229272031 0.001234070633

8 COMPOS-3DOK13 3DOK13 COMPOS 0.0004932466 0.007398699 0.162154993324

9 COMPOS-3DOK4 3DOK4 COMPOS 0.0929845957 1.000000000 0.443464260597

10 COMPOS-3DOK5 3DOK5 COMPOS 0.0317716931 0.476575396 0.185248969392

11 COMPOS-3DOK7 3DOK7 COMPOS 0.2055215679 1.000000000 0.992613208547
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By using all of the data to estimate the residual error, Tukey’s HSD method actually reports
some of the probabilities as even lower than the t-tests.
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16.3 Two-Way ANOVA

To express the idea of an interaction in the R modeling language, we need to introduce two
new operators. The colon (:) is used to indicate an interaction between two or more variables
in model formula. The asterisk (*) is use to indicate all main effects and interactions among
the variables that it joins. So, for example the term A*B would expand to the three terms A,
B, and A:B. As an example of a two-way ANOVA, consider a study to determine the effects of
physical activity on obesity. Subjects were rated for their physical activity on a three point
scale with 1=not very active, 2=somewhat active, and 3=very active. In addition, the race
(either 1 or 2) of the participant was recorded, along with their Body Mass Index (BMI).
We want to answer the following three questions:

1. Were the means for BMI the same for the two races?

2. Were the means for BMI the same for the three activity levels?

3. Is the effect of activity level different depending on race?, or equivalently Is the effect
of race different depending on activity level?

The first two questions can be answered by looking at the race and activity main
effects, while the third question describes the race by activity interaction. The data can
be found at http://www.stat.berkeley.edu/classes/s133/data/activity.csv. Here are the R
statements to run the ANOVA:

> activity = read.csv(’activity.csv’)

> activity$race = factor(activity$race)

> activity$activity = factor(activity$activity)

> activity.aov = aov(bmi~race*activity,data=activity)

> summary(activity.aov)

Df Sum Sq Mean Sq F value Pr(>F)

race 1 3552 3552 102.5894 < 2e-16 ***

activity 2 2672 1336 38.5803 < 2e-16 ***

race:activity 2 301 151 4.3508 0.01303 *

Residuals 1865 64574 35

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Notice that there are two degrees of freedom for activity – this means two parameters will
be estimated in order to explain activity’s effect on bmi. Unlike linear regression, where
only a single parameter is estimated, and the only relationship that can be fit is a linear one,
using two parameters (to account for the three levels of activity) provides more flexibility
than would be possible with linear regression.

To see if the analysis was reasonable, we can look at the default plots:

> plot(activity.aov)
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The graphs appear below:

There seems to some deviation from normality when looking at the Normal Q-Q plot
(recall that, if the residuals did follow a normal distribution, we would see a straight line.)
When this situation arises, analyzing the logarithm of the dependent variable often helps.
Here are the same results for the analysis of log(bmi):

> activity1.aov = aov(log(bmi)~race*activity,data=activity)

> summary(activity1.aov)

Df Sum Sq Mean Sq F value Pr(>F)

race 1 4.588 4.588 100.3741 < 2.2e-16 ***
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activity 2 3.251 1.625 35.5596 6.98e-16 ***

race:activity 2 0.317 0.158 3.4625 0.03155 *

Residuals 1865 85.240 0.046

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> plot(activity1.aov)

The Q-Q plot looks better, so this model is probably more appropriate. We can see both
main effects as well as the interaction are significant. To see what’s happening with the main
effects, we can use aggregate:
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> aggregate(log(activity$bmi),activity[’race’],mean)

race x

1 1 3.122940

2 2 3.222024

> aggregate(log(activity$bmi),activity[’activity’],mean)

activity x

1 1 3.242682

2 2 3.189810

3 3 3.109518

Race 2 has higher values of BMI than race 1, and BMI decreases as the level of activity
increases.

To study the interaction, we could use aggregate, passing both race and activity as
the second argument:

> aggregate(log(activity$bmi),activity[c(’race’,’activity’)],mean)

race activity x

1 1 1 3.161119

2 2 1 3.298576

3 1 2 3.140970

4 2 2 3.230651

5 1 3 3.084426

6 2 3 3.143478

The arrangement of the output from tapply may be more helpful:

> tapply(log(activity$bmi),activity[c(’race’,’activity’)],mean)

activity

race 1 2 3

1 3.161119 3.140970 3.084426

2 3.298576 3.230651 3.143478

It’s usually difficult to judge relationships like this from a table. One useful tool in this case
is an interaction plot. An interaction plot has one point for each combination of the factors
defined by an interaction. The x-axis represents the levels of one of the factors, and the
y-axis represents the mean of the dependent variable, and a separate line is drawn for each
level of the factor not represented on the x-axis. While it wouldn’t be too hard to produce
such a plot with basic commands in R, the process is automated by the interaction.plot

function. The first argument to this function is the factor to appear on the x-axis; the second
is the factor which will define the multiple lines being drawn, and the third argument is the
dependent variable. By default, interaction.plot uses the mean for its display, but you
can provide a function of your own choosing through the fun= argument. For the activity
data, we can produce an interaction plot with the following code:

> with(activity,interaction.plot(activity,race,log(bmi)))
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Here’s the plot:

It can be seen that the interaction is due to the fact that the slope of the line for race 2
is steeper than the line for race 1.

16.4 Another Example

This example has to do with iron retention in mice. Two different treatments, each at three
different levels, were fed to mice. The treatments were tagged with radioactive iron, so that
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the percentage of iron retained could be measured after a fixed period of time. The data is
presented in a table as follows:

----------------------------------------------------

Fe2+ Fe3+

----------------------------------------------------

high medium low high medium low

----------------------------------------------------

0.71 2.20 2.25 2.20 4.04 2.71

1.66 2.93 3.93 2.69 4.16 5.43

2.01 3.08 5.08 3.54 4.42 6.38

2.16 3.49 5.82 3.75 4.93 6.38

2.42 4.11 5.84 3.83 5.49 8.32

2.42 4.95 6.89 4.08 5.77 9.04

2.56 5.16 8.50 4.27 5.86 9.56

2.60 5.54 8.56 4.53 6.28 10.01

3.31 5.68 9.44 5.32 6.97 10.08

3.64 6.25 10.52 6.18 7.06 10.62

3.74 7.25 13.46 6.22 7.78 13.80

3.74 7.90 13.57 6.33 9.23 15.99

4.39 8.85 14.76 6.97 9.34 17.90

4.50 11.96 16.41 6.97 9.91 18.25

5.07 15.54 16.96 7.52 13.46 19.32

5.26 15.89 17.56 8.36 18.40 19.87

8.15 18.30 22.82 11.65 23.89 21.60

8.24 18.59 29.13 12.45 26.39 22.25

----------------------------------------------------

Thus, before we can perform analysis on the data, it needs to be rearranged. To do
this, we can use the reshape function. Since there are two different sets of variables that
represent the change in the factors of the experiment, we first read in the data (skipping the
header), and create two groups of variables in our call to reshape:

> iron0 = read.table(’iron.txt’,skip=5,nrows=18)

> names(iron0) = c(’Fe2high’,’Fe2medium’,’Fe2low’,’Fe3high’,’Fe3medium’,’Fe3low’)

> iron1 = reshape(iron0,varying=list(1:3,4:6),direction=’long’)

> head(iron1)

time Fe2high Fe3high id

1.1 1 0.71 2.20 1

2.1 1 1.66 2.69 2

3.1 1 2.01 3.54 3

4.1 1 2.16 3.75 4

5.1 1 2.42 3.83 5

6.1 1 2.42 4.08 6
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After examining the data, it can be seen that the low, medium, and high values have been
translated into values 1, 2, and 3 in the variable time. The id variable is created to help
us see which line each observation came from, which is not relevant in this case, since the
table was just used to present the data, and the values in the table don’t represent repeated
measures on the same experimental unit.

Next, we eliminate the id column, rename the column named “time” and further reshape
the data to represent the two treatments:

> iron1$id = NULL

> names(iron1)[1] = ’level’

> iron = reshape(iron1,varying=list(2:3),direction=’long’)

> head(iron)

level time Fe2high id

1.1 1 1 0.71 1

2.1 1 1 1.66 2

3.1 1 1 2.01 3

4.1 1 1 2.16 4

5.1 1 1 2.42 5

6.1 1 1 2.42 6

All that’s left is to remove the id column and to rename time and Fe2high:

> iron$id = NULL

> names(iron)[2:3] = c(’treatment’,’retention’)

> head(iron)

level treatment retention

1.1 1 1 0.71

2.1 1 1 1.66

3.1 1 1 2.01

4.1 1 1 2.16

5.1 1 1 2.42

6.1 1 1 2.42

Once the data has been reshaped, it’s essential to make sure that the independent variables
are correctly stored as factors:

> sapply(iron,class)

level treatment retention

"integer" "integer" "numeric"

Since treatment and level are not factors, we must convert them:

> iron$treatment = factor(iron$treatment,labels=c(’Fe2+’,’Fe3+’))

> iron$level = factor(iron$level,labels=c(’high’,’medium’,’low’))

> head(iron)
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level treatment retention

1.1 high Fe2+ 0.71

2.1 high Fe2+ 1.66

3.1 high Fe2+ 2.01

4.1 high Fe2+ 2.16

5.1 high Fe2+ 2.42

6.1 high Fe2+ 2.42

Now we can perform the ANOVA:

> iron.aov = aov(retention ~ level*treatment,data=iron)

> summary(iron.aov)

Df Sum Sq Mean Sq F value Pr(>F)

level 2 983.62 491.81 17.0732 4.021e-07 ***

treatment 1 62.26 62.26 2.1613 0.1446

level:treatment 2 8.29 4.15 0.1439 0.8661

Residuals 102 2938.20 28.81

Before proceeding further, we should examine the ANOVA plots to see if the data meets the
assumptions of ANOVA:

Both the normal Q-Q plot and the scale-location plot indicate problems similar to the
previous example, and a log transformation is once again suggested. This is not unusual
when data is measured as percentages or ratios.

> ironl.aov = aov(log(retention) ~ level*treatment,data=iron)

> par(mfrow=c(2,2))

> plot(ironl.aov)
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The plots look much better, so we’ll continue with the analysis of the log of retention.

Df Sum Sq Mean Sq F value Pr(>F)

level 2 15.588 7.794 22.5241 7.91e-09 ***

treatment 1 2.074 2.074 5.9931 0.01607 *

level:treatment 2 0.810 0.405 1.1708 0.31426

Residuals 102 35.296 0.346

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Since there were only two levels of treatment, the significant treatment effect means the two
treatments were different. We can use the TukeyHSD function to see if the different levels of
the treatment were different:

> TukeyHSD(ironl.aov,’level’)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = log(retention) ~ level * treatment, data = iron)

$level

diff lwr upr p adj

medium-high 0.5751084 0.24533774 0.9048791 0.0002042

low-high 0.9211588 0.59138806 1.2509295 0.0000000

low-medium 0.3460503 0.01627962 0.6758210 0.0373939

It appears that the high level had much lower retention values than the other two levels:

> aggregate(log(iron$retention),iron[’level’],mean)
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level x

1 high 1.420526

2 medium 1.995635

3 low 2.341685

Although there was no significant interaction, an interaction plot can still be useful in visu-
alizing what happens in an experiment:

> interaction.plot(iron$level,iron$treatment,log(iron$retention))

16.5 More Complex Models

When working with the wine data frame, we’ve separated the categorical variable (Cultivar)
from the continuous variable for pedagogical reasons, but the aov function can accomodate
both in the same model. Let’s add the Cultivar variable to the regression model we’ve
previously worked with:

> wine.new = lm(Alcohol~Cultivar+Malic.acid+Alkalinity.ash+Proanthocyanins+Color.intensity+OD.Ratio+Proline,data=wine)

> summary(wine.new)

Call:

lm(formula = Alcohol ~ Cultivar + Malic.acid + Alkalinity.ash +

Proanthocyanins + Color.intensity + OD.Ratio + Proline, data = wine)

Residuals:

Min 1Q Median 3Q Max

-1.13591 -0.31737 -0.02623 0.33229 1.65633
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.9158487 0.4711149 27.415 < 2e-16 ***

Cultivar2 -0.9957910 0.1776136 -5.607 8.26e-08 ***

Cultivar3 -0.6714047 0.2396380 -2.802 0.00568 **

Malic.acid 0.0559472 0.0410860 1.362 0.17510

Alkalinity.ash -0.0133598 0.0134499 -0.993 0.32198

Proanthocyanins -0.0561493 0.0817366 -0.687 0.49305

Color.intensity 0.1135452 0.0270097 4.204 4.24e-05 ***

OD.Ratio 0.0494695 0.0987946 0.501 0.61721

Proline 0.0002391 0.0002282 1.048 0.29629

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4886 on 169 degrees of freedom

Multiple R-Squared: 0.6541, Adjusted R-squared: 0.6377

F-statistic: 39.95 on 8 and 169 DF, p-value: < 2.2e-16

One problem with the summary display for models like this is that it’s treating our factor
variable (Cultivar) as two separate variables. While that is the way it is fit in the model,
it’s usually more informative to combine the effects of the two variables as a single effect.
The anova command will produce a more traditional ANOVA table:

> anova(wine.new)

Analysis of Variance Table

Response: Alcohol

Df Sum Sq Mean Sq F value Pr(>F)

Cultivar 2 70.795 35.397 148.2546 < 2.2e-16 ***

Malic.acid 1 0.013 0.013 0.0552 0.8146

Alkalinity.ash 1 0.229 0.229 0.9577 0.3292

Proanthocyanins 1 0.224 0.224 0.9384 0.3341

Color.intensity 1 4.750 4.750 19.8942 1.488e-05 ***

OD.Ratio 1 0.031 0.031 0.1284 0.7206

Proline 1 0.262 0.262 1.0976 0.2963

Residuals 169 40.351 0.239

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The summary display contained other useful information, so you shouldn’t hesitate to look
at both.

Comparing these results to our previous regression, we can see that only one variable
(Color.intensity) is still significant, and the effect of Cultivar is very significant. For
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this data set, it means that while we can use the chemical composition to help predict
the Alcohol content of the wines, but that knowing the Cultivar will be more effective.
Let’s look at a reduced model that uses only Cultivar and Color.intensity to see how it
compares with the model containing the extra variables:

> wine.new1 = lm(Alcohol~Cultivar+Color.intensity,data=wine)

> summary(wine.new1)

Call:

lm(formula = Alcohol ~ Cultivar + Color.intensity, data = wine)

Residuals:

Min 1Q Median 3Q Max

-1.12074 -0.32721 -0.04133 0.34799 1.54962

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.14845 0.14871 88.417 < 2e-16 ***

Cultivar2 -1.20265 0.10431 -11.530 < 2e-16 ***

Cultivar3 -0.79248 0.10495 -7.551 2.33e-12 ***

Color.intensity 0.10786 0.02434 4.432 1.65e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4866 on 174 degrees of freedom

Multiple R-Squared: 0.6468, Adjusted R-squared: 0.6407

F-statistic: 106.2 on 3 and 174 DF, p-value: < 2.2e-16

The adjusted R-squared for this model is better than that of the previous one, indicating
that removing those extra variables didn’t seem to cause any problems. To formally test to
see if there is a difference between the two models, we can use the anova function. When
passed a single model object, anova prints an ANOVA table, but when it’s passed two model
objects, it performs a test to compare the two models:

> anova(wine.new,wine.new1)

Analysis of Variance Table

Model 1: Alcohol ~ Cultivar + Malic.acid + Alkalinity.ash + Proanthocyanins +

Color.intensity + OD.Ratio + Proline

Model 2: Alcohol ~ Cultivar + Color.intensity

Res.Df RSS Df Sum of Sq F Pr(>F)

1 169 40.351

2 174 41.207 -5 -0.856 0.7174 0.6112
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The test indicates that there’s no significant difference between the two models.
When all the independent variables in our model were categorical model (the race/activity

example), the interactions between the categorical variables was one of the most interesting
parts of the analysis. What does an interaction between a categorical variable and a con-
tinuous variable represent? Such an interaction can tell us if the slope of the continuous
variable is different for the different levels of the categorical variable. In the current model,
we can test to see if the slopes are different by adding the term Cultivar:Color.intensity

to the model:

> anova(wine.new2)

Analysis of Variance Table

Response: Alcohol

Df Sum Sq Mean Sq F value Pr(>F)

Cultivar 2 70.795 35.397 149.6001 < 2.2e-16 ***

Color.intensity 1 4.652 4.652 19.6613 1.644e-05 ***

Cultivar:Color.intensity 2 0.509 0.255 1.0766 0.343

Residuals 172 40.698 0.237

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

There doesn’t seem to be a significant interaction.
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As another example, consider a data set with information about experience, gender, and
wages. Experience is recorded as number of years on the job, and gender is recorded as 0 or
1. To see if the slope of the line relating experience to wages is different for the two genders,
we can proceed as follows:

> wages = read.delim(’http://www.stat.berkeley.edu/classes/s133/data/wages.tab’)

> wages$gender = factor(wages$gender)

> wages.aov = aov(wage ~ experience*gender,data=wages)

> anova(wages.aov)

Analysis of Variance Table

Response: wage

Df Sum Sq Mean Sq F value Pr(>F)

experience 1 106.7 106.69 4.2821 0.03900 *

gender 1 635.8 635.78 25.5175 6.042e-07 ***

experience:gender 1 128.9 128.94 5.1752 0.02331 *

Residuals 530 13205.3 24.92

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The significant probability value for experience:gender indicates that the effect of expe-
rience on wages is different depending on the gender of the employee. By performing two
separate regressions, we can see the values for the slopes for the different genders:

> coef(lm(wage~experience,data=subset(wages,gender == 0)))

(Intercept) experience

8.62215280 0.08091533

> coef(lm(wage~experience,data=subset(wages,gender == 1)))

(Intercept) experience

7.857197368 0.001150118

This indicates that there is a small increase in wages as experience increases for gender ==
0, but virtually no increase for gender == 1.

16.6 Constructing Formulas

For the examples we’ve looked at, there weren’t so many terms in the model that it became
tedious entering them by hand, but in models with many interactions it can quickly become
a nuisance to have to enter every term into the model. When the terms are all main effects,
you can often save typing by using a data= argument specifying a data set with just the
variables you are interested in and using the period (.) as the right-hand side of the model,
but that will not automatically generate interactions.

The formula function will accept a text string containing a formula, and convert it to a
formula that can be passed to any of the modeling functions. While it doesn’t really make
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sense for the wine data, suppose we wanted to add Cultivar and all the interactions between
Cultivar and the independent variables to our original regression model. The first step is
to create a vector of the variables we want to work with. This can usually be done pretty
easily using the names of the data frame we’re working with.

> vnames = names(wine)[c(3,5,10,11,13,14)]

For the main part of the model we need to join together these names with plus signs (+):

> main = paste(vnames,collapse=’ + ’)

The interactions can be created by pasting together Cultivar with each of the continuous
variables, using a colon (:) as a separator, and then joining them together with plus signs:

> ints = paste(paste(’Cultivar’,vnames,sep=’:’),collapse=" + ")

Finally, we put the dependent variable and Cultivar into the model, and paste everything
together:

> mymodel = paste(’Alcohol ~ Cultivar’,main,ints,sep=’+’)

> mymodel

[1] "Alcohol ~ Cultivar+Malic.acid + Alkalinity.ash + Proanthocyanins + Color.intensity + OD.Ratio + Proline+Cultivar:Malic.acid + Cultivar:Alkalinity.ash + Cultivar:Proanthocyanins + Cultivar:Color.intensity + Cultivar:OD.Ratio + Cultivar:Proline"

To run this, we need to pass it to a modeling function through the formula function:

> wine.big = aov(formula(mymodel),data=wine)

> anova(wine.big)

Analysis of Variance Table

Response: Alcohol

Df Sum Sq Mean Sq F value Pr(>F)

Cultivar 2 70.795 35.397 154.1166 < 2.2e-16 ***

Malic.acid 1 0.013 0.013 0.0573 0.81106

Alkalinity.ash 1 0.229 0.229 0.9955 0.31993

Proanthocyanins 1 0.224 0.224 0.9755 0.32483

Color.intensity 1 4.750 4.750 20.6808 1.079e-05 ***

OD.Ratio 1 0.031 0.031 0.1335 0.71536

Proline 1 0.262 0.262 1.1410 0.28708

Cultivar:Malic.acid 2 0.116 0.058 0.2524 0.77727

Cultivar:Alkalinity.ash 2 0.876 0.438 1.9071 0.15194

Cultivar:Proanthocyanins 2 1.176 0.588 2.5610 0.08045 .

Cultivar:Color.intensity 2 0.548 0.274 1.1931 0.30602

Cultivar:OD.Ratio 2 0.415 0.207 0.9024 0.40769

Cultivar:Proline 2 1.160 0.580 2.5253 0.08328 .

Residuals 157 36.060 0.230

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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As expected there isn’t anything too startling. If we wanted to investigate, say, the
Cultivar:Proanthocyanins interaction, we could look at a scatter plot using separate colors
for the points and corresponding best regression lines for each Cultivar:

> plot(wine$Proanthocyanins,wine$Alcohol,col=c(’red’,’blue’,’green’)[wine$Cultivar])

> abline(lm(Alcohol~Proanthocyanins,data=wine,subset=Cultivar==1),col=’red’)

> abline(lm(Alcohol~Proanthocyanins,data=wine,subset=Cultivar==2),col=’blue’)

> abline(lm(Alcohol~Proanthocyanins,data=wine,subset=Cultivar==3),col=’green’)

> legend(’topleft’,legend=levels(wine$Cultivar),pch=1,col=c(’red’,’blue’,’green’))

The plot appears below:
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16.7 Alternatives for ANOVA

Not all data is suitable for ANOVA – in particular, if the variance varies dramatically between
different groups, the assumption of equal variances is violated, and ANOVA results may not
be valid. We’ve seen before that log transformations often help with ratios or percentages,
but they may not always be effective.

As an example of a data set not suitable for ANOVA, consider the builtin data set
airquality which has daily measurements of ozone and other quantities for a 153 day
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period. The question to be answered is whether or not the average level of ozone is the same
over the five months sampled.

On the surface, this data seems suitable for ANOVA, so let’s examine the diagnostic plots
that would result from performing the ANOVA:

> airquality$Month = factor(airquality$Month)

> ozone.aov = aov(Ozone~Month,data=airquality)

> plot(ozone.aov)

There are deviations at both the low and high ends of the Q-Q plot, and some deviation
from a constant in the Scale-Location plot. Will a log transformation help?

> ozonel.aov = aov(log(Ozone)~Month,data=airquality)

> plot(ozonel.aov)
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In this case, the transformation didn’t really help.
It might be possible to find a more suitable transformation, but we can also use a statis-

tical test that makes fewer assumptions about our data. One such test is the Kruskal-Wallis
test. Basically, the test replaces the data with the ranks of the data, and performs an
ANOVA on those ranks. It assumes that observations are independent from each other,
but doesn’t demand equality of variance across the groups, or that the observations follow
a normal distribution. The kruskal.test function in R performs the test, using the same
formula interface as aov.

> ozone.kruskal = kruskal.test(Ozone~Month,data=airquality)

> ozone.kruskal

Kruskal-Wallis rank sum test

data: Ozone by Month

Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06

All that’s reported is the significance level for the test, which tells us that the differences
between the Ozone levels for different months is very significant. To see where the differences
come from, we can use the kruskalmc function in the strangely-named pgirmess package.
Unfortunately this function doesn’t use the model interface – you simply provide the response
variable and the (factor) grouping variable.

> library(pgirmess)

> kruskalmc(airquality$Ozone,airquality$Month)

Multiple comparison test after Kruskal-Wallis

p.value: 0.05

Comparisons

obs.dif critical.dif difference

5-6 57.048925 31.85565 TRUE

5-7 38.758065 31.59346 TRUE

5-8 37.322581 31.59346 TRUE

5-9 2.198925 31.85565 FALSE

6-7 18.290860 31.85565 FALSE

6-8 19.726344 31.85565 FALSE

6-9 54.850000 32.11571 TRUE

7-8 1.435484 31.59346 FALSE

7-9 36.559140 31.85565 TRUE

8-9 35.123656 31.85565 TRUE

Studying these results shows that months 6,7, and 8 are very similar, but different from
months 5 and 9.

To understand why this data is not suitable for ANOVA, we can look at boxplots of the
Ozone levels for each month:
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> boxplot(with(airquality,split(Ozone,Month)))

The variances are clearly not equal across months, and the lack of symmetry for months 5
and 6 brings the normal assumption into doubt.
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