Lecture 6: Autoregressive Integrated Moving Average Models
Introduction to Time Series, Fall 2023
Ryan Tibshirani

Related reading: Chapters 3.1, 3.3, and 3.6 in Shumway and Stoffer (SS); Chapters 9.1-9.5 and 9.8-9.9 of
Hyndman and Athanasopoulos (HA).

1 AR models

e The autoregressive (AR) model is one of the foundational legs of ARIMA models, which we’ll cover
bit by bit in this lecture. (Recall, you've already learned about AR models, which were introduced
all the way back in our first lecture)

e Precisely, an AR model of order p > 0, denoted AR(p), is of the form

P
Ty = Z Djri—j + Wy (1)
j=1
where wy, t = 0,4+1,£2, 43, ... is a white noise sequence. Note that we allow the time index to be

negative here (we extend time back to —oo), which will useful in what follows

e The coefficients ¢1,...,¢, in (1) are fixed (nonrandom), and we assume ¢, # 0 (otherwise the order
here would effectively be less than p). Note that in (1), we have E(z;) =0 for all ¢

e If we wanted to allow for a nonzero but constant mean, then we could add an intercept to the model
in (1). We’ll omit this for simplicity in this lecture

e A useful tool for expressing and working with AR models is the backshift operator: this is an opera-
tor we denote by B that takes a given time series and shifts it back in time by one index,

Bxy =241

e We can extend this to powers, as in B%x; = BBx; = 2+_», and so on, thus

kat =Ty

e Returning to (1), note now that we can rewrite this as

Ty — P1T—1 — P2 — Tp—2 —  — PpTy_p = Wy

or in other words, using backshift notation
(1=01B = 6287 =+ = 0, B" ), = wy (2)

e Hence (2) is just a compact way to represent the AR(p) model (1) using the backshift operator B.
Often, authors will write this model even more compactly as

(B)ry = wy (3)

where ¢(B) =1 — ¢1B — ¢ B> — - - — ¢pBP is called the autoregressive operator of order p, associated
with the coefficients ¢1,..., ¢,

e Figure 1 shows two simple examples of AR processes
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Figure 1: Two examples of AR(1) processes, with ¢ = £0.9.

1.1 AR(1): auto-covariance and stationarity

e A key question for us will be: under what conditions does the AR model in (1), or equivalently (3),
define a stationary process?

e The answer will turn out to be fairly sophisticated, but we can glean some intuition by starting with
the AR(1) case:
Ty = Pxp—1 + Wy (4)

e Note that a random walk is the special case with ¢ = 1. We already know (from previous lectures)
that this is nonstationary, so certainly (4) cannot be stationary in general, regardless of ¢

e Unraveling the iterations, we get

T = P*x4_o + Qi1 + wy

= 3143 + PPwi—o + dw_1 +wy

k
=¢F+ Y dw

Jj=0

o If |¢| < 1, then we can send k — oo in the last display to get
Ty = Zqﬁjwt,j (5)
j=0

This is called the stationary representation of the AR(1) process (4)



e Why is it called this? We can compute the auto-covariance function, writing 0> = Var(w;) for the
noise variance, as

Cov(z¢, x44n) = Cov (Z P wij, Z (bewt-&-h—Z)
7=0 £=0

= Z ¢l " Cov(we—j, Wesn—r)

7,4=0

— i ¢j¢j+ha2

J=0

_ O'2¢h i ¢2j
j=0
2 ¢
1— ¢

where we used the fact that 77 b =1/(1—1) for |b| < 1. Since the auto-covariance in the last line
only depends on h, we can see that the AR(1) process is indeed stationary

=0

(6)

e To reiterate, the representation (5), and the auto-covariance calculation just given, would have not
been possible unless |¢| < 1. This condition is required in order for the AR(1) process to have a
stationary representation. We will see later that we can generalize this to a condition that applies to
an AR(p), yielding an analogous conclusion. The conclusion we will be looking for is explained next

1.2 Causality (no, not the usual kind)

e Now we will introduce a concept called causality, which generalizes what we just saw falls out of an
AR(1) when |¢| < 1. This is a slightly unfortunate bit of nomenclature that nonetheless seems to be
common in the time series literature. It has really nothing to do with causality used in the broader
sense in statistics. We will ... somewhat begrudgingly ... stick with the standard nomenclature in
time series here

e We say that a series x4, t = 0,£1,+2,43,... is causal provided that it can be written in the form
(o]
=) Wjwi; (7)
j=0

for a white noise sequence wy, t = 0,+1,+2,£3,..., and coefficients such that Z;io [Y;] < oo

e You should think of this as a generalization of (5), where we allow for arbitrary coefficients v, ¥1, 12, . . .,
subject to an absolute summability condition

e It is straightforward to check that causality actually implies stationarity: we can just compute the
auto-covariance function in (7), similar to the above calculation:

Cov(zs, x¢4n) = Cov (Z Yjw—j, Z wewt+h—e>
3=0 =0

oo
=Y it Cov(wi—j, wern—r)
J£=0

oo
2
=02 bjthin
=0

The summability condition ensures that these calculations are well-defined and that the last display
is finite. Since this only depends on h, we can see that the process is indeed stationary
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Thus, to emphasize, causality actually tells us more than stationary: it is stationary “plus” a repre-
sentation a linear filter of past white noise variates, with summable coefficients

Note that when ¢; = ¢/, the summability condition 772 [¢;| < oo is true if and only if |¢| < 1.
Hence what we actually proved above for AR(1) was that it is causal if and only if |¢| < 1. And it is
this condition—for causality—that we will actually generalize for AR(p) models, and beyond

MA models

A moving average (MA) model is “dual”, in a colloquial sense, to the AR model. Instead of having x;
evolve according to a linear combination of the recent past, the errors in the model evolve according
to a linear combination of white noise

Precisely, an MA model of order g > 0, denoted MA(q), is of the form

q
Ty = Wy + Z ijt,j (8)
j=1
where w, t = 0,£1,4+2,£3,... is a white noise sequence
The coefficients 61,...,60, in (8) are fixed (nonrandom), and we assume 6, # 0 (otherwise the order

here would effectively be less than ¢). Note that in (8), we have E(z;) = 0 for all ¢

Again, we can rewrite (8), using backshift notation, as

oy = (1+01B+92BQ+~~~+9qu)wt 9)

Often, authors will write (9) even more compactly as

where 0(B) =1+ 61 B+ 0:B% + -+ 4+ 6,B7 is called the moving average operator of order g, associated
with the coefficients 601,...,0,

Figure 2 shows two simple examples of MA processes

Stationarity
Unlike AR processes, an MA process (8) is stationary for any values of the parameters 61,. .., 0,

To check this, we compute the auto-covariance function using a similar calculation to those we’ve
done before, writing 8y = 1 for convenience,

q q
Cov(zt, verpn) = Cov (Z 0w, Z ngt+h_g)
j=0 =0

q
= Z 9]'9@ Cov(wt_j,wt+;L_g)
3,£=0

= Y 0ifn0” (11)
j:0<j,j+h<q
Since this only depends on h, we can see that the process is indeed stationary

The similarity in these calculations brings us to pause to emphasize the following connection: an
AR(1) model with |¢| < 1 is also a particular infinite-order MA model, as we saw in the stationary
representation (5). We will see later that there are more general connections to be made
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Figure 2: Two examples of MA(1) processes, with ¢ = £0.9.

MA(1): issues with non-uniqueness

Consider the MA(1) model:
Ty = wy + Owi_q (12)

According to (11), we can compute its auto-covariance simply (recalling 8y = 1) as

(1+6%0% h=0
vz (h) = < Ho? |h] =1 (13)
0 |h| >1

The corresponding auto-correlation function is thus

1 h=0
ph) = i I1hl=1
0 |h| > 1

If we look carefully, then we can see a problem lurking here: the auto-correlation function is un-
changed if we replace 6 by 1/6

And in fact, the auto-covariance function (13) is unchanged if we replace § and ¢ with 1/0 and
0%0% eg., try ® = 5and 0?> = 1,and § = 1/5 and 0? = 25, you'll find that the auto-covariance
function is the same in both cases

This is not good because it means we cannot detect the difference in an MA(1) model with parame-
ter 6 and normal noise with variance o2 from another MA (1) model with parameter 1/6 and normal
noise with variance o262



e In other words, there is some non-uniqueness of redundancy in the parametrization—different choices

2.3

3

of parameters will actually lead to the same behavior in the model at the end

In the MA(1) case, the convention is to simply choose the parametrization with |#| < 1. Note that
we can write
wy = —0wi—1 + 4

which is like an AR(1) process with the roles of x; and w; reversed. Thus by the same arguments
that led to (5), when |0] < 1, we now have

o

we = Z(—G)jxt_j (14)

§=0
This is called the invertible representation of the MA(1) process (12)

We will see soon that we can generalize this to a condition that applies to a general MA(q), yielding
an analogous conclusion. The conclusion we will be looking for is explained next

Invertibility

Before we turn to ARMA models, we define one last concept called invertibility, which generalizes
what we just saw for MA(1) when [0] < 1

We say that a series x;, t = 0,+1, 42, £3, ... is invertible provided that it can be written in the form
oo

Wy = Zﬂjﬁt,j (15)
§=0

for a white noise sequence w;y, t = 0,41,+2,£3, ..., and coefficients such that Z;io |7;] < 0o, where
we set mp = 1

You should think of this as a generalization of (14), where we allow for arbitrary coefficients 7y, 7o, ...,
subject to an absolute summability condition

And of course, note how invertibility (15) is kind of an opposite condition to causality (7)

ARMA models

AR and MA models have complementary characteristics. The auto-covariance of an AR model gener-
ally decays away from h = 0, whereas that for an MA process has finite support—in other words, at

a certain lag, variates along an MA sequence are completely uncorrelated. You can compare (6) and
(13) for the AR(1) and MA(1) models

(The spectral perspective, by the way, provides another nice way of viewing these complementary
characteristics. In the spectral domain, the story is somewhat flipped: the spectral density of an MA
process generally decays away from w = 0, whereas that for an AR process can be much more locally
concentrated around particular frequencies; recall our examples from the last lecture)

Sure, there is some duplicity in representation here, as we will see—we can write some AR models
as infinite-order MA models, and some MA models as infinite-order AR models. But that’s OK!
We can take the most salient features that each model represents, and combine them to get a sim-
ple model formulation that exhibits both sets of features, simultaneously. This is exactly what an
ARMA model does

Precisely, an ARMA model of orders p, ¢ > 0, denoted ARMA(p, q), is of the form

p q
Ty = Z%l‘tﬂ' + Zejwtfj (16)
= i=0

where wy, t = 0,£1,4+2,£3,... is a white noise sequence
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The coefficients ¢1, ..., ¢p, 00, ...,0, in (16) are fixed (nonrandom), and we assume ¢,, 6, # 0, and
we set 0y = 1. Note that in (16), we have E(a;) = 0 for all ¢

As before, we can represent an ARMA model more compactly using backshift notation, rewriting
(16) as

(1 1B — B — gi)po)a:t - (1 Y 0B+ 60,824+ Gqu)wt (17)

Often, authors will write (17) even more compactly as
¢(B)zi = 0(B)wy (18)

where ¢(B) =1— ¢1B — ¢poB* — -+ — ¢,BP and (B) =1+ 61 B + 62B% + - - - + 0,B? are the AR and
MA operators, as before

Parameter redundancy

For ARMA models, there is an issue of parameter redundancy, just like there are for MA models. If
n(B) is any (invertible) operator, then we can transform (18) by applying n(B) on both sides,

n(B)¢(B)xy = n(B)0(B)w,

which may look like a different model, but the dynamics are entirely the same

As an example, consider white noise z; = wy, and multiply both sides by n(B) = 1 — B/2. This gives:
Ty = §xt_1 + wy — iwt—l

which looks like an ARMA(1,1) model, but it is nothing else that white noise!

How do we resolve this issue? Doing so requires introducing another concept. The AR and MA poly-
nomials associated with the ARMA process (16) are

$(2) =1 =12 — ¢oz” — -+ — gp2” (19)
0(2) = 14012+ 022% + -+ + 0,29 (20)

respectively. To be clear, these are polynomials over complex numbers z € C. (Note that these are
just what we get by taking the AR and MA operators, and replacing the backshift operator B by a
complex argument z)

As it turns out, several important properties of ARMA models can be derived by placing conditions
on the AR and MA polynomials. Here we’ll see the first one, to deal with parameter redundancy:
when we speak of an ARMA model, we implicitly assume that the AR and MA polynomials ¢(z) and
0(z), in (19) and (20), have no common factors. This rules out a case like

1 n 1
Ty = —Ty—1 + W — =Wy
t= 5Tl t T 5 Wi
because the polynomials each have 1 — z/2 as a common factor. Hence we do not even refer to the

above as an ARMA(1,1) model

Causality and invertibility

Now we learn about two more conditions on the AR and MA polynomials that imply important
general properties of the underlying ARMA process, and generalize calculations we saw earlier for
AR(1) and MA(1) models

Before we describe these, we recall the following terminology: for a polynomial P(z) = E?:o a;jz’,
we say that z is a oot of P provided P(z) =0
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And we say that a point z € C lies outside of the unit circle (in the complex plane C) provided that
|z| > 1, where |z| is the complex modulus of z (recall |z|> = Re{z}* + Im{2}?)

The first property: the ARMA process (16) has a causal representation (7) if and only if all roots
of the AR polynomial (19) lie outside of the unit circle. The coefficients g, %1, 12, ... in the causal
representation can be determined by solving

_ o~ L0z 4027 4 46,20
2) = d(2)710(2) = i) = 1 , for |z <1
Y(2) = ¢(2) (2) ]Z:(:)% 1— 12— poz?2 — - — @pp2P i

The second property: the ARMA process (16) is invertible (15) if and only if all roots of the MA
polynomial (20) lie outside of the unit circle. The coefficients 71, o, ... in the invertible representa-
tion can be determined by solving

L—¢12—¢az® — - — 2P
14612+ 0222 4 -+ - + 0429

, for |zl <1

w(z) = H(z)_l(b(z) — Zﬁjzj —
j=0

(As an aside, you can see that parameter redundancy issues would not affect the causal and invert-
ible representations, as they shouldn’t, because any common factors in ¢(z) and 6(z) would cancel in
their ratios which determine the coefficients in the causal and invertible expansions)

Interestingly, these results can also be interpreted as follows:

— An AR(q) process, such that the roots of ¢ lie outside the unit circle, can also be written as an
MA (c0) process (this is what causality (7) means)

— An MA(q) process, such that the roots of 8 lie outside the unit circle, can also be written as an
AR(00) process (this is what invertibility (15) means, as it says x; = — Z;‘;l TjTi—j + W)

We won’t cover the proofs of these properties or go into further details about them. But you will
see several hints of their significance (what the causal and invertible representations allow us to do)
in what follows. At a high-level, they are worth knowing because they are considered foundational
results for ARMA modeling (just like it is worth knowing foundations for regression modeling, and
so on). You can refer to Appendix B.2 of SS for proofs, or read more in Chapter 3 of SS

Also, recall that causality implies stationarity, so what we have just learned is the general result that
renders an ARMA(p, ¢) process stationary

Finally, as a summary, here are three equivalent ways to represent a causal, invertible ARMA(p, q)
model:

d(B)xy = 0(B)wy
@ =(B)w, for Y(B) = ¢(B)~'0(B)
m(B)x; = wy, for n(B) =0(B) '¢(B)

Auto-covariance

The auto-covariance for an MA(g) model was already given in (11). We can see that it is zero when
|h| > ¢: this is a signature structure of the MA(q) model

The auto-covariance for a causal AR(1) model was given in (6). We can see that it decays away from
h = 0: this is a signature structure of AR models. But what does the precise auto-covariance look
like for a general causal AR(p) model? How about a general causal ARMA(p, ¢) model?

The answer is much more complicated, but still possible to characterize precisely. We’ll do it first for
an AR(p) model, and then look at an ARMA(p, ¢) model, which will have an analogous behavior



e For an AR(p) model (1), assumed causal (i.e., all roots of ¢(z) are outside of the unit circle), we can
focus on the auto-covariance at lags h > 0 (without a loss of generality, because =, is symmetric
around zero),

Cov(zy, Teap) = Z ¢j Cov(xy, Tipn—j) + Cov(xy, wiyn)
j=1

e The last term on the right-hand side zero for h > 0; recall, x; is a causal process, and only depends
on white noise in the past. On the other hand, when h = 0, writing =, = Z;io YW,

Cov(xy, wy) ij Cov(wy—j,wy) = 2o

7=0

e Combining the last two displays, we learn that the auto-covariance function satisfies

e This is called a difference equation of order p for the auto-covariance function 7,. Some simple differ-
ence equations can be solved explicitly without complicated mathematics, but to solve a difference
equation in general requires knowing something (again) about the roots of a certain complex poly-
nomial associated with the difference equation, when it is represented in operator notation. You can
read Chapter 3.2 of SS for an introduction to the theory of difference equations

e For an AR(p) model, it turns out we can solve the difference equation in the last display and get
Ye(h) = Pu(R)zr " + - 4 Pr(h)z " (21)

where each P; is a polynomial, and each z; is a root of the AR polynomial ¢. Because each |z;| > 1
(all roots lie outside the unit circle), we see that the auto-covariance function will decay to zero as
h — o0. In the case that some roots are complex, then what will actually happen is that the auto-
covariance will dampen to zero but in doing so oscillate in a sinusoidal fashion

e Now what about an ARMA(p, ¢) model (16), assumed causal? Similarly, we can focus on the auto-
covariance a lags h > 0,

P q
Cov(zy, Tepn) = Z ¢j Cov(as, Tepn—j) + Z 0; Cov(xs, Weyh—j)

Jj=1 Jj=0

e The last term on the right-hand side zero for h > ¢, whereas when h < ¢, writing x; = Z;io Yowy—_g,
we see that for 7 > h,

oo
Cov(wp, wipn—j) = 3 _ the Cov(wy_g, wen—j) = 0*tj_n
=0

e Combining the last two displays, we learn that the auto-covariance function satisfies

¢jve(h—j) =0, h>q

- HM*@

Ya(h) — quj%c( —j)=o ij he h<q
J j=h



e This is again a difference equation of order p that determines ., but the boundary condition (what
happens when h < ¢) is more complicated. Nonetheless, the solution is still the form (21), and the
qualitative behavior is still the same as in the AR(p) case

e Figure 3, top row, shows sample auto-correlation functions for simple MA and AR models
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Figure 3: Top row: sample auto-correlation functions for data from AR(2) and MA(3) models. Bottom
row: sample partial auto-correlation functions for these same data.

3.4 Partial auto-covariance

e The auto-covariance function for an MA model provides a considerable amount of information that
will help identify its structure: since it is zero for lags h > ¢, if we were to compute a sample version
based on data, then by seeing where the sample auto-correlation “cuts off”, we could roughly identify
the order ¢ of the underlying MA process (see top right of Figure 3 again)

e For an AR (or ARMA) model, this is not the case. As we saw from (21), the auto-covariance decays
to zero, but this tells us little about the AR order of dependence p (see also top left of Figure 3).
Thus it is worth pursuing a type of modified correlation function for the AR model that behaves like
the auto-correlation does for the MA model

e Such a modification will be given to us by the partial auto-correlation function. In general, the par-
tial correlation between random variables X, Y given Z is denoted pxy|z and defined as

pxyly = Cor(X — X,y - )A/), where
X is the linear regression of X on Z, and

Y is the linear regression of Y on Z

Here, and in what follows, by “linear regression” we mean regression in the population sense, so that
precisely X = ZT Cov(Z)'E(ZX) and Y = ZT Cov(Z)'E(ZY)

10



e Said differently, the partial correlation of two random variables given Z is the correlation after we

3.5

remove (“partial out”) the linear dependence of each random variable on Z

We note that when X, Y, Z are jointly normal, then this definition coincides with conditional correla-
tion: pxy|z = Cor(X,Y|Z), but not in general

We are now ready to define the partial auto-correlation function for a stationary time series x;, t =
0,+1,+2,43, ..., denoted ¢, (h) at a lag h. Without a loss of generality we will only define it for
h > 0, since it will be symmetric around zero (due to stationarity). First, at lagh =0or h = 1, we
simply define:
¢$.(0) =1
¢2(1) = Cor(zy, Ti41)
Next, at all lags h > 2, we define:
d)x(h) = COI‘(Z’t — i‘t7l‘t+h — jjt—&-h)a where
Z¢ is the linear regression of xy on xy41,...,T¢4p—1, and

Zyyp is the linear regression of xyyp on g1, ..., Tipp—1

To best see the effect of this definition we can go straight back to the causal AR(p) model. When
h > p, it can be shown that the population linear regression Z;1p, of T;1p o0 Tyy1,. .., Tiyrn—1, IS

p
Tigp = Z¢j$t+h—j

=1
Thus xy4p — Tepn = Te4n — Z§:1 @jTi+h—j = Wyn, and the partial auto-correlation is
¢I(h) = COI‘(It - i’t,’wt_;,_h) =0

because causality implies that x; can only depend on white noise through time ¢, and Z; can only
depend on white noise through time t + h — 1

That is, the partial auto-correlation function for an AR(p) model is exactly zero at all lags h > p
Figure 3, bottom row, shows sample partial auto-correlation functions for AR and MA models

The table below summarizes the behavior of the auto-correlation function (ACF) and partial auto-

correlation function (PACF) for causal AR(p) and invertible MA(g) models. By “tails off” we mean
decays to zero as h — oo without dropping to zero exactly; by “cuts off” we mean drops to zero at a
given finite lag h

AR(p) MA(q) ARMA(p, q)
ACF tails off cuts off at lag ¢ tails off
PACF | cuts off at lag p tails off tails off

The fact that the partial auto-correlation function for an invertible MA(¢q) model “tails off” was not
derived in these notes, but you can read more in Section 3.3 of SS if you are curious. Same with the
behavior of a causal, invertible ARMA(p, q)

Estimation and selection

Estimation in an ARMA(p, ¢) model—estimating the coefficients ¢4, ..., ¢p,61,...0, in (16)—is in
general fairly complicated. Much more so than in linear regression

Estimation is usually performed by maximum likelihood (assuming Gaussian errors), but there are
many other (nonequivalent) approaches, such as the method of moments. Maximum likelihood is
no longer a simple least squares minimization (as it is for regression) over a linear parameterization.
There are various approaches, typically iterative, for carrying out maximum likelihood, and different
approaches will give different answers

11
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We won’t cover estimation techniques in detail at all, but we note that a simple approach is (due to
Durbin in 1960) to start with some estimates w; the noise variates w;. Then use these as covariates,

and regress x; on Ty_p, ..., T—1, Wi—gq, ..., Wi—1, over t = to + 1,...,n, where ty = max{p, ¢}. When
g =0, ie., we are fitting an AR(p), we simply regress x; on x4_p,...,24_1, over t = p+1,...,n. This
is a conditional maximum likelihood approach, where we condition on the initial values x1,...,xp

You can read about other approaches in Chapter 3.5 of SS, Chapter 9.6 of HA, or references therein

R provides an arima() function in base R; in addition, both the astsa package (written by Stoffer
of SS) and fable package (written by Hyndman of HA) provide functionality for ARIMA modeling

If there’s one thing even more complicated than fitting ARIMA models, it’s choosing an ARIMA
model—that is, order selection, or determining the choice of p, ¢ from data

At least, this topic seems to be more controversial ... some authors like Hyndman believe that this
can be automated (via algorithms like the Hyndman-Khandakar algorithm), and this is what is
implemented in ARIMA() in the fable package when the order p, ¢ is left unspecified. This kind of
automated model building is also central to some ML perspectives on forecasting (cf. auto ML). But
other authors like Stoffer believe that this doesn’t really work,' and recommend more human-expert-
driven model building

If the point is to identify the “right” structure, then Stoffer may have a point: if the data generating
model was truly a member of the ARIMA family, then it would be hard to identify it reliably (see R
notebook examples). But to HA’s credit, their Chapter 9.8 does also recommend more of a human-
in-the-loop procedure than just calling ARIMA() once, involving diagnostics

The gist of the non-automated part (which is fairly standard) is as follows:

0. Plot the data to identify (and possibly remove) any outliers, and apply data transformations
(e.g., Box-Cox), if needed, to stabilize the variance

1. If the data appears nonstationary, take differences until it is stationary
2. Plot the ACF and PACF to determine possible MA and AR orders
3. Fit an ARMA model, inspect the residuals: they should look like white noise

Step 1 is at the heart of ARIMA, which we’ll cover soon. Steps 2-3 are the part that can be (but
arguably, should not be) automated by Hyndman-Khandakar: instead of a single ARMA model, it
fits various ARMA models, and then uses an information criterion (like AICc) to select a final one

Chapter 3.7 in SS also goes into details about a similar sequence of steps for building ARIMA mod-
els, with worked examples. We’ll also go through an example shortly, in the ARIMA section

The ACF and PACF are great tools, and looking at them to get a sense of MA and AR dependence
is generally helpful, but we will not concern ourselves too much with the formality of ARMA order
selection (just like we did not with model selection in regression)

Since our focus is on prediction, we will adopt the following simple perspective (just like in regres-
sion): an ARMA model is useful if it predicts well. And as before, we can assess this with time series
cross-validation. We’ll revisit this later, and you’ll go through examples on the homework

Regression with correlated errors

Very briefly, we describe regression with auto-correlated errors. Suppose we assume a model

k
yt:Za:t]ﬂj—I—zt, t=1,...,n
j=1

where instead of white noise, the error sequence z;, t = 1,...,n has some ARMA structure

1See https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md#arima-estimation.
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e In the case that the noise was AR(p), with associated operator ¢(B), we could then simply apply
this operator to both sides, to yield

k

d(B)yr = ¢(B)wyB+ ¢(B)z, t=1,...,n

Jj=1

or defining y} = $(B)ys, x; = ¢(B)yj, wy = $(B)z,

k
yézZmY’fjﬁj—&—wt, t=1,....n
=1

where now wy, t = 1,...,n is white noise

If we knew the coefficients ¢1, ..., ¢, that comprise the AR operator ¢(B), then we could just obtain
estimates of the regression coefficients 1, ..., B by regressing y; on z;. But since we don’t know the
coefficients ¢1, ..., ¢, in general, these would need to be estimated as well

We could solve for 31,...,8; and ¢1,..., ¢, jointly using maximum likelihood, or least squares mini-
mization (which are not equivalent). For example, the latter would solve

n k

2
Beﬂg’[},ifew Z <¢(B)yt - Z ¢<B)xt]ﬂj>

t=1 j=1

which is called a nonlinear least squares problem (since each square is applied to a nonlinear function
of the parameters 3, ¢)

For (invertible) ARMA noise, the same approach carries over but with 7(B) = 6(B)~'¢(B) in place
of ¢(B), which only makes the nonlinear least squares optimization much more complicated

Identifying the ARMA structure in regression errors can be done by fitting a regression with regular
(white noise) errors, and then applying the same ideas as those described above for order selection
in ARMA to the residuals (inspect the ACF and PACF of residuals, and so on). For more, you can
read Chapter 3.8 of SS and Chapters 10.1-10.2 of HA. In R, the ARIMA() function in the fable pack-
age allows us to fit regression models with ARIMA errors

ARIMA models

Finally, we arrive at ARIMA models. We’ve hinted at what these are about a few times already, but
it is nonetheless worth making the motivation explicit: the main point behind the new “I” component
here is to account for nonstationary. Well-behaved ARMA models (causal ones) are stationary, and
ARIMA allows us to handle nonstationary data

The “I” stands for “integration”, so an ARIMA model is an autoregressive integrated moving average
model. Integration is to be understood here as the inverse of differencing, because we are effectively
just differencing the data to render it stationary, then assuming the differenced data follows ARMA

First, we define the differencing operator V that takes a given sequence and returns pairwise differ-
ences,
Vg =24 — 241

We can extend this to powers by iterating, as in

Vth = VV:ct =Tt — QIt_l — Tt—2

Note that we can also write V in terms of the backshift operator B as V =1 — B, so that a general
d*™" order difference is
Vv?=(1-B)
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Now we can formally define, an ARIMA (p, d, ¢) model, for orders p,d,q > 0: this is a model for x;,
t =0,£1,42,43,... such that V?z; follows an ARMA(p, q) model, i.e.,

#(B)Vez, = 0(B)w; (22)

where wy, t = 0,£1,42,43,... is a white noise sequence, and ¢(B),0(B) are the AR and MA oper-
ators, respectively, as before. In other words, z; is given by d*® order integration of an ARMA(p, q)
sequence

Note that ARIMA(0,1,0) says that the differences in the sequence are white noise,
Ty = Te—1 + Wy

which is nothing more than a random walk, which we already know is nonstationary (the variance
grows over time)

Below is a summary of some of the basic models that the ARIMA framework encompasses. We write
c for the intercept in the model, as in

(B)Viz; = c+ 0(B)w, (23)

Recall, this was assumed zero in (22), and throughout, only for simplicity—in general, we allow it

White noise ARIMA(0,0,0) with ¢ =
Random walk ARIMA(0,1,0) with ¢ =
Random walk with drift | ARIMA(0,1,0) with ¢ # 0
Autoregressive ARIMA(p,0,0)

Moving average ARIMA(0,0, q)

A general warning should be given about choosing large d; HA say that in practice, d > 2 is never
really needed, and also give a cautionary note about taking d = 2 with ¢ # 0 (more later)

Now we walk through an example from HA on using ARIMA to model (and forecast) Central African
Republic exports. The data is shown in Figure 4, top row. It does not look stationary

Taking first differences of the data, as shown in the second row, renders the data reasonably stationary-
looking

ACF and PACF plots are shown in the third row of Figure 4. To be clear, these are applied to first
differences of the data. They are suggestive of MA(3) and AR(2) dynamics, respectively. Thus we

can go and fit each model: ARIMA(2,1,0) and ARIMA(0,1,3) (note that these are ARIMA models
with d = 1, since we are going to specify the differencing as part of the model itself). We can also

use the Hyndman-Khandakar algorithm. This ends up choosing ARIMA(2,1,2)

For prediction-focused tasks (and probably/necessarily, longer sequences), we would look at an es-
timate of (say) MAE using time series cross-validation to help us choose a model. Here, HA recom-
mend looking at AICc, which is what is also built into the fable package’s reporting of the ARIMA()
output. This leads us to choose ARIMA(2,1,0). The residuals from this model also look close to
white noise (see the R notebook for diagnostics) which is good

Forecasts from our fitted ARIMA(2,1,2) model are shown in the rop row of Figure 5, for a 5-year
horizon. Also plotted are prediction intervals around the forecast (more on this in the last section).
Qualitatively, the forecasts aren’t very impressive at first glance—they look more or less like what
we’d get if we used a random walk (zero mean function, growing variance function), which is just

ARIMA(0,1,0)

However, HA comment that the prediction intervals here are narrower than they would be for a
random walk, which is due to the contribution of the nontrivial AR and MA components that we’ve
been able to pick up and model. To check this, we plot forecasts from ARIMA(0,1,0) in the bottom
row of Figure 5, and indeed you can see they have wider uncertainty bands
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Central African Republic (CAR) exports
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Figure 4: Top row: exports (as a percentage of GDP) for Central African Republic (from HA). Middle
row: first differences of exports. Bottom row: ACF and PACF functions of first differences.
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ARIMA(2,1,0)
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Figure 5: Top row: forecasts from ARIMA(2,1,2). Bottom row: forecasts from ARIMA(0,1,0) with ¢ = 0,
i.e., a random walk.



4.1

A general note to close out our example: the ARIMA(Q) function in the fable package can be handy
but also a bit dangerous because it may automate away some part of the model building procedure
even when you think you’ve specified a model manually. Check out the R notebook for an example
and guidance on how to explicitly get what you want ...

Seasonality extensions

Seasonality is typically handled in ARIMA models by seasonal differencing. This assumes that the
seasonal periods are known

For example, let’s suppose that the seasonal period is known to be s. Then, to start off as simple as
possible, a purely seasonal ARMA model with orders P, @ > 0 and period s, denoted ARMA(P, Q)s,
is of the form

(D(BS)$t = @(Bs)wt (24)

where ®(B%) = 1 — ®1B* — ®3B% — ... — ®pBP* and O(B) = 1 + 0B + ©:B% + ... + OB,
Note that these model AR and MA dynamics, but on the scale of seasons: since all backshifts are in
multiples of s

To select orders for seasonal dynamics we would follow ideas just like those for regular (nonseasonal)
ARMA models: look at ACF and PACF plots, but for lags on the seasonal scale, in multiples of s

To make this more sophisticated, we can add in AR and MA dynamics on the original scale, which
leads to a seasonal ARMA model of orders p, ¢, P,Q > 0 and period s, denoted ARMA(p, q)(P,Q)s,

P(B)®(B*)z = 0(B)O(B°)wy (25)

where ¢(B) =1— ¢1B — ¢p2B* — -+ — ¢,BP and (B) =1+ 61 B + 6:B% + - - - + 0,B? are the AR and
MA operators, as before, and ®(B*), ©(B*) are the seasonal operators, as above

The full scale sophistication is achieved by adding in integration to account for nonstationarity. How-
ever, now we can also account for nonstationarity on the seasonal scale; first define a D' order sea-
sonal difference eperator

VP =(01-B%P

Then define the seasonal ARIMA (SARIMA) model of orders p,d, q, P, D,Q > 0 and period s, de-
noted ARIMA(p, d, q)(P, D, Q)s,

$(B)®(B*)VIV )z, = 6(B)O(B*)w, (26)

As usual, we are omitting an intercept ¢ for simplicity, but in general we could include this on the
right-hand side in (26). (Phew! That’s the full beast. We’ve maxed out in complexity, at least for
this lecture ...)

Estimation is even more complicated in SARIMA models (more parameters, more nonlinearity) but
thankfully software does it for us

We won’t go into any further details than what we have discussed already, but will walk through an
example from HA to model (and forecast) US employment numbers in leisure /hospitality. The data
is shown in Figure 6, top row. It has a clear seasonal pattern with (safe guess) a 1 year period

Taking seasonal differences (i.e., applying Vs with s = 12, since this is monthly data) has removed
the seasonality, but the result, in the middle row of Figure 6, is still very clearly nonstationary

Additionally taking monthly differences (i.e., applying the composite operator VVy), in the bottom
row of Figure 6, is reasonably stationary-looking

ACF and PACF plots are displayed in the top row of Figure 7. To be clear, these are applied to

the differences of yearly differences (VVszy, t = 1,2,3,..., as plotted in the bottom row of Fig-
ure 7). The ACF shows two moderate correlations at lags 1 and 2 and then a big spike at lag 12.
This is suggestive of an nonseasonal MA(2) and a seasonal MA(1), and thus we can go and fit an
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US employment: leisure and hospitality
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Figure 6: Top row: number of US jobs (in millions) in leisure/hospitality (from HA). Middle row: seasonal
(yearly) differences. Bottom row: differences of seasonal differences.



ARIMA(0,1,2)(0,1,1)12 model. Meanwhile, the PACF shows again to moderate correlations at lags
1 and 2 and a big spike at lag 12. This suggests a nonseasonal AR(2) and a seasonal AR(1), so we
can go and fit an ARIMA(2,1,0)(1,1,0)12 model. Lastly, we can also try the Hyndman-Khandakar
algorithm. This ends up choosing ARIMA(1,1,1)(2,1,1)12
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Figure 7: Top row: ACF and PACF functions of differences of seasonal differences. Bottom row: forecasts
from ARIMA(2,1,2).

e AICc (see the R notebook for details and diagnostics) tells us to choose the ARIMA(1,1,1)(2,1,1)12
model. But that seems a bit doubtful because it suggests there is a second-order autoregressive dy-
namic on the yearly scale, which makes the model much more complicated. As usual, if we cared
about prediction, then we should probably just use time series cross-validation to evaluate the differ-

ent models. More on this in the forecasting section. For now, we’ll just produce 3-year forecasts from
the ARIMA(0, 1,2)(0,1,1)12 model

e These are shown in the bottom row of Figure 7. They actually seem fairly plausible and interesting.
Note that the seasonality was nicely captured by the seasonal differencing, and the increasing trend
seems to have been nicely captured by the nonseasonal differencing
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Forecasting

ARIMA models, especially with seasonality extensions, can be powerful forecasters, as we’ve seen in
a couple of examples. Some authors treat torecasting with ARIMA in a complex and notation-heavy
way, but in fact it can be explained intuitively (which we borrow from HA)

As before, we will use the notation Z;,,|; to denote a forecast of x4, , made using data up through ¢

Some potentially helpful nomenclature: ¢ + h here is called the target time (time of the target we are
trying to forecasting), and ¢ is called the forecast time (time at which we make the forecast)

Obtaining the forecast #,,; from an ARIMA model can be done by iterating the following steps:
1. Start with the ARIMA equation

o(B)®(B*)\VIVPz, = c+ 0(B)O(B*)w,

Plug in for parameter estimates, and rearrange so that x; is on the left-hand side an all other
terms are on the right-hand side

2. Rewrite the equation by replacing ¢ with ¢ + h

3. On the right-hand side of the equation, replace future observations (z;y, k > 1) with their fore-
casts, future errors (wy4x, k > 1) with zero, and past errors (w;_g, k > 0) with their ARIMA
residuals

Beginning with h = 1, we iterate this procedure for h = 2,3, ... as needed to get the forecasts at the
ultimate horizon we desire

It helps to walk through an example. Consider forecasting with a fitted ARIMA(3,1,1) model, which
we start by writing as

(1- ‘fng - 43232 - @333)(% —x1)=¢+(1+ élB)wt
We expand this as

Ty — P1Ti—1 — P22 — P3Tp—g — (Tp—1 — P1&4—2 — PaXi—3 — P3T4—4) = ¢+ wi + 01wy

And rearrange as

Ty =cCc+(1+ le)xt—l + (¢A52 — le)l’t—2 + (Qgs - 452)9%—3 — bami_g +wi + 01wy

To make a 1-step ahead forecast, we first replace ¢ by ¢ + 1 above:
Tep1 =+ (L+ ¢z + (b2 — d1)wi—1 + (03 — d2)Ts—2 — P3mi—5 + wer1 + 1wy
and then we set wyy1 = 0, and replace w; by w;, which is the residual from our fitted ARIMA model,
yielding . . . . . . .
Typrpe =+ (14 d1)we + (92 — ¢1)e-1 + (93 — P2)Tt—2 — G373 + 010y
To make a 2-step ahead forecast, we similarly start with
Tepr =+ (L4 ¢1)zeqr + (d2 — 1)2s + (d3 — P2)zeo1 — P3we—2 + Wepa + Orwiss
and then we set wi2 = wy1 = 0, and replace x¢11 by &1}, yielding

Typop =+ (1+ él)it+1|t + (¢2 — ¢1)ae + (d3 — d2) 141 — P3w_2

This process can be iterated any number of times to obtain forecasts arbitrarily far into the future
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5.1

Behavior of long-term forecasts

e Should we keep iterating the process above to generate forecasts arbitrarily far into the future?

e The answer is almost certainly “no”, in most applications! You should be more careful. Short of

5.2

detecting and projecting seasonality, ARIMA models are limited for long-term forecasts (in general,
long-term forecasts are very hard without precise domain-specific knowledge of what the long-range
dynamics look like ... and even then, many domains to not offer much to say there ...)

It is important to have a qualitative sense of what long-term forecasts look like in ARIMA. Again,
we borrow this nice explanation from HA. Starting with (23), a nonseasonal ARIMA model, we can
break down the explanation into cases (recall ¢ is the intercept, and d is the differencing order):

1. If c=0 and d = 0, then the long-term forecasts will converge to zero
. If c=0 and d = 1, then the long-term forecasts will converge to a nonzero constant
. If c=0 and d = 2, then the long-term forecasts will follow a linear trend

2
3
4. If ¢ # 0 and d = 0, then the long-term forecasts will converge to the historical mean
5. If ¢ # 0 and d = 1, then the long-term forecasts will follow a linear trend

6

. If ¢ #£ 0 and d = 2, then the long-term forecasts will follow a quadratic trend (can be dangerous!
some software packages do not allow d > 2 when ¢ #0 ...)

You will verify this on your homework for some simple ARIMA models, where you’ll also work out
the qualitative behavior for long-term forecasts from seasonal ARIMA models

Split-sample and cross-validation

At last, we arrive to our bread-and-butter tools for evaluating ARIMA models for their predictive
accuracy: split-sample and time series cross-validation (CV)

They apply exactly as described in the regression lecture: to recap, in split-sample validation, we
pick a time g, train our model (regression, ARIMA, whatever) on data up through ¢y, and then we
evaluate forecasts &; over times t > tq:
1 n
SplitMSE = > (@ —2)?
e ST

In time series CV, we use data before ¢y as a burn-in period (usually we would choose a smaller tg
here than for split-sample) to ensure the initial model is decent, and then iteratively retrain at each
t > tg in order to make forecasts. For h-step ahead forecasts:
CVMSE = Zn: (Zeppmn — 1)
n —to Mrw te=

(Instead of MSE, we could also use MAE, or MAPE, or MASE as our metric ...)

There is not much more to say other than to reiterate that these are our most robust (assumption-
lean) tools for assessing utility in a predictive context. You’ll get continued practice with time series
CV on your homework. The fable package that we’ll use for a lot of forecasting tools has a handy
(though memory-inefficient) way of implementing this, which saves you from writing a loop by hand

There is one important warning to give however! This applies to cross-validation, generally, in any
setting. Cross-validation evaluates the prediction error of an entire procedure. Thus the entire proce-
dure must be rerun each time predictions are to be validated. So, e.g., if we are using auto-ARIMA
(as implemented by ARIMA() in the fable package) to select an ARIMA order for us, then we must
rerun auto-ARIMA at each time ¢ > to in order to evaluate forecasts in the last display. (And, note,
it will generally pick different orders at each ¢t > ¢y ... the way to think about it is that we are evalu-
ating the prediction error of auto-ARIMA procedure itself, not any particular selected order)
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5.3

5.4

In other words, we cannot run auto-ARIMA once over all time, and then take the selected ARIMA
order and apply this retrospectively. That would not yield an honest estimate of prediction error
(since we would have used the future at ¢ > ¢y to select the ARIMA order). Summary:

Wrone wav: Run auto-ARIMA at time n (all time) to select p, d, ¢, and use this retrospectively
& WA 1 in time series CV to fit ARIMA(p,d, q) at each t > to and make forecasts
Richt way: Run auto-ARIMA at each t > ¢t to select (time-dependent) p,d, ¢, and use this to
SUL WAV 1 gt ARIMA(p, d, q) and make forecasts in time series CV

(Note: we are not advertising or advocating for the use of auto-ARIMA, but are simply explaining
that this would be the right way to validate it)

Finally, as a rule-of-thumb, we recall Occam’s razor: if a number of models all have reasonably sim-
ilar split-sample or cross-validated prediction error, then we would generally prefer to use the sim-
plest among them

Prediction intervals

The predictions &y, from ARIMA described above are known as point forecasts. But if you look
back at Figures 5 and 7, you can see bands around the point forecasts (which are the dark lines)

These bands represent prediction intervals, which are typically quite important in practice, since
they reflect uncertainty in the predictions that are made (and can be useful for downstream decision-
making)

There are various ways to compute prediction intervals. One method is to obtain an estimate 63 of
the variance of the “h-step ahead forecast distribution”. This is in quotes because we have not de-
fined this precisely, and we will avoid going into details because this approach is not always tractable,
and also requires more assumptions about the ARIMA model, including (typically) normality of the
noise distribution. But in any case, having computed such an estimate, we could model the h-step
ahead forecast distribution at time ¢ as
N (&44n)t,67)

and compute prediction intervals accordingly. For example, to compute a central 90% prediction
interval, we would use

[E44njt — Onq0.95, Betnjt + Tndo.05)
where ¢g.95 is the 0.95 quantile of the standard normal distritbuion

Another method is adapt the method described previously to iteratively produce point forecasts to

instead iteratively produces samples paths from the forecast distribution. This is what is done in the
fable package’s forecast () function when bootstrap = TRUE. The gist of the idea is as follows: in
step 3, instead of replacing future errors (w;yx, k > 0) by zero, we replace them by a bootstrap draw
(i-e., a uniform sample with replacement) from the empirical distribution of past residuals. Given the
sample paths, we can then read off sample quantiles at ¢t + h for a prediction interval

Unfortunately, neither of these methods (nor any other traditional methods) for producing prediction
intervals are guaranteed to actually give coverage in practice. That is, you would hope that our 95%
prediction intervals actually cover 95% of the time, but this need not be the case

Fortunately, we will learn that there are some relatively simple correction methods that can act as
post-processors to endow any given sequence of prediction intervals with long-run coverage. We will
talk about this near the end of the course when we discuss calibration

ARIMAX models

In practice, including auxiliary features in an ARIMA model can make it much more powerful. This
is true in general: finding good predictors can make a huge difference in forecasting!
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e Auxiliary features are often referred to as exogenous in the context of time series models, and an
ARIMA model with exogenous predictors is often abbreviated ARIMAX

e Formally, an ARIMAX(p, d, ¢) model is an extension of the ARIMA model (22) of the form
d(B)Vex, = Tus + 0(B)w;
where ug, t = 0,£1,£2,4+3,... is an exogenous predictor sequence

e Forecasting with ARIMAX models is a little more complicated because, for “true” ex-ante forecasts,
we will typically not have the values of the exogenous predictor available that we need (think about
the steps we outlined for forecasting with ARIMA models, and how we substituted future observa-
tions with their forecasted values—unless we build a separate forecast model for u;, we will not know
how to impute them)

e As usual (as we described in the regression lecture), we can use lagged exogenous features as predic-
tors in order to circumvent this issue

e (Note: be careful not to confuse an ARIMAX model with a regression with correlated errors! They
are not the same thing. In both models, there are exogenous predictors and and errors with MA
dynamics, but the distinguishing factor is the AR dynamic: in an ARIMAX model, the “response”,
which is x; in our notation here, exhibits AR dynamics; in a regression with correlated errors, the
errors exhibit AR dynamics)

5.5 IMA models

e Forecasting with the ARIMA(0,1,1) model, also written as IMA(1,1), bears an interesting connection
to what is called simple exponential smooting (SES). This is also sometimes called an exponentially
weighted moving averages (EWMA) forecaster. It tends to be popular in economics (SS call it “fre-
quently used and abused”)

e To develop the connection, consider the IMA model with an MA coefficient of § = —(1 — «), where
0 < a < 1. We can write this as

Ty — 21 = wp — (1 — @)wp—q

e Because a < 1, this has an invertible representation: writing y; = x; — x;_1, recall what we developed
n (14), which yields

o0
wy = Z(l —a)y_;
7=0
or
oo
Yt = — Z(l — o)y +wy
j=1

e Substituting y; = x; — x¢_1, and rearranging, this gives

o0
Ty = T4 1 — Z(l —a) (zp_j — T4 1) + wy
j=1
(o) ) (o) )
=z + Z(l —a)y 1 — Z(l -z +w
j=1 j=1
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e The 1-step ahead prediction from this model is therefore

o0

- i—1
By = Za(l — o) T T
i=1

a(l — ) oy

WK

= axr¢ +

.
Il
N

=ar;+ Yy a(l—a)fz_;

i

j=1

a(l—a)~ta,

M8

=az;+ (1 —a)

1

J
=ar; + (1 — )@y

e In other words, the 1-step ahead prediction is a weighted combination of the current observation x;
and the previous prediction Zy;_;

e Smaller values of « (closer to 0) lead to smoother forecasts, since we are “borrowing” more from the
previous forecast, in the last display

e This is the simplest in a class of methods based on exponential smoothing, which we will cover in the
next lecture
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