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Lasso regression

Given outcome y € R", predictors X € R"*P, the lasso estimate
(Tibshirani, 1996 and others) is:

" 1
B(t) € argmin ny—XBH% subject to ||B]1 <t
Berr 2

Regularized least squares estimation, using an £; norm constraint
(note ||B]]1 = ;’:1 |8]). Here t is a tuning parameter, controlling
level of regularization

Important property of £1 norm: induces sparsity in estimate B(t)
Lower t, greater degree of sparsity



Small lasso example with p = 8 predictors (diabetes data):
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Success of lasso: plentiful, both theoretical and computational

Computational: many fast algorithms, e.g.,

e LARS (Efron et al., 2004)

e Coordinate descent (Friedman et al., 2007)
ISTA and FISTA (Beck and Teboulle, 2009)
NESTA (Candes et al., 2010)

ADMM (Boyd et al., 2010)

and at least 5 more ...

Said once a famous optimization guru:

“The world doesn't need another lasso algorithm”



Forward stagewise regression

Compare now forward stagewise regression, a very simple iterative
approach to regularized estimation:

e Start with (0 =0
e Repeat, for k =1,2,3,...
1. Find i such that

Xy = X685 )| = max [X](y— x50
2. Update
BH = gD 4. sign(XT (y — XB*D)) ¢,

Here € > 0 is a fixed (small) constant. This is like forward stepwise
regression, just less greedy



Same example, now fit with forward stagewise (and ¢ = 0.1):
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Coordinates

Lasso path Stagewise path
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) 1 1 = arg max |XJT(y—X6(k*1))|
A(t) =argmin =y — X33 J=1p
Berr 2

subject to 8|1 <t




Why are these so similar?

A short history:

e First noticed in Hastie et al. (2001)

o Efron et al. (2004) proved that the stagewise paths converge
(locally) to the lasso paths, as € — 0, assuming monotonicity

e Rosset et al. (2004) extended this result to ¢; constrained
minimization with any convex, differentiable loss function

e Zhao and Yu (2007) showed that with forward and backward
steps, stagewise paths always converge to lasso paths

These results mostly focus on mathematical details and offer little
intuition ... so intuitively, why are these so similar?



Forward stagewise, revisited

Let f(B) = 3|ly — XB||3 denote the least squares loss. Note that
Vif(B) = —XjT(y — X 3), hence stagewise updates are:

Equivalently, forward stagewise updates are:

Bk = glk=1) L A

where A € argmin (Vf(3#7V), 2) subject to ||z]|; < e
z€RP

This is just like steepest descent with respect to the ¢; norm!



Regularization beyond the ¢; norm

Lots of interesting regularization schemes, beyond ¢; norm and
pure sparsity:
o Generalized lasso regularization—e.g., fused lasso, trend
filtering, image/graph denoising
e Group structured regularization—e.g., group lasso, multitask
learning
e Spectral regularization—e.g., matrix completion, reduced rank
regression or classification
e Hierarchical regularization—e.g., hierNet, CAP, others

Generally speaking, computation with such regularizers is more
difficult than it is with the ¢; norm.



Stagewise for general convex problems

Consider generic regularization problem:

B(t) € argmin f(3) subject to g(B) <t
BeRP

Loss f is convex, differentiable; regularizer g is convex

Start with (0 = B(to), solution at some value tg. Inspired by last
stagewise formulation, consider repeating, for k =1,2,3,...,

Bk = gl=1) L A

where A € argmin (Vf(3#V),2) subject to g(z) < e
z€RP

This is just like steepest descent with respect to g!



“Luckily” the stagewise update

A € argmin (Vf(8%71), 2) subject to g(z) < e
zERP

is easy to compute for many statistical learning problems, including

most of those mentioned previously

Note that the difficulty in computing A depends entirely on
regularizer g and not on loss f (assuming V f can be evaluated)

If g is a norm (or seminorm), then

Ae—e- (argmax (Vf(B%*D), 2) subject to g(z) < 1)
z€RP

= —c-9g" (Vf(B*))

where ¢g* is the dual norm (or dual seminorm), and Jg*(x) denotes
its subdifferential at a point =



Related work

Statistics/ML focused:

e All of the work on stagewise and lasso mentioned previously:
Efron et al. (2004), Rosset et al. (2004), Zhao and Yu (2007)

e Also Hastie et al. (2007), Friedman (2008), Obozinski et al.
(2010)

Optimization focused:
e Frank-Wolfe algorithm: Frank and Wolfe (1956), Jaggi (2013)
e Cutting plane and bundle methods: Teo et al. (2007)

The biggest difference with the above optimization work: the
proposed stagewise algorithm iterates along the path, rather than
iterating for a fixed value of the regularization parameter



Outline

The rest of the talk:
e Group structured regularization
e Trace norm regularization

Generalized lasso regularization

Some theory
Strengths, shortcomings, future work



Group structured regularization

Consider the group structured regularization problem:

G

B(t) € argmin f(8) subject to ijHBIjHQ <t

BERP ]

Here 71,...Z¢ is a partition of {1,...p}, and wy,...wg > 0 are
fixed weights

Think of, e.g.,
e Gaussian group lasso: f(8) = 3lly — XB|13
e logistic group lasso:

F(8) = S0 [~ w6+ log (1 + expla? )|



Stagewise algorithm starts at ¢t = 0 and 8(0) = 0. Update rule:
k) = gk=1) L A where

G
A € argmin (Vf(8% 1), 2) subject to ijHszHg <e

z€ERP j=1

Abbreviating Vf = Vf(5% 1)), we can show that A has the form:

A = < n
Cwill(V)zll2
Az, =0 forall j#i

where

I(VH)zll2 .- 1(V£)z;ll2

Ww; j=1,..G wj

l.e., update one group at a time, corresponding to the largest block

of the gradient (scaled by the weights)



Small group lasso example

Small example with n = 20, p =8, and G = 4 groups:

Group lasso path Stagewise path
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Red and black paths correspond to truly active groups, predictor
variables are uncorrelated in population



Same setup, but now predictor variables are highly correlated:

Group lasso path Stagewise path
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Stagewise paths appear more stable that exact paths ... so how do
they compare statistically?



Big group lasso example

Big example with n = 200, p = 4000,

Uncorrelated predictors

and G = 100 groups:

Correlated predictors
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Algorithm timings (in seconds)

Method

Uncorrelated case

Correlated case

Exact: coordinate descent, 100 solutions
Stagewise: € = 1, 250 estimates
Stagewise: € = 10, 25 estimates

9.08 (1.06)
0.93 (0.00)
0.09 (0.00)

78.64 (17.92)
0.94 (0.01)
0.10 (0.01)




Coefficient paths for with correlated predictors:

Group lasso path

Stagewise path
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Again, broadly speaking, stability is the key difference here



Trace norm regularization

Consider the trace norm regularization problem:

B(t) € argmin f(B) subject to ||Bl. <t

BERan
Here B is an m x n matrix and || B||, is the trace norm (or nuclear
norm) of B, i.e., the sum of its singular values

Think of, e.g., matrix completion: observe entries of Y € R™*"
only for (7,7) € €2, and



Stagewise algorithm starts at t = 0 and B(Y) = 0. Update rule:
B®¥) = B(k=1) L A where

A € argmin (Vf(B*Y), Z) subject to || Z]], < e
ZeRan

Again we can show that A has the explicit form:

A=—c-uv?

where u and v are the leading left and right singular vectors of
Vf(BFD)

l.e., each update requires only one singular vector computation

Compare proximal gradient descent, which for a single value of the
regularization parameter, iterates over (partial) SVD computations



Small matrix completion example

Small example with Y € R%*?, and 50% observed:

Matrix completion path Stagewise path
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Stagewise paths appear a little different here ... how do they
compare statistically?



Big matrix completion example

MovieLens data with Y € R943%1682 3hout 6% observed:

MovielLens data
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[ Algorithm timings (in seconds)

Method MovielLens data

Exact: proximal gradient, 100 solutions 334.67
Stagewise: € = 50, 500 estimates 107.66
Stagewise: ¢ = 250, 100 estimates 21.22




Generalized lasso regularization

Consider the generalized lasso regularization problem:

A~

B(t) € argmin f(B) subject to ||Df|1 <t
BERP

Here D € R™*P is a penalty matrix

Think of, e.g., fused lasso: f(8) = 3|ly — 8|3 and each row of D
is of the form
0,0,...—1,...1,...0)

corresponding to an edge in some underlying graph. l.e.,

DB = > 18— Bl

(i,9)EE



Trouble: the stagewise update rule

A € argmin (Vf(8%V), 2) subject to ||Dz|, < e
zERP

is not easy to compute

Fix: go to the dual! The dual problem is

a(t) € argmin f*(—=DTu) +t - ||ul o
ucR™

where f* is the convex conjugate of f

Strategy: compute (an approximate) dual regularization path using
stagewise algorithm, then convert to primal regularization path

Note: regularization direction is reversed between primal and dual



Dual stagewise update:

A € argmin (—DVf*(—DTU(k_l)),Z> subject to [|z[lc <€
zeR™

It is not hard to show that A takes the form:

1 [DVf(=DTu*1D)] <0
A;=—e-{ -1 [va*(_DTu(kfl))L>0 fori=1,...m
0 [DVf*(-DTut=)] =0

Note: if f(8) = 3lly — B3, then f*(v) = 5|y + |3, and
~DVf*(—D"u) = —D(y — D)

Hence calculation of A above requires one multiplication by DT
and one multiplication by D



Big image denoising example
Synthetic 300 x 200 image (graph with 60k nodes, 120k edges):

Stagewise, Stagewise,
Noisy image Exact, t = 2055.9 e = 0.0005, e = 0.005,

2323 stels 211 stels

Algorithm timings

Method Runtime

Exact: maximum flow, 100 solutions 109.04 (6.21)
Stagewise: € = 0.0025, 6000 estimates 15.11 (0.18)
Stagewise: € = 0.25, 500 estimates 1.26 (0.02)




Bigger image denoising example
Real 640 x 480 image (graph with 307k nodes, 612k edges):

True image of Mount Cook, NZ



Bigger image denoising example
Real 640 x 480 image (graph with 307k nodes, 612k edges):

Corrupted image



Bigger image denoising example
Real 640 x 480 image (graph with 307k nodes, 612k edges):

Stagewise estimate, with e = 0.001, 650 steps
(computed in 21.34 seconds)



Some theory

Back to general problem: mingegrr f(3) subject to g(8) <t.

Theorem (Stagewise suboptimality bound)

Assume that g is a seminorm, and V f is Lipschitz with respect to
the pair g*, g with constant L. Fix a parameter value t of interest,
and run stagewise from (0 = 3 (to), where tg < t. After k steps,
with step size €, such that ty, =ty + ke = t, the stagewise estimate
B) satisfies

FBRY = F(B(t)) < L(t* —18) + L(t — to)e.

Therefore, if we consider the limiting stagewise estimate at the
parameter value t, by 3(t), as e — 0, then

FB) = F(B()) < L(# — ).



At a high level, what keeps stagewise from optimality? It struggles
to undo incremental decisions made in previous steps ... e.g., think
of the lasso regularization case

Modification: shrunken stagewise, which repeats for k =1,2,3,.. .,

BE) = o . g=1) 4+ A

where A € argmin (Vf(3%#V), 2) subject to g(z) < e
z€RP

where a < 1 is a shrinkage factor

Theorem (Shrunken stagewise suboptimality bound)

Under same conditions as the previous result, suppose that e — 0
and o — 1 so that I_Ta — 0. Then the limiting stagewise estimate
Z(t) satisfies

FE(t) = f(&(8) < Lt — to)*.



Theorem (Shrunken stagewise exact convergence)

Under the same conditions as before, and additionally: 1;—26“ — 00.
Let k = k(e, ) denote the number of steps taken by the shrunken
stagewise algorithm to reach the parameter value t;, =t. Define
the effective Lagrange parameters \; = g*(Vf(z¥)), i =1,...k,
and assume that these parameters exhibit a weak type of decay:

Ni/ti >CL, i=1,...r—1,
2 _
(C+np* -2,

Ar/tr < :
/ 2

for some r < k, with r/k — 6 € (0,1), and a constant C'. Then
the limiting shrunken stagewise estimate (t) satisfies

f(E@) = f(2@)),

i.e., Z(t) is an exact solution at the parameter value t.



Small lasso example with n = 20, p = 10:

Coordinates

Lasso

Stagewise

Shrunken stagewise
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Observed decay:
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Important note: shrunken stagewise is not practically efficient; it is
useful conceptual and theoretical bridge between the stagewise and

exact solution paths



Strengths, shortcomings, future work

Strengths: simple, efficient algorithm for many problems

Shortcomings:
e Cannot easily handle constraints
e Cannot easily handle a mix of penalties
e For generalized lasso, cannot start at regularized end

e For generalized lasso, cannot handle arbitrary loss functions

Future work:
e Computational improvements: smarter iterations? Efficient
data structures?
e Theoretical development: when do stagewise estimates exhibit
favorable statistical properties?
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Bonus time



Frank-Wolfe comparison

Let t(-=1) = g(8~1), and at next parameter value t = t*=1) 4 ¢
consider computing estimate ﬁ(k’) = ﬁ(’f—l) s

Local linear approximation of f around A1) (first-order Taylor
approximation):

FBEY 4+ 2) & f(BRD) +(VF(BEY), 2)

Frank-Wolfe Stagewise
arg min (Vf(5*Y), 2) arg min (Vf(5*7Y), 2)
zERP zERP
subject to g(ﬂ(kfl) + 2) subject to g(z) <e

<tk 4 ¢



1-step Frank-Wolfe

Stagewise
(k)

{z:g(x) < tpr}
{z:g(z) <t}




Group regularization under arbitrary norms

Consider general group structured regularization problem:

A~

B(t) € argmin f(5) subject to ij (Bz;) <

BERP =

Here each h; is a (semi)norm. Let h} denote its dual (semi)norm;
e.g., if hj(z) = |z[lq; thenis hj(z) = ||z, for 1/g; +1/rj =1

Stagewise updates are 8¥) = g(-=1) 1 A and A has form:

Azie—i-ah;‘((Vf)L) and Az, =0 forall j#i

where




Self-tuning regularization?

Back to image denoising example with 2d fused lasso; recall we ran
2000 stagewise steps with € = 0.0005. Question: what happens if
we take 20 steps with ¢ = 0.057

Noisy image 2000 steps, € = 0.0005 20 steps, € = 0.05



This estimate is really not that bad, considering how cheap it was!
Here is where things get interesting:

20 steps, € = 0.05 200 steps, € = 0.05



This estimate is really not that bad, considering how cheap it was!
Here is where things get interesting:

20 steps, € = 0.05 2000 steps, € = 0.05

Why does the amount of regularization seem to halt, even though
we're taking more steps?



Mean squared error to the true underlying image, across steps of
the stagewise algorithm:
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Something like an implicit termination rule for regularization!



