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Abstract

Classical statistical decision theory treats the relationship between the prediction error, generaliza-
tion gap (which the statistics literature calls optimism), and complexity of a model from a perspective
that treats the covariates X as fixed, nonrandom values. This fixed-X perspective delivers a number
of insights, many of which are well-known to statisticians, but perhaps less well-known to researchers
in machine learning. This talk reviews these results from the classical statistics literature, and then
emphasizes the ways in which this fixed-X theory is insufficient to explain the prediction error, gen-
eralization gap, and complexity of a model in a random-X setting—which is the predominant view in
machine learning—especially as a predictive model becomes flexible enough to interpolate the training
data. Finally, we show how to reinterpret some of the fixed-X classical statistics concepts in order to
extend them to a random-X setting.

1 Models and metrics: fixed-X and random-X
• Random-X model: i.i.d. pairs (xi, yi) ∈ Rp × R, i = 1, . . . , n of features/covariates and responses.

• Fixed-X model: relates features and responses through signal plus noise with i.i.d. errors,

yi = f(xi) + εi, i = 1, . . . , n,

εi, i = 1, . . . , n i.i.d., with each εi ∼ (0, σ2),

and where xi ∈ Rp, i = 1, . . . , n are fixed.

• When can we derive the second from the first, conditional on X (feature matrix with rows xi)? Take
f(x) = E[yi|xi] = x and we get mean zero errors εi = yi − f(xi). But for these to be i.i.d. conditional
on X, we require that each xi ⊥⊥ εi. This is a strong assumption! (Implies no omitted variables.)

• The random-X and fixed-X models call to mind distinct notions of risk/prediction error. Given f̂ , fit
on the training data (xi, yi), i = 1, . . . , n, a natural notion of risk in the random-X model is

Riskr(f̂) = E
[
(f(x0)− f̂(x0))2

]
,

where x0 is an independent draw from the feature distribution. Expectation is over everything that
is random (i.e., x0 and (xi, yi), i = 1, . . . , n).

• In the fixed-X model, a natural notion of risk is

Riskf(f̂ ;X) = E
[

1

n

n∑
i=1

(f(xi)− f̂(xi))
2
∣∣∣X].

• Note that these only differ from analogous random-X and fixed-X prediction error metrics by a con-
stant σ2 (not depending on f̂):

Errr(f̂) = E
[
(y0 − f̂(x0))2

]
= Riskr(f̂) + σ2,
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where (x0, y0) is an independent draw from the joint distribution on the features and response, and
similarly

Errf(f̂ ;X) = Ef

[
1

n

n∑
i=1

(y∗i − f̂(xi))
2
∣∣∣X] = Riskf(f̂ ;X) + σ2,

where each (xi, y
∗
i ) is an independent copy of (xi, yi) (i.e., y∗i is drawn independently from the law of

yi |xi).

• Thus there is a sort of equivalence in reasoning about risk and prediction error and we’ll fluidly move
back and forth and use either one as convenient. Finally, a lot of what is said here extends beyond
squared loss to more general loss functions (e.g., Bregman divergences) though we’ll omit details for
simplicity.

• Classically, statisticians seem to love studying fixed-X risk/error. A big part of this is probably that
it gives a clean framework in which we can develop various powerful tools for analysis (which we will
review shortly).

• To be more charitable, there may have also been more genuine historical motivations for fixed-X
risk/error from experimental design. If the values xi, i = 1, . . . , n were chosen (i.e., designed), and
we ran an experiment in which we measured yi, i = 1, . . . , n, and we plan to measure y∗i , i = 1, . . . , n,
again in the future at the same design values, then studying Errf(f̂ ;X) would actually be natural.

• The fixed-X view is also more in line with metrics of interest in signal processing: imagine xi simply
encodes an index (say, of a sequence or a matrix).

• In machine learning (and many modern applications of statistical prediction), of course, random-X
notions of risk/error are the standard, and seem much more natural overall.

• So this begs the question: how different can random-X and fixed-X metrics be? We will discuss this
later. First, we will adopt the fixed-X perspective and review some classical results from statistical
decision theory.

2 Fixed-X optimism, covariance, and degrees of freedom

2.1 Optimism and Efron’s covariance formula
• The optimism of a predictor f̂ is defined by

Optf(f̂ ;X) = Errf(f̂ ;X)− E
[

1

n

n∑
i=1

(yi − f̂(xi))
2
∣∣∣X].

In other words, it is the difference between the fixed-X prediction error and the training error of f̂ .
The term “optimism” appears to be due to Brad Efron (precise references below).

• A key relationship, in the fixed-X data model, is given by Efron’s covariance formula:

Optf(f̂ ;X) =
2

n

n∑
i=1

Cov[yi, f̂(xi) |X].

This is named in recognition of Efron’s work on the topic (Efron, 1983, 1986, 2004), but some ver-
sion of this fact had been known earlier (Akaike, 1973; Mallows, 1973; Stein, 1981).

• The covariance formula holds without any assumptions on f̂ , or any distributional assumptions
on the individual errors εi, except E[εi] = 0 and Var[εi] = σ2. A quick way to verify it: consider
Bregman divergence loss Dφ(yi, f̂(xi)), where

Dφ(u, v) = φ(u)− φ(v)− φ′(v)(u− v).
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Squared error is the special case in which φ(u) = u2. For such losses,

Dφ(y∗i , f̂(xi))−Dφ(yi, f̂(xi)) = φ(y∗i )− φ(yi)− φ′(f̂(xi))(y
∗
i − yi),

so the optimism is

Optf(f̂ ;X) =
1

n

n∑
i=1

E
[
Dφ(y∗i , f̂(xi))−Dφ(yi, f̂(xi))

∣∣∣X]
=

1

n

n∑
i=1

E
[
φ(y∗i )− φ(yi)− φ′(f̂(xi))(y

∗
i − yi)

∣∣∣X]
=

1

n

n∑
i=1

E
[
φ′(f̂(xi))(yi − f(xi) + f(xi)− y∗i )

∣∣∣X]
=

1

n

n∑
i=1

Cov[yi, φ
′(f̂(xi)) |X].

For squared error loss φ′(u) = 2u, and this recovers the claimed covariance formula. We can also see
that something more general holds for Bregman divergences.

2.2 Degrees of freedom
• The (effective) degrees of freedom of f̂ is defined by

df(f̂) =
1

σ2

n∑
i=1

Cov[yi, f̂(xi) |X]. (1)

Some authors motivate degrees of freedom intuitively by commenting that the more complex the fit-
ting procedure f̂ , the more “self-influence” each response yi will have on the corresponding predicted
value f̂(xi) (and hence the higher the degrees of freedom in total).

• The literature on degrees of freedom is of course therefore closely tied to that on optimism and co-
variance penalties. It is unclear where the term “degrees of freedom” originated, but early work that
uses this term includes Hastie and Tibshirani (1987, 1990); Ye (1998); Efron (2004).

• The utility of degrees of freedom is twofold:

1. It serves as a unitless, fundamental measure of the complexity of a predictive model. This en-
ables us to reason about the behavior of models, and to compare them, more rigorously.

2. It provides an avenue for estimating of fixed-X prediction error: note that by Efron’s covariance
formula combined with the definition of degrees of freedom,

Errf(f̂ ;X) = E
[

1

n

n∑
i=1

(yi − f̂(xi))
2
∣∣∣X]+

2σ2

n
df(f̂).

Thus if d̂f(f̂) is an unbiased estimate of df(f̂), then

Êrrf(f̂ ;X) =
1

n

n∑
i=1

(yi − f̂(xi))
2 +

2σ2

n
d̂f(f̂) (2)

is an unbiased estimate of fixed-X prediction error.

• There is a sizeable literature on deriving exact formulae or unbiased estimates of degrees of freedom
for a variety of core predictors of interest. This is enabled by a seminal result due to Stein, which we
will cover in the next subsection; first, we give some basic examples where degrees of freedom can be
computed directly.
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2.2.1 Least squares regression

• As usual let X ∈ Rn×p denote the feature matrix (whose ith row is xi) and let Y ∈ Rn denote the
response vector (whose ith element is yi). Assume that X has linearly independent columns, which
necessarily requires that d ≤ n. The least squares predictor of Y on X is given by

f̂ ls(x) = xTβ̂ls, where β̂ls = (XTX)−1XTY .

• Abbreviating PX = X(XTX)−1XT, we can compute

df(f̂ ls) =
1

σ2
tr(Cov[Xβ̂ls, Y |X])

=
1

σ2
tr(Cov[PXY, Y |X])

= tr(PX)

= p,

where the last line uses tr(PX) = tr(X>X(X>X)−1) = p.

• In other words, the degrees of freedom of the least squares predictor is simply the number of esti-
mated parameters, which is highly intuitive.

• In this case, the unbiased estimator from (2) is simply

Êrrf(f̂ ;X) =
1

n

n∑
i=1

(yi − f̂(xi))
2 +

2σ2

n
p,

which is known as Mallows’ Cp estimator (Mallows, 1973) of the fixed-X error of least squares.

2.2.2 k-nearest-neighbors regression

• Now let Nk(x) denote the indices of the k nearest points among xi, i = 1, . . . , n to a given x ∈ Rp (as
measured in `2 distance). The k-nearest-neighbors predictor is

f̂knn(x) =
1

k

∑
i∈Nk(x)

yi.

• Let w(x) ∈ Rn with w(x)j = 1/k if j ∈ Nk(x) and 0 otherwise. Then can abbreviate

f̂knn(x) = w(x)TY.

• Letting LX ∈ Rn×n denote the matrix with ith row w(xi), we can compute

df(f̂knn) =
1

σ2
tr(Cov[LXY, Y |X])

= tr(LX)

=
n

k
.

• In other words, the degrees of freedom of k-nearest-neighbors regression is n/k. This makes intuitive
sense: it equals 1 when k = n (and the predictor reduces to an average), and it equals n when k = 1
(and the predictor reduces to nearest-neighbor interpolation).

• The second-to-last line in the previous display also shows that the degrees of freedom of an arbi-
trary linear smoother is the trace tr(LX) of the smoother matrix. This gives use explicit degrees of
freedom formulae for predictors like ridge, kernel ridge, smoothing splines, thin-plate splines, etc.
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2.3 Interlude: Stein’s formula
• This subsection can be skipped without interrupting the flow of main ideas. We use it as an opportu-

nity to cover a beautiful idea which perhaps not everybody in machine learning knows about.

• Stein’s formula (Stein, 1981) says if f̂ is weakly differentiable as a function of Y , and we additionally
assume Gaussian errors εi ∼ N(0, σ)2 in the fixed-X data model, then

df(f̂) = E
[ n∑
i=1

∂f̂(xi)

∂yi

∣∣∣X]. (3)

Like the covariance definition, Stein’s formula for degrees of freedom is quite intuitive: the more com-
plex the predictor f̂ , the greater the dependence of f̂(xi) on yi, and hence the steeper the derivative.

• Based on (3), we are able to form an unbiased estimate of df(f̂), namely,

d̂f(f̂) =

n∑
i=1

∂f̂(xi)

∂yi
.

Plugging this into (2) gives

Êrrf(f̂ ;X) =
1

n

n∑
i=1

(yi − f̂(xi))
2 +

2σ2

n

n∑
i=1

∂f̂(xi)

∂yi
,

which is known as Stein’s unbiased risk estimator (SURE).

• Computing the Stein divergence d̂f(f̂) =
∑n
i=1 ∂f̂(xi)/∂yi is no trivial feat, but there is literature

showing it can be done in closed-form for predictors like wavelet denoising, shape-constrained regres-
sion, quantile regression, lasso and various generalizations, and low-rank matrix factorization; see,
e.g., Donoho and Johnstone (1995); Meyer and Woodroofe (2000); Zou et al. (2007); Zou and Yuan
(2008); Tibshirani and Taylor (2012); Candès et al. (2013); Tibshirani (2015); Mikkelsen and Hansen
(2018); Chen et al. (2020). (The Stein divergence could probably also be done or approximated by
auto-differentiation techniques.)

• At the core of (3) is Stein’s lemma: if h : R→ R is weakly differentiable, and Z ∼ N(0, 1), then

E[Zh(Z)] = E[h′(Z)].

The proof is simple. Letting φ(z) = exp(−z2/2)/
√

2π denote the standard normal density, observe

E[h′(Z)] =

∫
h′(z)φ(z) dz

= h(z)φ(z)
∣∣∣∞
−∞
−
∫
h(z)φ′(z) dz

=

∫
zh(z)φ(z) dz

= E[Zh(Z)].

2.4 Bootstrap, Bregman, exponential families, etc.
• Some very quick remarks before moving on to random-X. First, when Stein’s formula does not apply
(or cannot be computed), parametric bootstrap methods can be used estimate degrees of freedom in
(1). The classical references are Breiman (1992); Ye (1998); Efron (2004). A recent improvement is
given in Oliveira et al. (2021).

• Second, a lot of what has been said here carries over to Bregman divergence loss functions and data
from exponential family models. A core reference is Efron (1986). There are also analogs of Stein’s
lemma for continuous and discrete exponential family distributions; e.g., the result for the Poisson
case is called Hudson’s lemma, due to Hudson (1978).
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3 Fixed-X versus random-X views: how different are they?
• Given all the development just covered in fixed-X decision theory, one might wonder how much of

this is appropriate for a random-X perspective on prediction.

• After all, tools like cross-validation (or more simply train/validation splitting) are the de facto stan-
dard for estimating random-X prediction error. Why aren’t we all instead using covariance penalties,
degrees of freedom, SURE, etc.?

• The applicability of these fixed-X tools hinges on whether random-X prediction error behaves simi-
larly to fixed-X prediction error. How different are they?

• The short answer is:

– Usually not very different in classical regimes: low dimensions p, and smooth functions f, f̂ .

– But can be very different in modern regimes: high dimensions p, or nonsmooth functions f, f̂ .

• We won’t really go into further detail on that paper, and instead we’ll discuss some examples/evidence
that support the “short answer” given above, across the next two subsections.

3.1 Insights from least squares regression
• Let’s return to least squares predictor f̂ ls of Y on X, where we assume X ∈ Rn×p has linearly inde-
pendent columns. To investigate its risk properties as simply as possible, let’s assume an underlying
linear model

yi = xTi β + εi, i = 1, . . . , n,

for some unknown coefficients β ∈ Rp.

• To compute its fixed-X risk, first note that

E[β̂ls |X] = (XTX)−1XTE[Y |X] = β.

That is, the least squares coefficient estimate β̂ls is itself unbiased. Thus the fixed-X squared bias, in
a decomposition of fixed-X risk, is

Bf(f̂ ;X) =
1

n

∥∥E[Xβ̂ls |X]−Xβ
∥∥2
2

= 0.

Meanwhile, the fixed-X variance, in a decomposition of fixed-X risk, is

Vf(f̂ ;X) =
1

n
tr(Cov[Xβ̂ls |X])

=
1

n
tr(Cov[PXY |X])

=
σ2

n
tr(PX)

=
σ2p

n
.

Therefore the fixed-X risk is

Riskf(f̂ ;X) = Bf(f̂ ;X) + Vf(f̂ ;X) =
σ2p

n
.

• Meanwhile, for random-X risk, conditioning on both X,x0 we can define perform a similar bias-
variance decomposition with squared bias

Br(f̂ ;X,x0) =
(
E[xT0 β̂

ls |X,x0]− xT0β
)2

= 0.
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The variance in this decomposition is

Vr(f̂ , X;x0) = Var[xT0 β̂ |X,x0]

= xT0 (XTX)−1XT Cov[Y |X]X(XTX)−1x0

= σ2xT0 (XTX)−1x0

= σ2 tr
(
x0x

T
0 (XTX)−1

)
.

The the random-X risk, after integrating over X,x0, is

Riskr(f̂) = E[Br(f̂ ;X,x0)] + E[Vr(f̂ ;X,x0)] = σ2 tr
(
E[x0x

T
0 ]E[(XTX)−1]

)
,

where we have used the independence of X and x0.

• There are various ways to attack the last formula to get more insights; one particularly simple ap-
proach is to assume that each xi ∼ N(0,Σ) (random matrix theory will then show that a broad class
of feature models lead to the same answer under proportional asymptotics). Under this assumption
E[x0x

T
0 ] = Σ, by definition, and (XTX)−1 has an inverse Wishart distribution, whose expectation is

known to be Σ/(n− p− 1), thus

Riskr(f̂) = σ2 tr

(
Σ

Σ−1

n− p− 1

)
=

σ2p

n− p− 1
.

• To recap, we have shown that least squares regression on p linearly independent (and jointly Gaus-
sian) features has fixed-X and random-X risk:

Riskf(f̂ ;X) =
σ2p

n
and Riskr(f̂) =

σ2p

n− p− 1
.

These are similar when p is small relative to n, but very different when p approaches n. The random-
X error explodes at p = n − 1. This and related behavior have of course been studied intensely in
the recent literature on double descent and benign interpolation (as has the behavior of the ridgeless
least squares predictor when p > n). Nice reviews: Bartlett et al. (2021); Belkin (2021).

3.2 Insights from empirical process theory
• From a different perspective, note that we can also view Riskf(f̂) and Riskf(f̂ ;X) in terms of L2(P )

and L2(Pn) distances: defining∥∥f − f̂∥∥2
L2(P )

=

∫
(f(x)− f̂(x))2 dP (x),∥∥f − f̂∥∥2

L2(Pn)
=

∫
(f(x)− f̂(x))2 dPn(x),

where P is the covariate distribution and Pn the empirical distribution of xi, i = 1, . . . , n, we have

Riskr(f̂) = E
[∥∥f − f̂∥∥2

L2(P )

]
, and Riskf(f̂ ;X) = E

[∥∥f − f̂∥∥2
L2(Pn)

|X
]
.

• Empirical process theory gives bounds on the differences between L2(Pn) and L2(P ) norms. Given a
function class G, recall its localized Rademacher complexity is defined by

Rn(δ) = E

[
sup

g∈G, ‖g‖L2(P )≤δ

1

n

∣∣∣∣ n∑
i=1

σig(xi)

∣∣∣∣
]
,

where σi, i = 1, . . . , n are i.i.d. Rademacher variables (taking values ±1 with equal probability) and
xi, i = 1, . . . , n are i.i.d. from P . The following is adapted from Theorem 14.1 of Wainwright (2019).

7



Theorem 1. Let G be a star-shaped and b-uniformly bounded class of functions for some b > 0, and
denote by δn the smallest positive solution to

Rn(δ) ≤ δ2/b. (4)

Then there exists universal constants c0, c1, c2 > 0 such that∣∣∣‖g‖L2(Pn) − ‖g‖L2(P )

∣∣∣ ≤ c0δn, for all g ∈ G, (5)

with probability at least 1− c1 exp(−c2nδ2n/b2).

• A consequence can be read off as follows. Take g = f − f̂ and suppose that f − f̂ ∈ G. For example,
if each of f, f̂ are Lipschitz continuous with parameter L, then f − f̂ is Lipschitz with parameter 2L.
So we can take G to be the class of Lipschitz functions with parameter 2L, and then (5) implies∣∣∣∥∥f − f̂∥∥

L2(Pn)
−
∥∥f − f̂∥∥

L2(P )

∣∣∣ ≤ c0δn, (6)

with high probability. If the criticial radius of δn of G, the smallest positive solution to (4), is small,
then (6) gives us a meaningful bound. The analogous statement also holds after taking expectations
over the training set, i.e., for fixed-X and random-X risk, and this is one sense in which we can prove
that these metrics are close (when δn is small).

• We can now flip this result and talk about the contrapositive. What about when we know that the
fixed-X and random-X risks differ substantially? An example is a generalizing interpolator: here, we
would have Riskr(f̂)→ 0 as n→∞, but

Riskf(f̂ ;X) = E
[

1

n

n∑
i=1

(f(xi)− yi)2
∣∣∣X] = σ2.

This represents a huge difference between the two metrics: one vanishing, and the other pinned at
the noise level. But this cannot happen under (6) if δn vanishes. Therefore we arrive at the following
“theorem of alternatives” for interpolators.

Theorem 2. Let G be a star-shaped and b-uniformly bounded class of functions, and assume that
g, h ∈ G implies g − h ∈ αG for some universal constant α > 0 (this happens, e.g., if G is a ball defined
with respect to some norm or seminorm). Assume that f ∈ G, and let f̂ interpolate the training data.
If the critical radius of G satisfies δn → 0 as n→∞, then the following two statements are mutually
exclusive:

1. f̂ generalizes: Riskr(f̂)→ 0 as n→∞;

2. f̂ ∈ βG for any constant β > 0.

To make things more concrete we can again just take G to be the class of functions that are Lips-
chitz continuous with parameter L. This is known to have critical radius δn � n−

1
3 for d = 1 and

δn � n−
1
2d for d ≥ 2. Then for an interpolator f̂ , either:

1. f̂ generalizes: Riskr(f̂)→ 0 as n→∞; or

2. f̂ is Lipschitz continuous with any finite Lipschitz parameter.

4 Bias and variance, revisited
• The comparison between fixed-X and random-X errors is the central focus in Rosset and Tibshirani
(2020). This paper compares the bias and variance components of these two error metrics separately,
and proves that the random-X components are often (though not always) larger than their fixed-X
counterparts for common various predictors, via finite-sample analysis. Unfortunately we won’t have
time to go into this.
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5 Degrees of freedom, revisited

5.1 Limitations of classical degrees of freedom
• A critical limitation of classical degrees of freedom, as defined earlier, is straightforward to state. For

any interpolator, satisfying f̂(xi) = yi, i = 1, . . . , n, we have the trivial answer:

df(f̂) =
1

σ2

n∑
i=1

Cov[yi, yi |X] = n.

• If characterizing fixed-X optimism is truly the end-goal of degrees of freedom, then we should not be
bothered by this (seemingly) obvious fact, as any interpolator has zero training error and the same
fixed-X prediction error.

• On the other hand, if we are to think of degrees of freedom as a general measure of model complex-
ity, then the above display leaves a lot to be desired. As we know, some interpolators—in particu-
lar, implicitly regularized ones—are actually quite well-behaved and can generalize well to unseen
data. Classical degrees of freedom lacks the ability to distinguish between well-behaved interpolators,
which are smooth in between the covariate points, and wild ones, which are arbitrarily nonsmooth.

5.2 Reinterpreting classical degrees of freedom
What follows reflects ongoing work with Pratik Patil and Jin-Hong Du. A preprint will be on arXiv soon.

• Recall that if the feature matrix X ∈ Rn×p has linearly independent columns, then least squares re-
gression predictor f̂ ls of Y on X has degrees of freedom p, and hence by Efron’s covariance formula,

Optf(f̂ ls) =
2σ2

n
p.

• Given an arbitrary predictor f̂ , we know that it still satisfies, again by Efron’s covariance formula,

Optf(f̂) =
2σ2

n
df(f̂).

• Comparing the last two displays, we see that we may hence interpret the degrees of freedom of f̂ as
the value of d ∈ [0,∞] for which least squares predictor on d linearly independent features has the
same fixed-X optimism as Optf(f̂). This is simply a reformulation of the original definition (1), and
the next proposition records this idea precisely.

Proposition 1. For each fixed d ≤ n, let X̃d ∈ Rn×d be an arbitrary feature matrix having linearly
independent columns, and consider f̂ ls(·; X̃d, Y ), the predictor from least squares regression of Y on
X̃d, which we call our “reference” model, and abbreviate as f̂ rf

d . This satisfies

Optf(f̂ rf
d ) =

2σ2

n
d, d = 1, . . . , n.

Extend these reference values so that we may write for all nonnegative d,

Optf(f̂ rf
d ) =

2σ2

n
d, d ∈ [0,∞].

Given an arbitrary predictor f̂ = f̂(·;X,Y ), define d to be the unique nonnegative number for which

Optf(f̂) = Optf(f̂ rf
d ).

Then df(f̂) = d.
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5.3 Defining random-X degrees of freedom
• The idea behind the last proposition (reinterpretation) is both fairly natural and fairly general. To
cast the core idea at a high-level, in order to define the complexity of a given prediction model f̂ , we
require two things:

1. a metric met, which we assume (without loss of generality) is negatively-oriented: the lower the
value of met(f̂), the less complex we deem f̂ ;

2. a reference class {f̂ rf
d : d ∈ D}, which is a class of models indexed by a number of parameters d,

assumed to be “canonical” in some sense to the prediction task at hand.

• We then assign to f̂ a complexity of d where d is smallest value in D for which met(f̂) ≤ met(f̂ rf
d ).

In other words, it is defined to be the number of parameters in the smallest reference model whose
metric value is at least that of f̂ .

• Classical degrees of freedom is a special case of this general recipe, in which the metric is implicitly
taken to be fixed-X optimism—but suitably extended so that this metric ranges over the full set of
nonnegative reals, and we can always achieve an equality: met(f̂) = met(f̂ rf

d ) for some d ≥ 0. The
reference class is taken to be least squares regression on an arbitrary full rank feature matrix.

• Towards a random-X extension, a natural inclination would be to maintain least squares regression
as the reference class, and simply replace fixed-X optimism with random-X optimism, defined as

Optr(f̂) = Errr(f̂)− E
[

1

n

n∑
i=1

(yi − f̂(xi))
2

]
.

This is sometimes called the generalization gap in the machine learning literature.

• Before we pursue this, it is important to note that the classical fixed-X definition, which uses least
squares and fixed-X optimism in the equivalent reformulation given in the last subsection, is special
for two reasons. The metric assigned to the reference model here, i.e., the fixed-X optimism of least
squares, depends neither on X nor on the law of Y |X, beyond assuming isotropic errors (as we have
done throughout, i.e., Cov[Y |X] = σ2I, with I being the n× n identity matrix).

• In comparison, the random-X optimism of least squares regression of Y on X depends on both the
distribution of X and of Y |X. This means that we will have to be more precise in defining the dis-
tribution of the data on which we measure the random-X optimism of least squares, so that this
quantity becomes well-defined. The next definition provides details.

Definition 1. Assume that n ≥ 2. For each fixed d ≤ n − 1, let X̃d ∈ Rn×d have i.i.d. rows from
N(0,Σ), with Σ ∈ Rd×d an arbitrary deterministic positive definite covariance matrix. Let

Ỹ |X̃d ∼ N(X̃dβ, σ
2I),

with β ∈ Rd an arbitrary deterministic coefficient vector. Consider f̂ ls(·; X̃d, Ỹ ), the predictor from
least squares regression of Ỹ on X̃d, as our reference model, which we abbreviate as f̂ rf

d . We have

Optr(f̂ rf
d ) = σ2

(
d

n
+

d

n− d− 1

)
, d = 1, . . . , n− 1.

Extend these reference values so that we may write

Optr(f̂ rf
d ) = σ2

(
d

n
+

d

n− d− 1

)
, d ∈ [0, n− 1].

Given an arbitrary predictor f̂ = f̂(·;X,Y ), we define dfr(f̂) = d as the unique d ∈ [0, n− 1] for which

Optr(f̂) = Optr(f̂ rf
d ).
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• Several remarks are in order. First, recall that fixed-X degrees of freedom ranges from 0 to ∞. (In
fact, negative values are also allowed, but we implicitly rule this out in our reinterpretation.) That
is, we cannot rule out arbitrarily large values of fixed-X degrees of freedom, a property that has been
criticized by some authors. In contrast, random-X degrees of freedom ranges from 0 to n − 1. The
reason for this is that the random-X optimism of least squares diverges at d = n − 1, whereas the
fixed-X optimism does not (and only diverges as d→∞). In other words, the random-X optimism of
least squares sweeps the entire range of possible optimism values as we vary the number of features
from 0 to n− 1, and this places a finite upper limit on random-X degrees of freedom of n− 1, achieved
when the given predictor has infinite random-X optimism.

• The two metrics used in defining fixed-X and random-X degrees of freedom, namely, fixed-X and
random-X optimism, scale differently with the number of parameters d in the underlying reference
model, least squares regression. Fixed-X optimism scaled linearly with d, whereas random-X opti-
mism scales nonlinearly. For large d (close to n), the latter demonstrates “diminishing returns”: large
increases in random-X optimism only contribute small increases in random-X degrees of freedom.

• The choice of Gaussian features X̃d in facilitates the calculation of the random-X optimism of least
squares regression (as we have already seen, we can leverage well-known properties of the inverse
Wishart distribution). Interestingly, the result does not depend on the feature covariance Σ. By
standard arguments in random matrix theory, the same formula is actually asymptotically exact (as
d/n→ ξ < 1) for a broad class of feature models.

• The linear mean E[Ỹ |X̃d] = X̃dβ is important, but the assumption of Gaussian errors is not. The
calculation actually only requires isotropic errors (i.e., Ỹ = X̃dβ + v, where v|X̃d has mean zero and
covariance σ2I). Moreover, the random-X optimism of the reference model does not depend on the
underlying signal vector β (due to the unbiasedness of underparameterized least squares regression),
and only depends on the noise level σ2.

5.4 An intrinsic version of model complexity
• The reference model we use in the previous definition is least squares regression on well-specified
data, where the mean is linear in the covariates. As previously commented, the least squares pre-
dictor is unbiased in this case, and its random-X prediction error and thus random-X optimism is
comprised of pure variance.

• Therefore, when we match the observed optimism to the reference one, we are comparing Optr(f̂)—
which is generically comprised of both bias and variance, to Optr(f̂ rf

d )—which is made up of variance
alone. This is intentional. The notion of random-X degrees of freedom given in the last subsection
determines the complexity of the given predictor f̂ by incorporating the “full effect” of the data at
hand, allowing for potential model misspecification to enter into the calculation of optimism. To
emphasize, we will sometimes refer to this as the emergent random-X degrees of freedom.

• Alternatively, we may want to match variance to variance in determining degrees of freedom, i.e., we
may want to exclude bias effects in calculating the random-X optimism of the given model f̂ . This
gives rise to a different notion of model complexity, which we define next.

Definition 2. Under the exact same setup as in the previous definition, draw v ∼ N(0, σ2I), indepen-
dent of everything else. We define df ir(f̂) = d to be the unique d ∈ [0, n− 1] for which

Optr(f̂(·;X, v)) = Optr(f̂ rf
d ).

• The difference between the previous definition and the current one is that in the latter we are mea-
suring the random-X optimism of f̂ when it is being fit on “pure noise” v ∼ N(0, σ2I). Note that
because the random-X optimism of least squares does not depend on β in the reference data model,
we may set β = 0 and write the current definition as equivalently matching

Optr(f̂(·;X, v)) = Optr(f̂ ls(·; X̃d, v)).
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• We call the quantity df ir(f̂) = d that solves this the intrinsic random-X degrees of freedom of f̂ . It
can be interpreted as the model complexity that is intrinsic or inherent to the model f̂ , a reflection
of its ability to overfit to pure noise (calibrated to that of least squares).

• As it turns out, the emergent notion is generally larger than the intrinsic one. In short, the presence
of bias generally “adds complexity”. This can be proved formally for a number of prediction models
(under no assumptions on the data distribution), such as least squares regression, ridge regression,
kernel ridge, smoothing splines, and thin-plate splines. Experiments verify that this continues to be
the case for other predictors (random forests, neural nets) in general.

5.5 Distribution shift, decomposition, and attribution
• As discussed, we can interpret dfer(f̂)− df ir(f̂) as the degrees of freedom “due to bias” (or perhaps

more accurately, model misspecification).

• Generic decompositions are also possible. Let e1, . . . , em be any list of user-chosen “sources of error”.
Here we are also allowing for distribution shift between training and test data sets. For example, we
may be interested inpsecting the potential contributions of bias (e1) and covariate shift (e2).

• For any subset S ⊆ {e1, . . . , em}, we define dfSr (f̂) = d to be the number d for which

Optr(f̂(·; X̃S , Ỹ S)) = Optr(f̂ rf
d ).

On the right-hand side is the least squares reference model, as usual, trained on well-specified data
(with Gaussian features). On the left-hand side is the given predictor, trained on a modified data set
(X̃S , Ỹ S) in which the sources of error indexed by S have been isolated (i.e., they are activated, and
nothing else is present).

• We can then attribute di degrees of freedom to each error component ei, as follows:

di =
∑

S⊆{e1,...,em}\{ei}

|S|!(m− |S| − 1)!

m!
(dfS∪{ei}r (f̂)− dfSr (f̂)).

• This is an instance of a Shapley value. Therefore it obeys all of the Shapley axioms; in particular,
efficiency:

m∑
i=1

di = dfr(f̂).
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