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Tale of two estimators

Nonparametric regression: given data

yi = f0(xi) + εi, i = 1, . . . , n

Goal is to estimate f0 (assumed smooth). Very rich literature. This
talk focuses on two estimators:

Locally adaptive spline (Mammen & van de Geer, 1997):

minimize
f

n∑
i=1

(
yi − f(xi)

)2
+ λ · TV(Dkf)

Trend filtering (Steidl et al., 2006; Kim et al., 2009):

minimize
θ∈Rn

‖y − θ‖22 + λ‖Dk+1
n θ‖1
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TF penalty operator

Penalty matrix Dk+1
n in TF is standard (k + 1)st order (backward)

difference operator

k = 0 k = 1 k = 2
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Penalty terms:

|θi − θi−1| |θi − 2θi−1 + θi−2|
|θi − 3θi−1

+ 3θi−2 − θi−3|
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What’s the connection?

Let θi = f(xi), i = 1, . . . , n. By recursive property of differences:

‖Dk+1
n θ‖1 =

n−k−1∑
i=1

∣∣(Dk
nθ)i+1 − (Dk

nθ)i
∣∣

≈
n∑

i=k+2

∣∣(Dkf)(xi+1)− (Dkf)(xi)
∣∣

≈ TV(Dkf)

• Second step: kth differences of θ are ≈ kth derivatives of f

• Third step: TV is a supremum over all such partitions (further,
this is exact when f is a kth degree piecewise polynomial with
knots in x1, . . . , xn)
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Some key properties

• Solution of locally adaptive spline problem is always kth degree
spline; its knots are selected adaptively, but do not generally lie
among x1, . . . , xn
• Trend filtering has similar flavor of perfoming knot selection in
kth degree spline, but done in discrete time

• Both are minimax optimal with respect to “big” function class:
{f : TV(Dkf) ≤ ρ}
• Over this class, no linear smoother can be minimax optimal

• TF is more computationally efficient, thanks to banded Dk+1
n

(it has bandwidth k + 2)
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Illustrative example
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Digging deeper

For evenly-spaced x1, . . . , xn, there exists functions f such that:

‖Dk+1
n θ‖1 =

n−k−1∑
i=1

∣∣(Dk
nθ)i+1 − (Dk

nθ)i
∣∣

=

n∑
i=k+2

∣∣(Dkf)(xi+1)− (Dkf)(xi)
∣∣

= TV(Dkf)

This holds for all f ∈ Hkn = span{hk1, . . . , hkn}, a “special” space of
kth degree piecewise polynomials (not splines, general)

For arbitrary x1, . . . , xn, extends to TV(Dkf) = ‖Dk+1
n θ‖wk for all

f ∈ Hkn, a weighted `1 norm with weights wki =
xi+k+1−xi

k+1
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What are these functions?

These are defined by hki (x) = 1
i−1!

∏i−1
`=1(x− x`), i ≤ k + 1, and

hki (x) =
1

k!

i∏
`=i−k+1

(x− x`) · 1{x > xi}, i ≥ k + 2

We call these the kth degree falling factorial basis functions. Note
resemblance to truncated power function gki (x) = (x− xi)k+/k!

Interestingly, while hki
is piecewise polynomial
of degree k, it is not a
spline for k ≥ 2
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Discrete-continuous bridge

For f ∈ Hkn, it holds that TV(Dkf) = ‖Dk+1
n θ‖wk with θi = f(xi),

i = 1, . . . , n, hence TF exactly solves (for arbitrary x1, . . . , xn):

minimize
f∈Hk

n

n∑
i=1

(
yi − f(xi)

)2
+ λ · TV(Dkf)

• It restricts the domain in locally adaptive spline problem to Hkn
• In practice, we need to restrict to the space Gkn, of kth degree

splines with knots in x1, . . . , xn, to “solve” this anyway

• Both Gkn,Hkn are rich enough (the approximation error is small
enough) that restricted solutions retain minimax rate

• When k = 0 or 1, something special happens: original solution
lies in Gkn, and Gkn = Hkn, so all three problems are equivalent
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Where to go next?

This is from T. (2014). One important consequence: gives natural
way to extrapolate discrete TF solution into a bonafide function

Can extend these ideas to new domains: additive models, lattices,
graphs (Wang et al., 2016; Sadhanala et al., 2016, 2017, 2018)

But is there still something to be learned in the most basic setting?
Questions remain:

• why do falling factorials have this property?

• what else can we say about them?

• (especially in relation to splines ...)
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Summary of rest of talk

• There is a space of piecewise polynomials called discrete splines,
similar to splines, but with discrete smoothness properties

• Key property: derivatives = discrete derivatives, everywhere

• (Corollary: TV = discrete TV)

• Several other notable properties:
I Dual basis
I Fast interpolation
I Fast matrix operations
I Discrete B-spline basis

and representation and approximation properties (not covered)

• They are the reason why trend filtering “works”. May be useful
for discretizing other variational problems, differential equations
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Divided differences

Given a function f , its divided difference at points z1, z2 is

f [z1, z2] =
f(z2)− f(z1)

z2 − z1

and its kth order divided difference at points z1, . . . , zk+1 is

f [z1, . . . , zk+1] =
f [z2, . . . , zk+1]− f [z1, . . . , zk]

zk+1 − z1

Special case: for unit-spaced points, simply get (scaled) differences:

f [a− 1, a] = f(a)− f(a− 1)

2! · f [a− 2, a− 1, a] = f(a)− 2f(a− 1) + f(a− 2)

3! · f [a− 3, a− 2, a− 1, a] = f(a)− 3f(a− 1) + 3f(a− 2)− f(a− 3)
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Discrete differentation

There is a lot of old and beautiful literature on divided differences.
We are going to use them to define a discrete derivative operator

Given x1 < · · · < xn and evaluations of f at these points. At any
point x, given f(x), how can we approximate (Dkf)(x)?

Let i be largest index so that xi+k−1 < x. We define kth discrete
derivative of f at x by

(∆k
nf)(x) = k! · f [xi, . . . , xi+k−1, x]

Notes:

• Centers used for divided difference vary with x

• ∆k
n depends on design points xi, i = 1, . . . , n

• ∆k
nf is a function, defined over continuum x
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Motivating question

Classical numerical analysis: for generic smooth f , bound the error
between discrete derivatives and derivatives

Flip this around: what functions f have discrete derivatives exactly
equal to their derivatives?

Preliminary answer: polynomials. For p(x) = xk/k!, can check that

(∆k
np)(x) = (Dkp)(x) = 1, for all x

Similar for general p(x) =
∑k

i=0 aix
i. Beyond this? Not easy ... For

example, for truncated power function f(x) = (x− t)k+/k! we have

(∆k
nf)(x) 6= (Dkf)(x), for x near t
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Discrete integration

A constructive strategy to find which functions satisfy this property:
examine Skn = (∆k

n)−1, which turns out to be a discrete integrator,
based on cumulative weighted sums

Theorem. Let 1xi(x) = 1{x > xi}. For i ≥ k + 2, we have

(Skn1xi)(x) =
1

k!

i∏
`=i−k+1

(x− x`) · 1{x > xi}︸ ︷︷ ︸
hki (x)

,

a kth degree piecewise polynomial. Note that, by construction,

(∆k
nh

k
i )(x) = 1{x > xi} = (Dkhki )(x), for all x.

Proof: based on a special recursion satisfied by falling factorials
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Matching derivatives

Corollary. By linearity, any f ∈ Hkn has the same property:

(∆k
nf)(x) = (Dkf)(x), for all x.

This matching derivatives property implies the previous TV result in
trend filtering: Dk

n is defined to produce discrete derivatives, thus

‖Dk+1
n θ‖wk =

n−k−1∑
i=1

∣∣(Dk
nθ)i+1 − (Dk

nθ)i
∣∣

=

n∑
i=k+2

∣∣(Dkf)(xi+1)− (Dkf)(xi)
∣∣ = TV(Dkf)

(Several other interesting discrete-continuous relations hold as well)
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Discrete splines

Further, it turns out that functions in Hkn have nice structure: this
is a space of discrete splines!

Theorem. The space Hkn contains all piecewise polynomials f
of degree k, with knots in xk+1, . . . , xn−1, such that

(∆`
npi−1)(xi) = (∆`

npi)(xi), ` = 0, . . . , k − 1

at each knot xi, where pi−1 and pi are the restriction of f to
the interval on the left and right of xi, respectively.

Discrete splines were first studied in numerical analysis in the early
1970s, but viewed as discrete objects. We treat them as continuum
objects (i.e., functions), truly “on par” with splines
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Dual basis

The matching derivatives property also allows us to define a natural
dual basis to hk1, . . . h

k
n:

λki f = (∆k+1
n f)(xi), i = 1, . . . , k + 1,

λki f = (∆k+1
n f)(xi) ·

xi − xi−k−1
k + 1

, i = k + 2, . . . , n.

These are just (scaled) discrete derivatives of f at the design points

Proposition. The basis above is a dual basis to the kth degree
falling factorial basis, in the sense that for all i, j,

λki h
k
j =

{
1 if i = j

0 otherwise.
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Fast interpolation

Note that if

f =

n∑
i=1

αih
k
i

then αi = λki f , a scaled version of (∆k
nf)(xi)

Corollary. For f ∈ Hkn, given f(xi), i = 1, . . . , n,

f(x) =

k+1∑
i=1

(∆k+1
n f)(xi) · hki (x) +

n∑
i=k+2

(∆k+1
n f)(xi) ·

xi − xi−k−1
k + 1

· hki (x).

This is an extension of Newton’s divided difference formula (actually,
even faster interpolation is possible: constant-time!)
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Matrix computations

Recall that we define the matrix Dk
n to produce discrete derivatives.

We can also define a basis matrix, with entries:

(Hk
n)ij = hkj (xi)

Dual basis result says matrices Dk
n, H

k
n are effectively inverses. This,

and key recursion obeyed by falling factorials implies the following

Proposition. Multiplication by Hk
n, (H

k
n)T, (Hk

n)−1 or (Hk
n)−T

takes at most 4nk flops each.

Computations are simple (based on cumulative sums and iterated
differences) and in-place (no extra memory required)
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Discrete B-splines

Abbreviate H = Hk
n, and let HT denote a submatrix whose columns

correspond to knot set T . Consider the least squares projection:

ŷ = HTH
†
T y

onto discrete spline space with knots in T . Dual basis result implies:

ŷ = (I −B†−TB−T )y

where B is basically a scaled version of Dk+1
n , and B−T denotes an

appropriate submatrix of rows. Third way:

ŷ = NTN
†
T y

where columns of NT are evaluations of discrete B-spline basis that
spans the space of discrete splines with knots in T
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Discrete B-splines (cont.)

Discrete B-splines have minimal support: each one has k + 2 knots
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Discrete B-splines (cont.)

Thus solving a linear system in NT is linear-time: O(nk2). Same as
linear system in HT , BT , but discrete B-splines are more stable
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Summary of this talk

• There is a space of piecewise polynomials called discrete splines,
similar to splines, but with discrete smoothness properties

• Key property: derivatives = discrete derivatives, everywhere

• (Corollary: TV = discrete TV)

• Several other notable properties:
I Dual basis
I Fast interpolation
I Fast matrix operations
I Discrete B-spline basis

and representation and approximation properties (not covered)

• They are the reason why trend filtering “works”. May be useful
for discretizing other variational problems, differential equations
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Appendix



Illustration of theory for d = 1, general k

TV class

Sobolev class

{f : TV(Dkf ) ≤ 1}

{f : ∫ [(Dk+1f )(x)]2 dx ≤ 1}

n− 2k + 2
2k + 3

n− 2k + 2
2k + 3

n− 2k + 1
2k + 2

minimax rate:

minimax rate:

minimax linear rate:

(achieved by wavelets,  
locally adaptive splines,  

trend filtering)

(achieved by kernels, 
smoothing splines, 

many linear smoothers)

(Donoho & Johstone, 1998; T., 2014)
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Illustration of theory for k = 0, general d

TV class

Sobolev class

{θ : ∥Dθ∥1 ≤ n1− 1
d }

{θ : ∥Dθ∥2 ≤ n 1
2 − 1

d }

n− 1
d

n− 2
2 + d

minimax rate:

minimax rate:

minimax linear rate: constant

(achieved by wavelets?,  
trend filtering)

(achieved by  
Laplacian smoothing?, 
Laplacian eigenmaps)

(Sadhanala, Wang, T., 2016)
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Illustration of theory for general k, d

(Sadhanala, Wang, Sharpnack T., 2017, 2021)

2k + 2 = dk

d

minimax rate:

minimax rate:

minimax linear rate: 

minimax linear rate: constant

n− k + 1
d

n− 2(k + 1)
2(k + 1) + d

n− 2(k + 1) − d
2(k + 1)

High smoothness regime

Low smoothness regime

Holder embedding  
is tight

      embedding  
is tight

ℓ1
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Representation of Sobolev functionals

Theorem. For any f ∈ H2m−1
n , with θi = f(xi), i = 1, . . . , n,∫

(Dmf)(x)2 dx = ‖V
1
2Dθ‖22,

where D = Dm
n , and V = V m

n is symmetric and banded (and
depends only on x1, . . . , xn), with bandwidth 2m− 1.

Remarks:

• Notably, the matrix V here is not diagonal (unlike in TV case)

• For splines, analogous result holds for a matrix V that is dense,
but its inverse is banded, with bandwidth 2m− 1

• Discrete spline result is actually more general: applies with any
linear functional in place of integration (V will depend on L)
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Implicit-form interpolation

Theorem. For f ∈ Hkn, given f(xi), i = 1, . . . , n, we can co-
mpute f(x) at any point x as follows. Let i be the smallest
index such that xi > x. Then f(x) is the unique solution of
the linear system:

f [x1, . . . , xk+1, x] = 0, if i ≤ k; or

f [xi−k, . . . , xi, x] = 0, if i ≥ k + 1.

Intuition: find f(x) that sets (k+ 1)st discrete derivative equal to 0,
hence makes f a local kth degree polynomial

Note that f(x)
can be computed
is (nearly)
constant-time!
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Natural trend filtering
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