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Given data (x1, y1), . . . , (xn, yn) with each xi ∈ Rd, yi ∈ R, the thin-plate spline problem is to solve

minimize
f

1

n

n∑
i=1

(yi − f(xi))
2 + λJmd (f), (1)

where Jmd (f) =
∑
|α|=m

m!
α!

∫
Rd(Dαf(x))2 dx is a derivative-based penalty of roughness.

Thin-plate splines were originally proposed by Duchon (1977), though in the context of interpolation
rather than penalized regression. Duchon showed that when m > d/2 there is a representer theorem for
the thin-plate spline problem (1) that allows it to be recast as a generalized ridge regression. The result is
analogous to representation for penalized regression in Reproducing Kernel Hilbert Spaces (RKHS), but
with the added subtlety that the regularizer Jmd (f) has a non-trivial null space. For this reason the rep-
resenter theorem for (1) does not immediately follow from results for RKHS. Instead (1) must be derived
separately, and the proof must correctly handle the null space of Jmd (f).

The proof of Duchon relies heavily on Fourier transforms and is overall a little technical. Subsequent pa-
pers Meinguet (1979); Wahba and Wendelberger (1980) and the book on smoothing splines Gu (2013)
give a simplified and more constructive analysis, but the first reference still requires an appreciable level
of mathematical sophistication and I found that the latter two go a little fast over some of the details.
(Though all three are excellent references.) In this note I explicitly state the thin-plate spline representer
theorem (Theorem 1 below) and walk through the proof.

1 The theorem
The solution to (2) is made up of radial basis functions (RBFs) and polynomials. The RBFs we care about
are translates of the fundamental solution (also known as a Green’s function) E of the polyharmonic equa-
tion

(−1)m∆mE = δ0. (2)

In equation (2) the operator ∆m is the kth-iterated Laplacian – defined recursively – and δ0 is the Dirac
impulse. The fundamental solution has the explicit form

E(r) = cd

{
r2m−d ln r, if 2m > d and d is even

r2m−d, otherwise.

Here cd is some complicated constant I won’t bother writing out. The RBF at point xi is given by E(xi, ·) :=
E(|xi − ·|).

As mentioned, the null space N of Jmd (f) is non-trivial and in fact consists of all polynomials of degree at
most m− 1. This is am M =

(
m+d−1

d

)
dimensional vector space, and we take φ1, . . . , φM to be an arbitrary

basis of N . Let Φ ∈ Rn×M have entries Φij = φj(xi) and E ∈ Rn×n have entries Eij = E(xi, xj).

Theorem 1. Suppose m > d/2. Then the solution to (1) is well-defined and can be written in the form

fλ(x) =

M∑
ν=1

cνφν(x) +

n∑
i=1

diE(xi, x),
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where additionally
∑n
i=1 diφν(xi) = 0 for each ν. The optimization can be rewritten as the generalized

ridge problem
minimize

c,d
‖y −Φc−Ed‖2 + λd>Ed subject to Φ>d = 0, (3)

which has a unique solution so long as rank(x1, . . . , xn) ≥M .

2 Formalizing thin-plate splines
Formally speaking, to make sense of problem (1) one needs a domain. The first thought is to use the
Sobolev space Wm,2(Rd) which is the space of m-times weakly differentiable functions for which Dαf ∈
L2(Rd) for all |α| ≤ m. Technically speaking the Sobolev space is made up of equivalence classes of func-
tions that agree up to sets of measure zero, but when m > d/2 each equivalence class contains a continu-
ous representative (by the Sobolev Embedding Theorem) and so we can restrict our attention to continu-
ous functions.

A more fundamental concern is that polynomials are not in Wm,2(Rd) and so clearly that cannot be the
right space to search for the solution. This issue is cleared up by using the Beppo Levi space, which con-
sists of functions

BLm(Rd) =
{
f ∈ C(Rd), Dαf exists and Dαf ∈ L2(Rd) for all α = |m|

}
, (4)

and is equipped with the semi-inner product

(u, v)BLm(Rd) :=
∑
|α|=m

m!

α!
(Dαu,Dαv)L2 . (5)

For simplicity write (u, v)m = (u, v)BLm(Rd). Throughout, the minimum in (1) should be interpreted as
being over all functions f ∈ BLm(Rd).

3 Road map
Let’s start with a road map for the proof of Theorem 1. The fundamental idea will be to define an inner
product 〈·, ·〉 on BLm(Rd), allowing us to “project out” polynomials in the resulting inner product space H.
That is, we will decompose functions f ∈ H into the sum of two orthogonal parts

f = Pf + [I − P ]f, Pf ∈ H0, [I − P ]f ∈ H1,

where P is the projection of f ∈ BLm(Rd) onto N . This is useful because, as we will see, (·, ·)m is an inner
product in H1 = {[I − P ]f : f ∈ H}, and the resulting Hilbert space is an RKHS; letting {η(m)

x : x ∈ Rd}
be the representers of evaluation, we can use standard arguments in the theory of RKHS to show that
[I − P ]fλ ∈ span{η(m)

x1 , . . . , η
(m)
xn }. This is what will end up happening in Proposition 1. Finally we will use

an explicit representation of the reproducing kernel η(m) to rewrite the solution in terms of Ex1
, . . . , Exn ,

giving us the desired result.

4 Direct sum RKHS
In order to execute this plan we need to define a suitable inner product on BLm(Rd) with which to project
out polynomials. To that end let {z0, . . . , zM} be a collection of N -unisolvent points, meaning

M∑
ν=1

cνφν(zk) = 0 for all k =⇒ c = 0.
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Now introduce a second semi-inner product over BLm(Rd):

(u, v)0 :=

M∑
j=1

u(zj)v(zj). (6)

Then 〈u, v〉 := (u, v)0 + (u, v)m is an inner product on BLm(Rd), and

H = {f ∈ BLm(Rd) : 〈f, f〉 <∞}

is an RKHS.

Now we introduce the spaces H0,H1 alluded to above. H0 is simply the null space N of Jdm(·), equipped
with the inner product (·, ·)0 defined in (6), and H1 is the orthogonal complement:

H1 =
{
f ∈ H : f(zk) = 0 for each zk

}
.

These spaces are orthogonal in the sense that 〈f0, f1〉 = 0 for f0 ∈ H0 and f1 ∈ H1. Additionally both are
RKHS, and the reproducing kernel η(x, y) of H can be decomposed as

η(x, y) = η(0)(x, y) + η(m)(x, y),

where η(0) is the reproducing kernel of H0 and η(m) the reproducing kernel of H1. So we can write H =
H0 ⊕H1 as a direct sum RKHS.

As mentioned, we prove Theorem 1 by establishing a representation of the solution in terms of η(m), and
then rewriting this as a function of E. The relationship between η(m) and E is given in terms of the
projection operator P in Theorem 2. To write things more explicitly, taking {ϕ1, . . . , ϕM} to be an or-
thobasis of H0 we can write the projection operator as Pf(x) =

∑
ν(ϕν , f)0ϕν , and for simplicity taking

{ϕ1, . . . , ϕM} to be the canonical basis (so that ϕν(zk) = δνk) this becomes

Pf(x) =
∑
ν

f(zν)ϕν(x).

Theorem 2. The reproducing kernel of H1, evaluated at a given x, y ∈ Rd, is given by

η(m)(x, y) = E(x, y)−
∑
ν

E(x, zν)ϕν(y)−
∑
ν′

E(zν′ , y)ϕν′(x) +
∑
ν,ν′

ϕν(x)ϕν′(y)E(zν , zν′). (7)

Proof. This result and proof is due to Meinguet (1979). I will go fast without really doing the argument
justice, and you should consult Meinguet (1979) for missing details.

We begin from the definition of the reproducing kernel of H1:(
η(m)
x , f

)
m

= f(x), for all f ∈ H1, x ∈ Rd.

Let D be the Schwartz space of distributions, i.e. continuous linear functionals on the set of smooth and
compactly supported functions C∞c (Rd) = D′. By definition [I − P ]f ∈ H1 and so

f(x)−
M∑
ν=1

f(zν)ϕν(x) =
(
η(m), [I − P ]f

)
m

=
(
η(m)
x , f

)
m
. (8)

Now we make use of repeated application of integration by parts – keeping in mind that f ∈ D′ is com-
pactly supported – to deduce that (

η(m)
x , f

)
m

=
(
(−1)m∆mη(m)

x , f
)
,
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where (·, ·) is the duality pairing between D and D′. Rewriting the left hand side of (8) in terms of this
duality pairing, we obtain that η(m)

x ∈ H1 satisfies the differential equation

(−1)m∆mFx = δx −
M∑
ν=1

ϕν(x)δzν , (9)

which has to be interpreted in the distributional sense: both sides of (8) are operators which act in the
same way on all f ∈ D′.

Now from the definition of E we can easily get a distribution Hx that satisfies (9), although Hx is not in
H1:

Hx = Ex −
M∑
ν=1

ϕν(x)Ezν .

At this point we will use an important result without proof: Hx ∈ H. To get a sense of why this is non-
trivial, note that the same statement does not hold true for Ex. However, once we take for granted that
Hx ∈ H the proof is almost finished; clearly [I − P ]Hx ∈ H1 and in fact [I − P ]Hx is the unique function in
H1 for which (9) is satisfied (since P projects to the null space of ∆m). So η(m) = [I − P ]Hx. Solving for
[I − P ]Hx in terms of E then gives the desired result.

5 A first representer theorem for TPS
Now we have everything we need to represent fλ in terms of the reproducing kernel of H1.

Proposition 1. The solution to (1) can be written as

fλ =

M∑
ν=1

cνφν +

n∑
i=1

diη
(m)
xi . (10)

Thus, letting Q ∈ Rn×n have entries Qij = η(m)(xi, xj), the problem (1) can be recast as the generalized
ridge problem

minimize
c,d

‖y −Φc−Qd‖2 + λd>Qd subject to Φ>d = 0. (11)

Proof. Decompose fλ = Pfλ + [I − P ]fλ. Observe that since the smoothness functional Jdm(fλ) =
(fλ, fλ)m = ([I − P ]fλ, [I − P ]fλ) we can rewrite the objective in (1), evaluated at its minimizer fλ, as

1

n

n∑
i=1

(
yi − Pfλ(xi)− [I − P ]fλ(xi)

)2
+ λJmd ([I − P ]fλ).

From here the analyis is completely standard for the theory of reproducing kernels. Further decompose
[I − P ]fλ = f

(π)
λ + f⊥λ , where f (π)λ ∈ span(η

(m)
xi ) and f⊥λ belongs to the orthogonal complement. Since η(m)

xi

is the representer of evaluation for H1 and since f (π)λ and f⊥λ are orthogonal it follows that

f⊥λ (xi) = (f⊥λ , η
(m)
xi )m = 0.

Also, again using the orthogonality of f (π)λ and f⊥λ ,

Jmd
(
[I − P ]fλ

)
= Jmd (f

(π)
λ ) + Jmd (f⊥λ ) ≥ Jmd (f

(π)
λ ),

with equality only if f⊥λ = 0. We conclude that f⊥λ = 0, from which (10) follows.

Finally, to complete the proof of Proposition 1 we need to show the equivalence between the original prob-
lem and (11). First of all, noting that fλ(xi) = Φi·c+ Qi·d and Jmd ([I − P ]fλ) = d>Qd, we see that (1) can
be rewritten as

minimize
c,d

‖y −Φc−Qd‖2 + λd>Qd,
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which is (11) without the constraint Φ>d = 0. To see why this constraint additionally holds, we look at
the normal equations: at the minimizer (ĉ, d̂) of (11),

Φ>y = Φ>Qd̂+ Φ>Φĉ

Qy = λQd̂+ QQd̂+ QΦĉ.
(12)

Since η(m) is a positive definite kernel Q is invertible. So we may rewrite the second equation in (12) as
y = λd̂+ Qd̂+ Φĉ, and plugging this into the first equation in (12) yields

λΦ>d̂ = 0.

6 Representation in terms of Green’s function

Lemma 2 gives the explicit relationship between η(m) and the Green’s function E. Applying this to
∑n
i=1 d̂iη

(m)
xi

gives the following expression:

n∑
i=1

d̂iη
(m)
xi (t) =

n∑
i=1

d̂iExi(t)−
n∑
i=1

∑
ν

d̂iE(xi, zν)ϕν(t)+

n∑
i=1

d̂i
∑
ν′

Et(zν′)ϕν′(xi)+

n∑
i=1

d̂i
∑
ν,ν′

ϕν(t)ϕν′(xi)E(zν , zν′).

On the right hand side the second and fourth terms are polynomial in t. On the other hand, d̂ lies in
the kernel of Φ> and so the third term is 0. We conclude that

∑n
i=1 d̂iη

(m)
xi =

∑n
i=1 d̂iExi + p for some

polynomial p, and consequently for some c̃,

fλ =

M∑
ν=1

c̃νφν +

n∑
i=1

d̂iExi . (13)

7 Proof of Theorem 1
Combining (13) and Proposition 1 shows that the solution to (1) is equal to

minimize
c,d

‖y −Φc−Ed‖2 + λ Jmd

( n∑
i=1

diExi

)
subject to Φ>d = 0. (14)

It remains only to show that the penalty in (14) has the finite-dimensional representation as written
in (10). This can be seen by another application of Lemma 2: for any d such that Φ>d = 0,

Jmd

( n∑
i=1

diExi

)
= Jmd

( n∑
i=1

diη
(m)
xi

)

=

n∑
i,j=1

didjη
(m)(xi, xj)

=

n∑
i,j=1

didj

{
E(xi, xj)−

∑
ν

E(xi, zν)ϕν(xj)−
∑
ν′

E(zν′ , xj)ϕν′(xi) +
∑
ν,ν′

ϕν(xi)ϕν′(xj)E(zν , zν′)

}

=

n∑
i,j=1

didjE(xi, xj),

where the first equality follows since ηmxi and Exi differ by a polynomial.
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