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Given data (x1,91), ..., (Tn,yn) with each z; € R%, y; € R, the thin-plate spline problem is to solve

n

minifmize %Z(yi — f(@))? + NTT(F), (1)

i=1
where Ji(f) =220 12m Z—,‘ Jpa (D f(2))? dx is a derivative-based penalty of roughness.

Thin-plate splines were originally proposed by Duchon (1977), though in the context of interpolation
rather than penalized regression. Duchon showed that when m > d/2 there is a representer theorem for
the thin-plate spline problem (1) that allows it to be recast as a generalized ridge regression. The result is
analogous to representation for penalized regression in Reproducing Kernel Hilbert Spaces (RKHS), but
with the added subtlety that the regularizer JJ"(f) has a non-trivial null space. For this reason the rep-
resenter theorem for (1) does not immediately follow from results for RKHS. Instead (1) must be derived
separately, and the proof must correctly handle the null space of JJ*(f).

The proof of Duchon relies heavily on Fourier transforms and is overall a little technical. Subsequent pa-
pers Meinguet (1979); Wahba and Wendelberger (1980) and the book on smoothing splines Gu (2013)
give a simplified and more constructive analysis, but the first reference still requires an appreciable level
of mathematical sophistication and I found that the latter two go a little fast over some of the details.
(Though all three are excellent references.) In this note I explicitly state the thin-plate spline representer
theorem (Theorem 1 below) and walk through the proof.

1 The theorem

The solution to (2) is made up of radial basis functions (RBFs) and polynomials. The RBFs we care about
are translates of the fundamental solution (also known as a Green’s function) E of the polyharmonic equa-
tion

(—1)"A™E = §. (2)

In equation (2) the operator A™ is the kth-iterated Laplacian — defined recursively — and g is the Dirac
impulse. The fundamental solution has the explicit form

r2m=dny, if 2m > d and d is even
E(r)=cq

2m—d
)

T otherwise.

Here ¢4 is some complicated constant I won’t bother writing out. The RBF at point z; is given by E(x;,-) :=
E(lz: —|).

As mentioned, the null space N of JJ*(f) is non-trivial and in fact consists of all polynomials of degree at

most m — 1. This is am M = (m+d_1) dimensional vector space, and we take ¢1,..., ¢y to be an arbitrary
basis of N'. Let ® € R"*M have entries ®;; = ¢;(z;) and E € R"*" have entries E;; = F(z;, ;).

Theorem 1. Suppose m > d/2. Then the solution to (1) is well-defined and can be written in the form

M n
@) =" o (x) + Z d; E(z;, ),



where additionally >, d;¢,(z;) = 0 for each v. The optimization can be rewritten as the generalized
ridge problem
minimize |y — e — Ed|?> 4+ Ad"Ed subject to ®'d =0, (3)
C,

which has a unique solution so long as rank(xq,...,x,) > M.

2 Formalizing thin-plate splines

Formally speaking, to make sense of problem (1) one needs a domain. The first thought is to use the
Sobolev space W™2(R%) which is the space of m-times weakly differentiable functions for which D*f €
L2(RY) for all |a| < m. Technically speaking the Sobolev space is made up of equivalence classes of func-
tions that agree up to sets of measure zero, but when m > d/2 each equivalence class contains a continu-
ous representative (by the Sobolev Embedding Theorem) and so we can restrict our attention to continu-
ous functions.

A more fundamental concern is that polynomials are not in W™ ?2(R?) and so clearly that cannot be the
right space to search for the solution. This issue is cleared up by using the Beppo Levi space, which con-
sists of functions

BL,,(R?) = { f e C(RY), Df exists and D°f € L2(R%) for all a = |m|}, (4)

and is equipped with the semi-inner product

ml, o
(4, V)BL,, (Re) = Z J(D u, D*v) 2. (5)
lor|=m
For simplicity write (u,v)m = (u,v)gy,, ). Throughout, the minimum in (1) should be interpreted as
being over all functions f € BL,,(R%).

3 Road map

Let’s start with a road map for the proof of Theorem 1. The fundamental idea will be to define an inner
product (-,-) on BL,,(R%), allowing us to “project out” polynomials in the resulting inner product space H.
That is, we will decompose functions f € H into the sum of two orthogonal parts

where P is the projection of f € BL,,(R%) onto N. This is useful because, as we will see, (-,-),, is an inner
product in Hy = {[I — P]f : f € H}, and the resulting Hilbert space is an RKHS; letting {ng(gm) :x € RY}
be the representers of evaluation, we can use standard arguments in the theory of RKHS to show that
[I—P)fr € span{ng(ff), e ,17;7:)}. This is what will end up happening in Proposition 1. Finally we will use
an explicit representation of the reproducing kernel (™ to rewrite the solution in terms of S
giving us the desired result.

4 Direct sum RKHS

In order to execute this plan we need to define a suitable inner product on BL,,(R%) with which to project

out polynomials. To that end let {zo, ..., zp} be a collection of A -unisolvent points, meaning
M
> cvdu(z) =0 forall k= c=0.
v=1



Now introduce a second semi-inner product over BL,, (R?):

(,0)0 = > ulz)v(z)). (6)

=1
Then (u,v) := (u,v)g + (1, v),, is an inner product on BL,,(R?), and
H = {f € BLn(R?) : (f,f) < o0}

is an RKHS.

Now we introduce the spaces Hg, H; alluded to above. H, is simply the null space N of J¢ (-), equipped
with the inner product (-, -)o defined in (6), and #; is the orthogonal complement:

Hi={f€eH: f(zx) =0 for each z}.

These spaces are orthogonal in the sense that (fq, f1) = 0 for fo € Ho and f; € H;. Additionally both are
RKHS, and the reproducing kernel n(z,y) of H can be decomposed as

n(z,y) =10 (z,y) + 0™ (2,y),

where 7(9) is the reproducing kernel of #o and (™ the reproducing kernel of ;. So we can write # =
Ho D H1 as a direct sum RKHS.

As mentioned, we prove Theorem 1 by establishing a representation of the solution in terms of n(™, and
then rewriting this as a function of E. The relationship between ™) and E is given in terms of the
projection operator P in Theorem 2. To write things more explicitly, taking {®1,..., @} to be an or-
thobasis of o we can write the projection operator as Pf(xz) = Y (4, f)oww, and for simplicity taking
{¢1,...,m} to be the canonical basis (so that ¢, (zx) = d,%) this becomes

Pf(z) = Z f(z)pu ().

Theorem 2. The reproducing kernel of Hy, evaluated at a given x,y € R, is given by

W™ (@,y) = Ele,y) — S B@,2)e0w) = 3 B o @) + 3 eu@ew 0B 20). (7)

Proof. This result and proof is due to Meinguet (1979). I will go fast without really doing the argument
justice, and you should consult Meinguet (1979) for missing details.

We begin from the definition of the reproducing kernel of #H;:
(nf(vm),f)m = f(z), forall feHi,x€ R

Let D be the Schwartz space of distributions, i.e. continuous linear functionals on the set of smooth and
compactly supported functions C°(R?) = D’. By definition [I — P]f € H; and so

M
F@) =Y f)eu(@) = (0, 11 = PIf),, = (0™, 1), (8)

Now we make use of repeated application of integration by parts — keeping in mind that f € D’ is com-
pactly supported — to deduce that

(™. 1), = (D)™ A™™, f),



where (-, -) is the duality pairing between D and D’. Rewriting the left hand side of (8) in terms of this
duality pairing, we obtain that ng(cm) € H; satisfies the differential equation

M

(_1)mAme = 690 - Z @u(x)ézuv (9)

v=1

which has to be interpreted in the distributional sense: both sides of (8) are operators which act in the
same way on all f € D’.

Now from the definition of E we can easily get a distribution H, that satisfies (9), although H, is not in
Hlt

M
Hac = EI - Z@V(x)EZV‘
v=1

At this point we will use an important result without proof: H, € H. To get a sense of why this is non-
trivial, note that the same statement does not hold true for F,. However, once we take for granted that
H, € H the proof is almost finished; clearly [I — P]H, € #H; and in fact [[ — P]H, is the unique function in
H, for which (9) is satisfied (since P projects to the null space of A™). So n(™ = [I — P]H,. Solving for
[I — P]H, in terms of E then gives the desired result.

5 A first representer theorem for TPS

Now we have everything we need to represent f in terms of the reproducing kernel of ;.

Proposition 1. The solution to (1) can be written as

M n
=) ety + Y dinlh. (10)
v=1 i=1

Thus, letting Q € R™™ have entries Q;; = 0™ (x;, xj), the problem (1) can be recast as the generalized
ridge problem
minimize |y — ®c - Qd||? + A\d" Qd subject to ®'d = 0. (11)

Proof. Decompose fy = Pfy + [[ — P]fy. Observe that since the smoothness functional JZ (f\) =
(fx, )m = ([ = P]fr, [ — P]fx) we can rewrite the objective in (1), evaluated at its minimizer fy, as

% Z(y — Pfa(zi) = [I - P]fx(acz-))2 + NP — P)fy).

From here the analyis is completely standard for the theory of reproducing kernels. Further decompose

[I — Plfy\ = f)(\”) + fi+, where fyr) € span(n{™) and fi+ belongs to the orthogonal complement. Since nim™)

is the representer of evaluation for 7; and since fiﬂ) and fi- are orthogonal it follows that

(@) = (f3snl)m = 0.
Also, again using the orthogonality of f;\ﬂ) and fi,

TP (T = PIfs) = T3 (R7) + T3 (£ = T3 (1),
with equality only if fi- = 0. We conclude that fi- = 0, from which (10) follows.

Finally, to complete the proof of Proposition 1 we need to show the equivalence between the original prob-
lem and (11). First of all, noting that fi(z;) = ®;.c + Q;.d and J7*([I — P]f\) = d" Qd, we see that (1) can
be rewritten as

minciglize ly — ®c — Qd||> + \d' Qd,



which is (11) without the constraint ®"d = 0. To see why this constraint additionally holds, we look at
the normal equations: at the minimizer (¢,d) of (11),

PTy=8"Qd+® ®¢ (12
Qu = A\Qd + QQd + Q&e.
Since (™) is a positive definite kernel Q is invertible. So we may rewrite the second equation in (12) as

y = A\ + Qd + ®¢, and plugging this into the first equation in (12) yields

AP Td=0.

6 Representation in terms of Green’s function

Lemma 2 gives the explicit relationship between (™) and the Green’s function E. Applying this to > 1, din{™

gives the following expression:
Z i () = Z d;E,, (t)—z Z d; E(x;, Zu)%(tH'Z d; Z Ei(z)ou (%‘)4‘2 d; Z v () pu (2:) E(20, 201 ).
i=1 i=1 i=1 v i=1 i=1 v

On the right hand side the second and fourth terms are polynomial in ¢t. On the other hand, d lies in
the kernel of @7 and so the third term is 0. We conclude that Y 7 mgn) =Y, d;E,;, + p for some
polynomial p, and consequently for some ¢,

M n
f)x = Zéud)u +ZCLEL (13)
v=1 =1

7 Proof of Theorem 1

Combining (13) and Proposition 1 shows that the solution to (1) is equal to

mlnu;uze ly — ®c— Ed||*> + A\ J} (Zd E, ) subject to ®'d = 0. (14)

i=1

It remains only to show that the penalty in (14) has the finite-dimensional representation as written
n (10). This can be seen by another application of Lemma 2: for any d such that ®"d = 0,

Jr <§n: diExi> Jr <Z din{m )
i=1

Z dldjﬁ(m) (Ii, Ij)

i,j=1

=y didj{Em,xj ZE Ti 2 ) (T5) ZE 20, 33) 0 (1) + Y 003 <:cJ>E<zy,zw>}
7,7=1 v,V

= Z didjE(.’Ei,.’Ej),
i,j=1

where the first equality follows since n;} and E,, differ by a polynomial.
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