
Nonparametric Regression: Splines and RKHS Methods
Advanced Topics in Statistical Learning, Spring 2024

Ryan Tibshirani

Note: we’re following the context, problem setup, notation, etc. from the last lecture.

1 Regression splines
Regression splines and smoothing splines are motivated from a different perspective than kernels and local
polynomials; in the latter case, we started off with a special kind of local averaging, and moved our way
up to a higher-order local models. With regression splines and smoothing splines, we build our estimator
globally, from a set of select basis functions.

(We note that, at a broader level, the latter is often called the synthesis framework for modeling, where we
build our estimator from a set of atoms—here being basis functions.)

1.1 Splines
These basis functions, as you might guess, are splines. Let’s assume that d = 1. We’ll stick to the univari-
ate case for a little while, because splines are complex and interesting enough in dimension d = 1. A spline
f of degree k with knots at t1 < · · · < tr is a piecewise polynomial of degree k that is continuous and has
continuous derivatives of orders 1, . . . , k − 1 at its knots. To be clear:

• f is a polynomial of degree k on each of (−∞, t1], [t1, t2], . . . , [tr,∞); and

• D`f is continuous at each of t1, . . . , tr, for all ` = 0, . . . , k − 1.

Splines have some special (some might say amazing) properties, and we will only really scratch the surface
here. They have been a topic of interest among mathematicians and statisticians for a long time. Infor-
mally, a spline is a lot smoother than a piecewise polynomial, and so modeling with splines can serve as a
way of reducing the variance of an estimator. See Figure 1 for an illustration.

A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect the locations
of its knots by eye!

1.2 Spline bases
How can we parametrize the space of kth degree splines with knots at t1, . . . , tr? The most natural way is
to use the truncated power basis, g1, . . . , gr+k+1, defined as

gj(x) =
1

(j − 1)!
xj−1, j = 1, . . . , k + 1,

gj+k+1(x) =
1

k!
(x− tj)k+, j = 1, . . . , r,

(1)

Here x+ = max{x, 0} denotes the positive part of x. From this we can see that the linear space of kth

degree splines with knots at t1, . . . , tr has dimension r + k + 1.

While (1) gives us a simple and natural basis, calculations involving truncated power bases functions can
be troublesome because the ensuing basis matrix, G ∈ Rn×(r+k+1) with entries

Gij = gj(xi)
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 1: Illustration of the effects of enforcing continuity at the knots for a cubic piecewise polynomial,
and for various orders of the derivative. Credit: Chapter 5.2 of Hastie et al. (2009).

is generally very poorly conditioned. A much better computational choice, both for speed and numerical
stability, is called the B-spline basis. This was a major development in spline theory and is now much the
standard in software. The key idea is that B-splines have local support: each B-spline basis function for a
kth degree spline space is supported on k + 2 knots. Therefore the corresponding basis matrix is banded. It
also tends to be much better conditioned.

Defining B-splines certainly requires more nuance than defining the truncated power basis, and the precise
form of a B-spline is unimportant for the rest of this lecture. (If you are interested, you can find the de-
tails behind their construction in pretty much any standard reference on splines, such as de Boor (1978) or
Schumaker (2007).)

1.3 Regress away!
A first idea: let’s just perform regression on a spline basis. In other words, we use as our working model a
kth degree spline with knots at some pre-fixed locations t1, . . . , tr. This means expressing f as

f =

r+k+1∑
j=1

βjgj

where β1, . . . , βr+k+1 ∈ R are coefficients and g1, . . . , gr+k+1 is a basis for the space of kth degree splines
over the knots t1, . . . , tr; for example, the truncated power basis or B-spline basis.
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Letting Y = (y1, . . . , yn) ∈ Rn be the response vector, and G ∈ Rn×(r+k+1) the basis matrix with entries

Gij = gj(xi),

as before, we then just use least squares to determine estimate the coefficients, defining β̂ = (β̂1, . . . , β̂r+k+1)
to solve

minimize
β

n∑
i=1

(
yi −

r+k+1∑
j=1

βjgj(xi)

)2

⇐⇒ minimize
β

‖Y −Gβ‖22.

This yields the regression spline estimator, which makes predictions according to

f̂(x) =

r+k+1∑
j=1

β̂jgj(x).

Of course we know that β̂ = (GTG)−1GTY , so we can write this as

f̂(x) = (g1(x), . . . , gr+k+1(x))T(GTG)−1GTY = w(x)TY,

which reveals that regression splines are linear smoothers.

This is a classic method, and can work well provided that we choose “good” knots t1, . . . , tr; but in general
choosing knots is a tricky business. There is a large literature on knot selection for regression splines via
greedy methods like recursive partitioning. In practice, smoothing splines seem to be more popular, which
we cover next.

2 Smoothing splines
Before delving into smoothing splines, we need to introduce a variant on the usual spline definition given
above. To motivate it: a problem with spline estimates is that they can have somewhat erractive behavior—
translating into high variance—at the boundaries of the input domain. (Recall that this is the opposite
problem to that with kernel smoothing, which had poor bias at the boundaries.) This only gets worse as
the polynomial order k gets larger.

2.1 Natural splines
One way to remedy this problem is to force the piecewise polynomial function to have a lower degree to
the left of the leftmost knot, and to the right of the rightmost knot—this is exactly what natural splines
do. A natural spline f of degree k with knots at t1 < · · · < tr is a piecewise polynomial of degree k such
that:

• f is a polynomial of degree k on each of [t1, t2], . . . , [tr−1, tr];

• f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tr,∞); and

• D`f is continuous at each of t1, . . . , tr, for all ` = 0, . . . , k − 1.

It is implicit here that natural splines are only defined for an odd degree k (linear, cubic, etc.) The choice
k = 3 yields a natural cubic spline, by far the most common case: this is just a cubic spline that reduces
to linear beyond the leftmost and rightmost knots.

What is the dimension of the span of kth degree natural splines with knots at t1, . . . , tr? Recall for splines,
this was r + k + 1 (just count the number of truncated power basis functions). For natural splines, we can
compute this dimension by counting as follows:

(k + 1) · (r − 1)︸ ︷︷ ︸
a

+
( (k − 1)

2
+ 1
)
· 2︸ ︷︷ ︸

b

− k · r︸︷︷︸
c

= r.

In the above:
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• a is the number of parameters in the interior intervals [t1, t2], . . . , [tr−1, tr];

• b is the number of parameters in the exterior intervals (−∞, t1], [tr,∞); and

• c is the number of constraints at the knots t1, . . . , tr.

The fact that the total dimension is r is pretty remarkable; this is independent of k!

We note that there are simple modifications the truncated power basis that gives rise to a basis for natural
splines, and similarly a modification of the B-spline basis for natural splines. And again, B-splines are the
preferred parametrization for computational speed and stability.

2.2 Smooth away!
Smoothing splines, at the end of the day, are given by an `2-regularized regression over a natural spline
basis that places knots at all input points x1, . . . , xn. They circumvent the problem of knot selection be-
cause they just use all inputs as knots, and they make this possible—starting with a saturated model and
producing meaningful function estimates—by using regularization to shrink the coefficients in the basis
expansion.

Interestingly, we can motivate and define a smoothing spline directly from a functional minimization per-
spective. With input points x1, . . . , xn lying in an interval [a, b], the smoothing spline estimator f̂ , of a
given odd integer order k ≥ 1, is defined to solve

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

[Dmf(x)]2 dx, (2)

for m = (k + 1)/2. This is an infinite-dimensional optimization problem over all functions f for the which
the criterion is well-defined and finite. The criterion in (2) trades off the squared error of f over (xi, yi),
i = 1, . . . , n, with a penalty term that is large when the order (m− 1) derivative of f is wiggly. The tuning
parameter λ ≥ 0 governs the tradeoff between these two terms.

By far the most commonly considered case is k = 3, the cubic smoothing spline, defined via

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

[f ′′(x)]2 dx. (3)

This is so common that often you’ll just hear this called the smoothing spline.

2.3 Representer theorem
Remarkably, it so happens that the minimizer in the general smoothing spline problem (2) is unique, and
it is a natural kth degree spline with knots at the input points x1, . . . , xn! This is known as a representer
theorem for (2) (we will see more such results later).

Proof: we’ll just consider the cubic case, k = 3, and follow Chapter 2.2 of Green and Silverman (1993) who
give a nice direct proof.

The key result can be stated as follows: if g is any function on [a, b] such that the penalty is well-defined
(it has two derivatives, its second derivative is square integrable), and x1, . . . , xn ∈ [a, b] are arbitrary, then
there exists a natural cubic spline f with knots at x1, . . . , xn such that:

• f(xi) = g(xi), i = 1, . . . , n; and

•
∫ b
a

[f ′′(x)]2 dx ≤
∫ b
a

[g′′(x)]2 dx.

This would imply that we can restrict our attention in problem (3) to natural splines with knots at x1, . . . , xn.

To prove the key result, we start with the fact that the cubic natural spline space with knots at x1, . . . , xn
is n-dimensional, so given any n points zi = g(xi), i = 1, . . . , n, we can always find a natural spline f with
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knots at x1, . . . , xn that satisfies f(xi) = zi, i = 1, . . . , n. Now define h = g − f . Consider∫ b

a

f ′′(x)h′′(x) dx = f ′′(x)h′(x)
∣∣∣b
a
−
∫ b

a

f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑
i=1

f ′′′(x)h(x)
∣∣∣xi+1

xi
+

∫ xn

x1

D4f(x)h(x) dx

= −
n−1∑
i=1

f ′′′(x+i )(h(xi+1)− h(xi)).

In the first line we used integration by parts; in the second line we used the fact that f ′′(a) = f ′′(b) = 0
and f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, since f is a natural spline; in the third line we used integration by
parts again; in the fourth we used the fact that f ′′′ is constant on each open interval (xi, xi+1), and that
D4f = 0, again because f is a natural spline. Since each h(xi) = 0, we conclude from the last display that∫ b

a

f ′′(x)h′′(x) dx = 0.

From this, it follows that∫ b

a

[g′′(x)]2 dx =

∫ b

a

[
f ′′(x) + h′′(x)

]2
dx =

∫ b

a

[f ′′(x)]2 dx+

∫ b

a

[h′′(x)]2 dx

since the cross term is zero, and therefore∫ b

a

[f ′′(x)]2 dx ≤
∫ b

a

[g′′(x)]2 dx,

with equality if and only if h′′(x) = 0 for all x ∈ [a, b]. Note that h′′ = 0 implies that h must be linear, and
since we already know that h(xi) = 0 for all i = 1, . . . , n, this is equivalent to h = 0. In other words, the
last display holds strictly except when g = f , so the solution in (3) is uniquely a natural spline with knots
at the inputs.

2.4 Finite-dimensional form
From the representer result, we can choose a basis η1, . . . , ηn for the set of kth degree natural splines with
knots at x1, . . . , xn, and reparametrize the problem (2) as

minimize
β

n∑
i=1

(
yi −

n∑
j=1

βjηj(xi)

)2

+ λ

∫ b

a

( n∑
j=1

βjD
mηj(x)

)2

dx. (4)

This is a finite-dimensional problem, and after we solve for the coefficients β̂ ∈ Rn, the smoothing spline
estimator is simply given by

f̂(x) =

n∑
j=1

β̂jηj(x).

Defining the basis matrix N ∈ Rn×n and penalty matrix Ω ∈ Rn×n to have entries

Nij = ηj(xi), Ωij =

∫ b

a

Dmηi(x)Dmηj(x) dx,

the problem in (4) can be written more succintly as

minimize
β

‖Y −Nβ‖22 + λβTΩβ, (5)

5



which a type of generalized ridge regression problem. From (5), it is not hard to see that the solution has
the explicit form β̂ = (NTN + λΩ)−1NTY , and thus, we can write the smoothing spline as

f̂(x) = (η1(x), . . . , ηn(x))T(NTN + λΩ)−1NTY = w(x)TY,

which means, once again, smoothing splines are linear smoothers.

A remark on computation: the coefficients β̂ = (NTN + λΩ)−1NTY can be computed in O(n) operations.
For this, we form N using the B-spline basis (for natural splines), since then the matrix NTN + ΩI will
be banded. In fact, more specialized computations are possible by taking advantage of more precise struc-
ture (beyond bandedness) afforded by splines. Altogether, in practice, smoothing spline computations are
extremely fast.

2.5 Equivalent kernel
Recall that we can write a smoothing spline prediction as f̂(x) = w(x)TY , for a weight function w(x) =
(w1(x), . . . , wn(x)) ∈ Rn. We know the analytic form of this weight function, but how about its qualitative
behavior? To be more precise, if we denote each component function by wi(x) = w(x, xi) to emphasize
that this weight gets attributed to (xi, yi) in the weighted sum w(x)TY =

∑n
i=1 w(x, xi)yi which gives us

the smoothing spline prediction at x, then we can ask the following questions:

• What shape does z 7→ w(x, z) have? Is it kernel-like?

• Does this shape change as we vary the test point x?

It’s easy to just read off the answers to these questions from the rows of the smoother matrix S = N(NTN +
λΩ)−1NT, since in our expanded notation, its elements are

Sij = wj(xi) = w(xi, xj).

Now, something very interesting happens when we plot a few rows of S. For evenly-spaced inputs, they
look like the translations of the same kernel: see the left panel of Figure 2. Even more interestingly, for
unevenly-spaced inputs, the rows still have a kernel shape but now the bandwidth appears to adapt to the
density of the input points: lower density, larger bandwidth. See the right panel of Figure 2.

What we are seeing is an empirical validation of a beautiful asymptotic result by Silverman (1984), who
proved that the cubic smoothing spline estimator is asymptotically equivalent to a kernel regression es-
timator, with an unusual choice of kernel. Specifically, under suitable regularity conditions, we have the
large n approximation,1

w(x, z) ≈ 1

h(x)

1

p(x)
K

(
x− z
h(x)

)
,

where K is the “Silverman kernel”:

K(t) =
1

2
exp(−|t|/

√
2) sin(|t|/

√
2 + π/4),

and we have the local bandwidth:

h(x) =

[
λ

p(x)

]1/4
,

where p(x) is the density of the input distribution at x. That is, the bandwidth adapts to the local distri-
bution of inputs.

The Silverman kernel is “kind of” a higher-order kernel. It satisfies∫
K(t) dt = 1,

∫
tjK(t) dt = 0, j = 1, . . . , 3, but

∫
t4K(t) dt = −24.

So it lies outside the scope of usual kernel analysis. There is a lot more work building off of Silverman’s
initial work that connects smoothing splines to equivalent kernels.

1Silverman actually shows that w(x, z) ≈ 1
h(z)

1
p(z)

K( x−z
h(z)

), but the version we are stating has a more natural interpreta-
tion with respect to Figure 2, and is a consequence of symmetry of the smoother matrix S.
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Figure 2: Three sample rows of the cubic smoothing spline operator S defined over n = 500. Left: evenly-
spaced inputs on a grid. The weights look like they are given by translations of the same kernel. Right:
inputs drawn i.i.d. from N(0.5, 0.01). The weights still look like kernels, but the bandwidth is now larger in
low-density regions of the input domain.

2.6 Rate of convergence
Compared to that for kNN and kernel smoothing, the error analysis for smoothing splines is more nuanced.
Hence we’ll dedicate a whole lecture to learning the tools behind it, a bit later in the course. The upshot
is that we’ll learn a general framework, and accompanying probabilistic tools, that can be used to analyze
numerous other nonparametric estimators (such as other penalized empirical risk minimizers).

The punchline for smoothing splines will be as follows. If we assume that f0 ∈ Wm,2(L; [0, 1]) for a con-
stant L > 0, we write to mean that Dmf0 exists in the weak sense (to be defined precisely below) and∫ 1

0
[Dmf0(x)]2 dx ≤ L2, and we assume mild conditions on the input points and sub-Gaussian noise, then

the smoothing spline estimator of degree k = 2m− 1 with tuning parameter λ � n1/(2m+1) satisfies

max
{
‖f̂ − f0‖2n, ‖f̂ − f0‖22

}
. n−2m/(2m+1) in probability,

with respect to randomness in the draws of (xi, yi), i = 1, . . . , n.

Here, recall, we are abbreviating the population and empirical L2 norms based on a test sample x0 ∼ P
and training samples x1 . . . , xn ∼ Pn, respectively, by

‖f‖22 = E[f2(x0)] =

∫
f2(x) dP (x), and ‖f‖2n =

1

n

n∑
i=1

f2(xi),

and we are using “An . bn in probability” to mean that An = Op(bn).

3 Sobolev theory*
In somewhat of an interlude, we use this section to introduce Sobolev spaces. This material can be mostly
skipped without interrupting the flow of understanding the main ideas in the rest of this lecture, hence the
asterisk. Well actually, you should probably read the definition of weak differentiability, but you can treat
the rest as optional. Yes, optional, but also super interesting and fairly fundamental in many ways, which
is why we include some of the core details of Sobolev spaces here. To learn more, an excellent reference is
Evans (2010).
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3.1 Weak derivatives
First we introduce what is known as weak differentiability. A function f : U → R, where U ⊆ Rd is an
open set, is called weakly differentiable provided that there is some function g : U → Rd such that∫

U

f(x)Dφ(x) dx = −
∫
U

g(x)φ(x) dx, for all φ ∈ C∞c (U), (6)

where C∞c (U) is the set of all infinitely differentiable functions with compact support in U , and Dφ is the
derivative of one such function φ. The function g satisfying (6) is unique almost everywhere, and denoted
by Df henceforth, called the weak derivative of f .

The motivation for this definition of weak differentiability is integration by parts: if f, φ are differentiable
in the classical (usual) sense, then

∫
U
f(x)Dφ(x) dx = −

∫
U
Df(x)φ(x) dx by integration by parts (applied

componentwise), where there are no boundary terms because φ has compact support. Thus, we define the
weak derivative g = Df such that this holds for all infinitely differentiable compactly-supported φ.

Higher-order derivatives follow similarly. For a multi-index α = (α1, . . . , αd) ∈ Zd+, recall, we write |α| =
α1 + · · ·+ αd and we denote

Dαφ =
∂|α|φ

∂xα1
1 ∂xα2

2 . . . ∂xαdd
,

interpreted in the classical (usual) sense for a function φ. In the weak sense, f is said to have αth weak
differentiable g if ∫

U

f(x)Dαφ(x) dx = −(1)|α|
∫
U

g(x)φ(x) dx, for all φ ∈ C∞c (U). (7)

Again, the function g satisfying (7) is unique almost everywhere, and we denote by Dαf .

Of course, the weak derivative reduces to the classical derivative exists when the latter exists. However,
weak differentiability is more general. An example of a function that is weakly differentiable but not classi-
cally differentiable is

f(x) = x+, with weak derivative Df(x) = 1{x > 0}.
An example of a function that is not weakly differentiable is f(x) = 1{x > 0}. For this, one can check that
the condition (6) cannot hold: taking φ to be any function whose support includes 0, we learn that

φ(0) =

∫
g(x)φ(x) dx.

This cannot possibly be true for all infinitely differentiable φ. This cannot possibly be true for all φ unless
g = 0. But if g = 0, then we cannot recover φ(0) through integration, since the right-hand side above will
always be 0.

3.2 Sobolev spaces
We are now equipped to define what are called Sobolev spaces. For an integer k ≥ 0, and 1 ≤ p ≤ ∞, and
an open domain U ⊆ Rd, we define the Sobolev space

W k,p(U) =
{
f : U → R : Dαf exists in the weak sense, and ‖Dαf‖p <∞ for all |α| ≤ k

}
.

Here ‖ · ‖p denotes the Lp norm on U :

‖f‖pp =

∫
U

|f(x)|p dx for p <∞,

and ‖f‖∞ = ess supx∈U |f(x)| (the essential supremum, the smallest upper bound possible over all subsets
of U of full measure).
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Sobolev spaces are central in the study of partial differential equations, which is commonly where you’ll
find people (mathematicians) referring to them. But they also play an important role in nonparametric
statistics. For example, if you recall the smoothing spline problem (2), where we said that “the minimiza-
tion is all functions f for the which the criterion is well-defined and finite”, we can take the domain here to
be the L2 Sobolev space2

Wm,2([a, b]) =
{
f : [a, b]→ R : Dαf exists in the weak sense, and ‖Dαf‖22 <∞, for all α ≤ m

}
.

We note that, generally speaking, when working in Sobolev spaces (just like Lp spaces), we identify two
functions that are equal almost everywhere. In other words, each element f in a Sobolev space is really an
equivalence class of functions, any pair of which agree except on a set of measure zero.

Now we recall Hölder spaces. We touched on these in the lecture on kernels. Formally, for an integer r ≥ 0,
and 0 < γ ≤ 1, we define the Hölder space

Cr+γ(U) =

{
f : U → R : Dαf exists, ‖Dαf‖∞ <∞ for all |α| ≤ r, and

sup
x 6=z

|Dαf(x)−Dαf(z)|
‖x− z‖γ2

<∞ for all |α| = r

}
.

In the above, we can interpret Dαf as a classical derivative, and ‖ · ‖∞ as the supremum norm (we don’t
need the essential supremum norm). This may all seem more restrictive than Sobolev spaces, but as we’ll
discuss just below, we can actually identify the Hölder space with a particular Sobolev space.

Let’s pause to examine the relationship between the Sobolev space W k,∞(U) and the Hölder space Ck(U).
The former contains all functions f such that the αth weak derivative of f is bounded for all |α| ≤ k.
The latter contains all functions f such that the αth derivative of f is bounded for all |α| < k, and Dαf
Lipschitz for |α| = k. It turns out that these two conditions are really saying the same thing. Trying
to make this statement precise for general domains is probably not worth it, so we’ll just say that for a
bounded domain U with smooth boundary, we can identify W k,∞(U) with Ck(U). To be precise, in doing
so, we identify each f in the Sobolev space with its classically differentiable version.

Much more can be said about the connection between Sobolev and Hölder spaces, which is covered next.

3.3 Embedding theorems
Among the whole optional part of material on Sobolev spaces, this next bit really is the most optional, but
it’s too cool not to cover. We start by defining norms on Sobolev and Hölder spaces; namely,

‖f‖Wk,p(U) =



( ∑
|α|≤k

‖Dαf‖pp

)1/p

if p <∞

∑
|α|≤k

‖Dαf‖∞ if p =∞
for f ∈W k,p(U),

and
‖f‖Cr+γ(U) =

∑
|α|≤r

‖Dαf‖∞ +
∑
|α|=r

sup
x 6=z

|Dαf(x)−Dαf(z)|
‖x− z‖γ2

for f ∈ Cr+γ(U).

Equipped with these norms, W k,p(U) and Cr+γ(U) are Banach spaces (complete normed linear spaces).
In fact, when p = 2, the space W k,p(U) is a Hilbert space (complete inner product space) under the inner
product 〈f, g〉Wk,p(U) =

∑
|α|≤k〈Dαf,Dαg〉2 =

∑
|α|≤k

∫
U
Dαf(x)Dαg(x) dx.

2We’ll ignore here, and in several other places, the fact that the domain is closed. Recall, we defined Sobolev spaces on
open domains, and we will do the same for Hölder spaces as well. Hence, we are being slightly imprecise by abruptly allowing
closed domains but it’s easiest to do so for simplicity of exposition.
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Now here comes the cool part, which are special inequalities3 involving Sobolev norms that lead to what
are known as embedding theorems. There are really several embedding theorems that were developed over
many years, by different authors (Gagliardo, Nirenberg, Sobolev, Morrey, others), but now the totality of
them is usually just called “the Sobolev embedding theorem”. In a nutshell, this is what it says (recall d is
the dimension of the domain U ; and we’re intentionally vague about what conditions it needs to satisfy).

The case pk < d, subcritical regime. In this case we a have lower smoothness-to-dimension ratio. Let
0 ≤ ` < k be an integer, and p < q <∞, such that the pair satisfies

1

q
− `

d
=

1

p
− k

d
.

Then we have, for a constant C > 0 depending only on k, p, `, q and U ,

‖f‖W `,q(U) ≤ C‖f‖Wk,p(U), for all f ∈W k,p(U).

This means that W k,p(U) ⊆W `,q(U), and moreover we have what is known as a continuous embedding of
normed spaces. From the above inequality, we learn that any norm ball of radius ρ in the former space is
contained in a normal ball of the latter, whose radius is at most Cρ.

Note that in the special case where we take ` = 0, we get that for

q =
pd

d− pk ,

and a constant C > 0 depending only on k, p, q and U , it holds that

‖f‖q ≤ C‖f‖Wk,p(U), for all f ∈W k,p(U).

This means that W k,p(U) ⊆ Lq(U), and the embedding is continuous.

The case pk > d, supercritical regime. In this case we a have higher smoothness-to-dimension ratio.
Let 0 ≤ r < k be an integer, and 0 < τ ≤ 1, such that the pair satisfies

r + τ

d
=
k

d
− 1

p
.

A technical detail: if the value of r, τ satisfying the above results in τ = 1, then we need to “downgrade”
it to a value less than 1. That is, let γ = τ if τ < 1, and otherwise let 0 < γ < 1. Then we have, for a
constant C > 0 depending only on k, p, r, γ and U ,

‖f‖Cr+γ(U) ≤ C‖f‖Wk,p(U), for all f ∈W k,p(U).

This means that W k,p(U) ⊆ Cr+γ(U), and the embedding is continuous. In view of this, we can always
identify each function f ∈W k,p(U) with its r times classically differentiable version.

(The critical regime pk = d is actually a bit more subtle and we’ll skip over it.)

How do we interpret the Sobolev embedding theorem? In the subcritical regime, it says that we can trade
off smoothness in the differential sense with smoothness in the integral sense. Given a k times (weakly)
differentiable function, whose derivatives are in Lp(U), the embedding theorem tells us that its deriva-
tives of order ` < k are less “peaky” and more “evenly spread out”, since they are Lq(U) with q > p. In
the supercritical regime, the conclusion is arguably even more fascinating—it says that knowing a func-
tion’s derivatives are smooth in a global (integrated) sense tells us something about local smoothness of
lower order derivatives, at each point in the domain. Given a k times (weakly) differentiable function, the
embedding theorem starts off with a statement about the size of

∑
|α|≤k

∫
U
|Dαf(x)|p dx, and translates

this into a statement about the Hölder constant of Dαf for |α| < k. Figure 3 gives an illustration of the
tradeoffs navigated by the Sobolev embedding theorem (these types of plots are sometimes called “DeVore
diagrams” in honor of Ron DeVore).

3In an unfortunate clash of nomenclature with statistics, you’ll often hear mathematicians calling these “estimates”.
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k

1/p1/q1/q′ 1/q*

k − 1

k − 2

k − 3

Line of slope d

Subcritical regime

k

1/p1/∞

k − 1

k − 2

Supercritical regime

k − 3

Line of slope d

Wk,p(U)
Wk,p(U)

Wk−1,q(U) Cr+γ(U)

Figure 3: Illustrations of the Sobolev embedding theorem. In each plot, we parametrize the x-axis by 1/p
and the y-axis by k. Hence, as we move right-to-left, we increase the index of the Lp norm that is used to
measure integral smoothness, and functions get less “locally peaked” and more “evenly spread out”. As we
move top-to-bottom, we decrease the number of (weak) derivatives under consideration. Left: subcritical
regime with pk < d. We traverse a line of slope d, moving down and to the left, in order to visit the differ-
ent Sobolev spaces into which W k,p(U) embeds, culminating in an intersection with the x-axis (k = 0) at
q = pd/(d− pk). Right: supercritical regime with pk > d. Similarly, we traverse a line of slope d to find the
Hölder space into which W k,p(U) embeds, which is given by an intersection with the y-axis (q = ∞). The
open white circles denote cases in which the embedding fails for γ = 1.

4 Multivariate splines
We move on to methods for fitting multivariate splines in nonparametric regression. In a sense, both of the
following statements are true.

1. There are several multivariate extensions of spline estimators, e.g, tensor product and thin plate
splines (among others). We’ll cover these.

2. There are no “real” multivariate extensions of spline estimators, and tensor product and thin plate
splines are not “really” splines. In fact, even defining a multivariate spline is generally very tricky.

How can this be? Let’s go about this backwards, and start by explaining the very last part of the second
point: suppose you were to (reasonably) insist that a multivariate spline should be, like a univariate spline,
a piecewise polynomial of a degree k that is Ck−1, which means it has continuous derivatives of all orders
less than k. Then in general this is going to be tricky to fulfill when d ≥ 2. This is essentially due to the
number in the number of constraints such continuity imposes in the multivariate setting. Recall that a kth

degree polynomial in d dimensions is of the form (using multi-index notation α = (α1, . . . , αd) ∈ Zd+):

f(x) =
∑
|α|≤k

βα x
α1
1 xα2

2 . . . xαdd , (8)

for coefficients βα, |α| ≤ k. The number of coefficients, and hence the dimension of the space of kth degree
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Figure 4: Illustration of the constraints for C1 smoothness, for a cubic on each triangle. Credit: de Boor
(2009). A polynomial of an arbitrary degree on a triangle can be written be in what is called a B-form (as
an expansion of what are called Bernstein basis polynomials), whose coefficients can be assigned to anchor
points, drawn above as blue circles. The set of coefficients that are tied together in a linear equation needed
for C1 smoothness are highlighted as a red quadrilateral. We can see that the linear systems are entangled,
since pairs of them overlap at an anchor point.

polynomials in d dinensions, is
k∑
`=0

(
d− 1 + `

`

)
=

(
d+ k

k

)
.

Now let’s just think about cubic degree k = 3 in dimension d = 2, and try to understand the claim that
it’s tricky to construct a C2 piecewise cubic, when we consider the “pieces” to be triangles. In fact, it’s
already going to be hard enough to construct a C1 piecewise cubic. Suppose that we have two triangles
sharing an edge e. Then on each triangle we have

(
5
2

)
= 10 parameters to define the cubic, and hence 20

parameters in total. Denoting by f, g the two cubics on our adjacent triangles, the C1 condition says that

Dαf(x) = Dαg(x), for all |α| ≤ 1 and all x ∈ e.

It can be shown that this reduces to 10 constraints on the coefficients; but importantly, the structure of
these constraints is such that, for a given set of values at the vertices of the triangles, it is unclear whether
there will exist a set of coefficients that satisfies the constraints and meets the prescribed values at the
vertices. This basically happens because the linear constraints are all entangled. Figure 4 gives an illustra-
tion.

To get around this problem we have to increase the degree of the polynomial. As it turns out, for quintic
degree k = 5, this problem doesn’t occur for two adjacent triangles in dimension d = 2, and we get what is
sometimes called a “free” C1 smoothness condition, where this kind of entanglement of constraints doesn’t
happen. One can ask: in dimension d, what is the requirement on the degree k (for a generic partition of
points into simplices) such that we get a “free” Cs smoothness condition? The answer is, disappointingly,

k ≥ s(d+ 1) + d.

We see that for “free” C1 smoothness when d = 2, the minimal degree is indeed k = 5, and when d = 3 it is
k = 7. This seems very wasteful.

This is not a complete show-stopper for multivariate splines and there is much more to the story than this
but we’ll not travel down this path. To learn more, two definitive references are de Boor et al. (1993); Lai
and Schumaker (2007), and de Boor (2009) is a lighter, enjoyable review.
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4.1 Tensor product splines
One way forward in the multivariate setting is just to take tensor products. Recall, a tensor product of
two univariate functions f1, f2 on [a, b] is denoted f1 ⊗ f2, which is the function on [a, b]2 defined as

(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2).

Similarly, for any collection of q ≥ 2 functions f1, . . . , fq, we can define the tensor product f1 ⊗ f2 ⊗ · · · ⊗ fq
as a function

(f1 ⊗ f2 ⊗ · · · ⊗ fq)(x1, x2, . . . , xq) = f1(x1)f2(x2) . . . fq(xq).

Thus given a kth degree spline basis with r knots t1, . . . , tr, which we denote by g1, . . . , gN for N = r+k+ 1,
we can take all d-way tensor products to form collection of functions on [a, b]d:

gj1 ⊗ gj2 ⊗ · · · ⊗ gjd , for all ` = (j1, j2, . . . , jd) ∈ [N ]d,

where we use the abbreviation [N ] = {1, . . . , N}. By construction the linear span of this collection, i.e.,
functions of the form

f(x) =
∑
j∈[N ]d

βj gj1(x1)⊗ · · · ⊗ gjd(xd),

for coefficients βj , j ∈ [N ]d, generates the space of tensor product splines{
f1 ⊗ · · · ⊗ fd : each f` is a kth degree spline with knots in t1, . . . , tr, for ` = 1, . . . , d

}
.

Figure 5 displays a few bivariate tensor products of B-splines.

To fit a tensor product spline from data, the simplest thing to do would be the tensor product regression
spline, whose coefficients are given by solving

minimize
β

n∑
i=1

(
yi −

∑
j∈[N ]d

βj gj1(xi1)⊗ · · · ⊗ gjd(xid)

)2

.

Denoting by A⊗B the Kronecker product of matrices A,B, and denoting by G` ∈ RN×N the basis matrix
for dimension `, with entries [G`]pq = gq(xp`), we can express the above in more compact form as

minimize
β

∥∥Y − (G1 ⊗ · · ·Gd)β
∥∥2
2
.

As usual, given the solution β̂, we make predictions according to f̂(x) =
∑
j∈[N ]d β̂j gj1(x1)⊗ · · · ⊗ gjd(xd),

and since β̂ is linear in Y , the tensor product spline f̂ is a linear smoother.

Few notes: there is no reason that the knots have to be the same along each dimension, that is only done
here for simplicity. We could have also used regularization, though for “variationally-motivated” regulariza-
tion we’d turn to thin plate splines (covered next).

4.1.1 What are these functions?

We should be clear that tensor product construction does not “really” give us a multivariate spline, if we
maintain that a spline is a kth piecewise polynomial that is also Ck−1. Why? Note that a tensor product
of univariate kth degree splines produces a function that is indeed Ck−1, and indeed a piecewise polyno-
mial: it is a polynomial on each hypercube of the form

[tj1 , tj1+1]× · · · × [tjd , tjd+1].

But it is not necessarily a kth degree polynomial on each hypercube; it is a tensor product of univariate
kth degree polynomials. Technically, out of this we can get a polynomial of degree up to kd, and at the
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Figure 5: Bivariate tensor products of cubic B-splines. Credit: Chapter 5.7 of Hastie et al. (2009).

same time, we can’t actually generate any polynomial of degree kd. We are restricted to functions of the
form

f(x) =
∑

α1,...,αd≤k

βα x
α1
1 xα2

2 . . . xαdd .

There is important difference here, compared to (8). As a concrete example, take k = 1 and d = 2: then
the tensor product of univariate linear functions give us (what are called bilinear) functions of the form

1 + ax1 + bx2 + cx1x2,

which is not linear, because of the cross term x1x2. At the same time, we can’t get any quadratic out of
this, because we’re missing the terms x21 and x22.

This seems to bothers some people (researchers, practitioners), but doesn’t bother others—it really must
depend on the problem setting or application one has in mind. Sometimes the highly anisotropic (coordinate-
aligned) nature of a tensor product spline may be desirable, and other times it may not.
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4.2 Thin plate splines
An alternative route is to try to extend the variational problem (2) that defined the univariate smoothing
spline. At the outset, let’s aim for the most general extension, which is to define an estimator by solving

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
U

∑
|α|=m

[Dαf(x)]2 dx, (9)

for an integer order m ≥ 1. Here U is a subset of Rd that contains the input points xi, i = 1, . . . , n, and
the minimization is over all functions f for the which the criterion is well-defined and finite. For example,
we can consider the minimization to be over the Sobolev space Wm,2(U), which recall contains m times
weakly differentiable functions with αth derivative in L2(U), for |α| ≤ m. (There is a subtlety here about
what we actually mean here for unbounded domain like U = Rd. The problem is that the Sobolev space
Wm,2(Rd) doesn’t admit polynomials of degree m − 1, whereas we’d like all of these to be allowed in the
minimization. The trick is essentially to “quotient out” polynomials, which must be done with care; if you
are curious to see the details, you can refer to Meinguet (1979); Wahba and Wendelberger (1980).)

Is this a good idea? It depends. When 2m > d, problem (9) is well-defined in the sense that it admits a
solution. This solution is what we’ll eventually call the thin plate spline estimator (in a specific case). But
when 2m ≤ d, problem (9) is fundamentally ill-defined and lacks a solution altogether, as explained next.

4.2.1 Return of the Sobolev embedding theorem

Let’s recall what we learned from the Sobolev embedding theorem earlier (if you skipped it, since we did
say it it was optional, then also that’s fine—the key conclusion itself should still parse). When 2m > d,
which we called the supercritical regime, the Sobolev space Wm,2(U) embeds continuously into a Hölder
space Cr+γ(U), so in particular it embeds continuously into C0(U), the space of continuous functions
on U equipped with the L∞ norm (this is the sup norm, and not the essential sup norm). Why is this
important? Well, given a sequence such that fN → f as N → ∞ in ‖ · ‖Wm,2(U) norm, the continuous
embedding property implies fN → f as N →∞ in L∞ norm, which implies fN (x)→ f(x) for all x. Thus
we have shown a critical fact:

For 2m > d, the point evaluation operator is continuous on Wm,2(U).

This means we can do things like solve the variational problem (9).

But when 2m ≤ d, we do not get an embedding into C0(U), and it turns out that:

For 2m ≤ d, the point evaluation operator is not continuous on Wm,2(U).

This means that there can be a sequence such that fN → f as N →∞ in ‖ · ‖Wm,2(U) norm but fN (x) 6→
f(x) for some x. In fact, it’s not hard to see this from first principles when 2m < d. Let f be any infinitely
differentiable “bump” function which is unimodal with a unique max at the origin, of f(0) = 1, and which
is zero outside of the unit `2 ball {x : ‖x‖2 ≤ 1} ⊆ U . Define fN (x) = f(Nx), for N = 1, 2, 3, . . . , so that
fN collapses smoothly to a spike at the origin as N →∞. Then for any α,∫

[DαfN (x)]2 dx = N2|α|−d
∫

[Dαf(u)]2 du,

simply by a change of variables u = Nx. If d > 2m, then for any |α| ≤ m, we will have N2|α|−d ≤
N2m−d → 0 as N → ∞. In other words, fN → 0 (the zero function) as N → ∞ in ‖ · ‖Wm,2(U) norm.
However, recall fN (0) = 1 for all N , so clearly we do not get pointwise convergence at the origin.

When 2m = d, the construction needs to be adapted (we need to use a “multiresolution” average of bump
functions, rather than a single bump function), but we can still show that point evaluation is not continu-
ous by exhibiting a sequence for which fN → 0 in the ‖ · ‖Wm,2(U) norm, but fN (0) = 1 for all N .

The lack of continuous point evaluation operator when 2m ≤ d means that we cannot generally solve the
variational problem (9), because its criterion (which features point evaluation) is not a continuous function
of the optimization variable f .
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4.2.2 Restrictions to the rescue

To circumvent the above issue, we can just restrict 2m > d. Note that this forces us to take more deriva-
tives as d grows, which is not really desirable (more on this later). In any case, when d = 2, it is valid to
take m = 2, which yields the thin plate spline estimator, defined by solving

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
U

‖∇2f(x)‖2F dx, (10)

where ∇2f denotes the weak Hessian (matrix of weak second derivatives) of f , and ‖ · ‖F is the Frobenius
norm. This can be equivalently written as

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
U

[(
∂2f(x)

∂x21

)2

+ 2

(
∂2f(x)

∂x1∂x2

)2

+

(
∂2f(x)

∂x22

)2]
dx. (11)

Like the cubic smoothing spline problem (3), the thin plate spline problem (11) (or equivalently, (10)) has
a representer theorem for its solution. Unlike the smoothing spline, the solution actually depends on the
choice of the domain U . For U = Rd, one can show that it suffices to consider functions of the form

f(x) = a+ bTx+

n∑
j=1

βjη(‖x− xj‖2), (12)

where η is the so-called radial basis function

η(r) =
1

16π
r2 log r2,

(As log 0 is undefined, we adopt a continuous extention at zero, and set η(0) = 0.) In order for the penalty
in the problem (11) to be finite, a necessary and sufficient condition on the coefficients is that

0 =

n∑
i=1

βj =

n∑
j=1

βjxj .

Note that there are 3 linear constraints here (since each xi is in R2), and there are n+ 3 parameters in (12),
which means that in total, subject the constraints, we have n free parameters.

Using this constrained parametrization, we can translate (11) into a finite-dimensional problem. One can
show that it is a constrained generalized ridge regression, thus its solution, the fitted coefficients â, b̂, β̂, are
linear in Y . As we make predictions according to f̂(x) = â+ b̂Tx+

∑n
j=1 β̂jη(‖x− xi‖2), we see that the

thin plate spline is a linear smoother. The story for what happens on a bounded domain U is similar, but
a bit more complex. See Chapters 7.4–7.7 of Green and Silverman (1993) for precise details.

The function f in (12) often called a polyharmonic spline. Again, it is not “really” a multivariate spline, be-
cause it is not a piecewise polynomial. But let’s emphasize an important property: η is symmetric around
the origin. In fact, if we just look back at the criterion (10), we see that if we rotated the coordinate sys-
tem by an orthogonal transform V ∈ R2×2, and take our new coordinates to be z = V x, then we get

minimize
f

n∑
i=1

(yi − f(zi))
2 + λ

∫
‖V∇2f(z)V T‖2F︸ ︷︷ ︸

=‖∇2f(z)‖2F

dz,

where we used the fact that ‖V AV T‖F = ‖A‖F for any matrix A due to orthogonality of V . This means
that the thin plate spline estimator is rotationally invariant : if we rotated the coordinate system of the
input points, then the new solution would just be a rotation of the old solution. This is not true of tensor
product splines.

What about more than 2 dimensions? When d = 3, the choice m = 2 is still valid, and the corresponding
estimator is often still called the thin plate spline. The details are similar to the above. In fact, whenever
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2m > d, the variational problem (9) has a representer theorem and admits a finite-dimensional solution
which is a polyharmonic spline, and the problem reduces to a generalized ridge regression. See Chapter 7.9
of Green and Silverman (1993). Instead of pursuing these details, we’ll simply move on to RKHS theory,
as this will provide us a more general perspective.

But before moving on to RKHS theory, it’s worth emphasizing restrictive the condition 2m > d is. Though
it’s a very simple calculation, Table 1 lists the requirement on m for d = 1 through 5. This restriction is
obviously not desirable: the choice of smoothness order m (which then dictates the degree of the polyhar-
monic spline) should be up to the modeler, and not dictated by the ambient dimension.

Dimension Restriction
d = 1 m ≥ 1
d = 2 m ≥ 2
d = 3 m ≥ 2
d = 4 m ≥ 3
d = 5 m ≥ 3

Table 1: Translating the supercritical condition 2m > d, for each d ≤ 5.

4.2.3 Can we do anything else?

Yes. There is another way—we can “discretize” the variational problem (9), specifically, we can substitute
the penalty with a discrete approximation based on a graph Laplacian, where the graph is built using
the input points x1, . . . , xn. This has the advantage of being (i) always well-defined, and (ii) more com-
putationally efficient than solving (9) even when the latter is well-posed. In fact, beyond just being well-
defined or computationally efficient, the graph-based approach can even be minimax rate optimal (over
norm balls in Sobolev spaces) in regimes where the variational problem (9) is ill-posed. See Green et al.
(2021), and also Green et al. (2023) for a related idea with even stronger theory. Of course, we’re skirting
a lot of details, but the takeaway you should know is this:

Consistent estimation over Wm,2([0, 1]d)—even rate optimal estimation—is still possible for
general m, d. We can’t use always use variational methods like (9), but we can do other things.

However, to qualify the above statement, we must be in the Random-X setting, where xi, i = 1, . . . , n are
random. If the input points were fixed, then when 2m ≤ d, a construction using “bump” functions (just
like the one we gave above) will show that consistent estimation is impossible.

5 RKHS methods
Lastly, we turn to RKHS methods. This will require covering some theory first in order to properly under-
stand what’s going on, but RKHS theory is arguably easier than Sobolev theory. Two great references on
the former are Scholkopf and Smola (2002); Christmann and Steinwart (2008).

A warning before we begin: don’t confuse any of what follows with kernel smoothing (as covered in the
last lecture) or the kernel functions used therein! This is a completely separate concept.

5.1 Kernels, Hilbert spaces, RKHS
We start off by defining the ingredients needed for an RKHS. Throughout, let H be a vector space over
R. For our purposes: think of this as a space of real-valued functions. Recall, an inner product on H is a
function 〈 · , · 〉H : H×H → R satisfying, for all f, g, h ∈ H and all a, b ∈ R, the following three properties:

1. 〈af + bg, h〉H = a〈f, h〉H + b〈g, h〉H;
2. 〈f, g〉H = 〈g, f〉H;
3. 〈f, f〉H ≥ 0 with equality iff f = 0.
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We can always define a norm based on this inner product, denoted ‖ · ‖H, by

‖f‖2H = 〈f, f〉H.

Equipped with its inner product 〈 · , · 〉H, we call H an inner product space.

Hilbert spaces. An inner product space H is called a Hilbert space if it is complete. Recall that com-
pleteness means that Cauchy sequences converge to limits in the space. (Concretely, given any sequence
fn, n = 1, 2, 3, . . . in H such that for any ε > 0, we have ‖fn − fm‖H < ε for large enough n,m, it must hold
that ‖fn − f‖H → 0 as n→∞ for some f ∈ H.)

Kernels. There are different ways to define kernels, and in fact different ways to arrive at an RKHS.
One way is this. A kernel is function k : X × X → R for which there exists a map φ : X → H (for our
purposes: think of this as a feature map) such that for any x, y ∈ X ,

k(x, y) = 〈φ(x), φ(y)〉H.

Note that k is always symmetric and nonnegative, because 〈 · , · 〉H is an inner product. Furthermore, it is
easy to check from first principles that k satisfies the following property: for any n ≥ 1 and x1, . . . , xn ∈ X ,
if we define a matrix K ∈ Rn×n to have entries Kij = k(xi, xj), then

aTKa ≥ 0, for all a ∈ Rn.

A function k that is symmetric and satisfies the above property is called positive semidefinite.

Thus, from what we have just argued, a kernel function is always positive semidefinite. Remarkably, the
converse is also true: any positive semidefinite function k : X × X → R is a kernel. This means that in order
to define a kernel k, we don’t have to explicitly specify the feature map φ; we just need to satisfy positive
semidefiniteness. Examples of kernels on X = Rd include:

polynomial kernel : k(x, y) = (1 + xTy)m,

exponential kernel : k(x, y) = exp(xTy),

Gaussian kernel : k(x, y) = exp(−‖x− y‖22/σ2).

Importantly, kernels need not be restricted to X ⊆ Rd; they can be defined over much more exotic spaces
X , like spaces of images or text strings, we just need a suitable (positive semidefinite) notion of similarity
between objects.

Reproducing kernel Hilbert spaces. A Hilbert space H of functions is called a reproducing kernel
Hilbert space (RKHS), with kernel k : X × X → R, provided the following two conditions are satisfied:

1. for any x ∈ X , the function k(·, x) is an element of H;
2. for any function f ∈ H and x ∈ X , it holds that 〈f, k(·, x)〉H = f(x).

The functions k(·, x) in the first property are often called the “reproducers of evaluation”. Accordingly, the
second property is often called the “reproducing property”. In particular, note that it implies

k(x, y) = 〈k(·, x), k(·, y)〉H,

for any x, y. This means that the map φ(x) = k(·, x) is a valid feature map for k.

Equivalent formulation of an RKHS. Here is an equivalent formulation of an RKHS that reveals a
nice connection to Sobolev spaces. For x ∈ X , denote by δx the corresponding evaluation operator on H,
which acts according to δx(f) = f(x). Then a Hilbert space of functions H is an RKHS if and only if all of
the evaluation operators are continuous.
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Recall that the Sobolev space Wm,2(U), where U ⊆ Rd, is a Hilbert space, for any m ≥ 0. Recall also that
point evaluation in a Sobolev space is continuous if and only if 2m > d. Therefore, we learn the following:
a Sobolev space Wm,2(U) is an RKHS if and only if 2m > d. This is an amazing fact.

A natural follow-up question: what is the kernel k corresponding to the Sobolev space, for 2m > d? Well,
it’s a bit complicated. Are you ready for it? For U = Rd, it’s

k(x, y) =

∫
exp(2πi(x− y)Tu)

1 +
∑

0<|α|≤m
∏d
j=1(2πuj)2αj

du.

(The integral here—thus the kernel—only takes real values, since exp(2πi(x− y)Tu) = cos(2π(x− y)Tu) +
i(2πi(x− y)Tu) and the integral of the imaginary part is zero because the corresponding integrand is odd.)
While this certainly looks complicated, it simplifies in a few important cases. For d = 1 and m = 2, we get
the “smoothing spline kernel”:

k(x, y) =

√
3

3
exp

(
−
√

3|x− y|
2

)
sin

( |x− y|
2

+
π

6

)
. (13)

Meanwhile, for d = 2 and m = 2, we get the “thin plate spline kernel”:

k(x, y) =
1

16π
‖x− y‖22 log ‖x− y‖22. (14)

5.2 RKHS regression
After all that build up, this next part is going to be (surprisingly?) simple. Let H be an RKHS, and let
k : X × X → R be its kernel. We can now define an RKHS regression estimator by solving

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H, (15)

where ‖ · ‖H is the norm associated with H. Note: here the input points satisfy xi ∈ X , and X can be
completely arbitrary (it doesn’t need to be a subset of Rd).

Popular choices of k, as we already mentioned, include the polynomial kernel, Gaussian kernel, and expo-
nential kernel, which gives novel nonparametric regression estimators—novel in the sense that you haven’t
seem them thus far in these lectures on nonparametric regresion. We can also choose particular kernels, as
given in (13) and (14), to “reproduce” (no pun in intended) smoothing splines and thin plate splines.

5.3 Representer theorem
One of the main points of appeal of RKHS regression is the fact that we have a representer theorem for
the infinite-dimensional problem (15). This effectively generalizes the results stated thus far on splines.
The solution in (15) is unique and achieved at a function of the form

f(x) =

n∑
i=1

βik(x, xi).

Note that this is a linear combination of the representers of evaluation. The proof of this result is actually
not very hard. We’ll walk through it on the homework.

5.4 Finite-dimensional form
From the representer result, we can rewrite (15) as

minimize
β

n∑
i=1

(
yi −

n∑
j=1

βjk(xi, xj)

)2

+ λ

n∑
i,j=1

βiβj〈k(·, xi), k(·, xj)〉H. (16)
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Using the reproducing property 〈k(·, xi), k(·, xj)〉H = k(xi, xj), and denoting by K ∈ Rn×n the kernel
matrix with entries Kij = k(xi, xj), problem (16) simplifies even further to

minimize
β

‖Y −Kβ‖22 + λβTKβ. (17)

This is (once again) a generalized ridge regression. The solution in (17) is

β̂ = (KTK + λK)−1KTY = (K + λI)−1Y,

where we have used the fact that K is symmetric and invertible. The RKHS estimator makes predictions
according to f̂(x) =

∑d
j=1 β̂jk(x, xj), and since β̂ is linear in Y , it is (once again) a linear smoother.
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