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Ryan Tibshirani

Note: we’re following the context, problem setup, notation, etc. from the last lecture on high-dimensional
regression.

1 Ridge basics
We’ll jump right into some basic properties of ridge regression, which recall, for a predictor matrix X ∈
Rn×d and response vector Y ∈ Rn, is defined by

minimize
β

‖Y −Xβ‖22 + λ‖β‖22, (1)

for a tuning parameter λ ≥ 0. Unlike the lasso and best subset selection (which replace the ‖β‖22 penalty
above with ‖β‖1 and ‖β‖0, respectively), recall, the solution in the ridge problem (1) is generically dense:
it has all nonzero components, for any λ > 0.

Yes, above we said the solution in (1), and that was intentional. For any λ > 0, the criterion in the prob-
lem (1) is strictly convex, due to the λ‖β‖22 term. It therefore always has a unique solution (regardless
of X). There is not much else to say, except to emphasize the contrast here to the lasso problem, which,
recall, does not always admit a lasso solution, though we were able to do some basic analysis to show that
it has a unique solution whenever X has columns in general position.

More than just being unique, the solution in (1) has an explicit form,

β̂ = (XTX + λI)−1XTY, (2)

for λ > 0. As another way to see the uniqueness claim, note that XTX + λI is always invertible whenever
λ > 0, since its smallest eigenvalue is at least λ.

Now, there are many “facets” of the ridge regression estimator, by which we mean, many perspectives
from which to view it. We’ll walk through a number of these now (there are many others we don’t cover!),
before moving to the tools needed to analyze the risk of ridge regression.

1.1 Principal components view
A standard way to view the ridge regression estimator is through the lens of how it acts in principal com-
ponents space. Let X = UΣV T be a singular value decomposition of X. Then we can write the vector of
ridge fitted values as:

Xβ̂ = X(XTX + λI)−1XTY

= UΣ2(Σ2 + λI)−1UTY

=

n∑
j=1

σ2
j

σ2
j + λ

uju
T
j Y,

where uj denotes the jth column of U , and σj the jth diagonal element of Σ. Note that the least squares
projection of Y on X (always well-defined, even if d > n) is

UUTY =

n∑
j=1

uju
T
j Y.
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Comparing the second-to-last display to the last one, we can see that ridge (compared to least squares)
performs shrinkage, but not uniformly so in all directions—it shrinks more along the principal component
directions uj that correspond to low variance (small σj), and less along the directions uj that correspond
to high variance (large σj).

1.2 Bayesian view
Another standard way to view ridge regression is as a Bayes estimator in a normal-normal model for the
likelihood and prior. That is, for fixed X, consider the model

β ∼ N(0,
1

λ
I),

Y |β ∼ N(Xβ, I).
(3)

Then, following standard calculations in Bayesian inference, where we often use p(·) to denote the density
of its argument, it holds that

p(β|Y ) ∝ p(Y |β) p(β),

where ∝ means “proportional to” and ignores terms not depending on β. Again by standard calculations,
the right-hand side above can be identified as proportional to a Gaussian density. Therefore (because it
is Gaussian), its mean is equal to its mode, and the Bayes estimator is the maximum a posteriori (MAP)
estimator:

E[β|Y ] = argmax
β

p(Y |β) p(β)

= argmin
β

− log p(Y |β)− log p(β) (4)

= argmin
β

1

2
‖Y −Xβ‖22 +

λ

2
‖β‖22, (5)

that is, the Bayes estimator in this model is simply the ridge estimator.

We note that the lasso can also be written as a MAP estimator in a Bayesian model, where the prior in (3)
is now Laplace rather than Gaussian. However, the MAP estimator is not the Bayes estimator (posterior
expectation) in this particular model: the posterior is no longer Gaussian and no longer has the property
of symmetry around its mode that would imply its mode and its mean are the same.

1.3 Kernel view
Another interesting view stems from what is called the push-through matrix identity:

(aI + UV )−1U = U(aI + V U)−1. (6)

for a, U, V such that the products are well-defined and the inverses exist. We can obtain this from

U(aI + V U) = (aI + UV )U,

followed by multiplication by (aI + UV )−1 on the left and the right. Applying the identity (6) to (2) with
a = λ, U = XT, and V = X, we obtain an alternative form for the ridge solution:

β̂ = XT(XXT + λI)−1Y. (7)

This is often referred to as the kernel form of the ridge estimator. From (7), we can see that the ridge fit
can be expressed as

Xβ̂ = XXT(XXT + λI)−1Y.

What does this remind you of? This is precisely K(K + λI)−1Y where K = XXT, which, recall, is the fit
from RKHS regression with a linear kernel k(x, z) = xTz. Therefore we can think of RKHS regression as
generalizing ridge regression, by replacing the standard linear inner product with a general kernel. (Indeed,
RKHS regression is often called kernel ridge regression.)
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1.4 Noise features view
The last view we cover is likely the least well-known, but it is still very interesting. This is due to Kobak
et al. (2020). Suppose that we append to the columns of our feature matrix X ∈ Rn×d a large number of
“noise” features Z ∈ Rn×D where D is very large and each Zij is stochastic with mean zero and variance
τ2, independent of Y . Denote such an augmented feature matrix by

X̃ = [X;Z] ∈ Rn×(d+D),

and consider performing least squares regression—with no explicit ridge regularization—of Y on X̃. As we
are considering the large D limit, we will inevitably have d+D > n at some point, so we’ll need to amend
the least squares estimator because it is nonunique and has the pathologies we already discussed. To do so,
we’ll take the minimum `2 norm least squares solution,

β̃ = (X̃TX̃)+X̃TY. (8)

We’ll also simply call this the min-norm solution (especially when it is unambiguous from the context that
the norm we’re talking about is `2). We’ll spend a lot more time discussing min-norm least squares when
we talk about overparametrization theory, in the next lecture.

Now we rewrite (8) in kernel form. By even simpler arguments than those in the previous subsection—just
using the fact tha the generalized inverse and transpose operations commute in general, (A+)T = (AT)+—
we can rewrite the min-norm solution (assuming that d+D > n and X̃ has full row rank) as

β̃ = X̃T(X̃X̃T)−1Y

= [X;Z]T(XXT + ZZT)−1Y

= [X; τZ̃]T(XXT + τ2Z̃Z̃T)−1Y,

where in the last line we have rescaled the noise features so that each Z̃ij = τ−1Zij has zero mean and
unit variance. If we take τ =

√
λ/D, then by the law of large numbers,

λ

D
Z̃Z̃T as→ λI, as D →∞.

Therefore if we let β̃[d] denote the first d components of the min-norm least squares solution in (8) (which
has total dimension d+D), then

β̃[d]
as→ XT(XXT + λI)−1Y, as D →∞,

the limit here being the ridge solution from regressing Y on X with tuning parameter λ. Similarly, for any
fixed x̃ = (x, z) ∈ Rd+D,

x̃Tβ̃
as→ xTXT(XXT + λI)−1Y, as D →∞,

the limit here being the ridge prediction from regressing Y on X with tuning parameter λ. In other words,
min-norm least squares on an augmented design where we augment the given features with noise features—
whose variance vanishes appropriately as the number of them grows—reproduces ridge regression!

2 Random matrix theory
In this section, we will introduce some basic results in random matrix theory (RMT), which will serve as
the backbone that we will use to analyze the risk of ridge regression in the rest of the lecture. As an edito-
rial remark, you’ll often hear “random matrix theory” to describe two generally related but different flavors
of results: asymptotic and non-asymptotic. Below we will be talking about asymptotic RMT. And as per
our usual comment, there is a lot to learn about random matrix theory and we’re only really covering the
tip of the iceberg; to learn more, well beyond what we cover here, see, e.g., Tulino and Verdu (2004); Bai
and Silverstein (2010), which are definitive references for the type of asymptotic results that we study. It
is also worth noting that RMT is a very active field of research, and new and important—arguably, even
foundational—results seem to be still emerging right now.
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2.1 Proportional asymptotics
We’ll be working in what is known as a proportional asymptotics model, where the dimension d and num-
ber of samples n diverge proportionally. That is,

d

n
→ γ ∈ (0,∞), as n, d→∞.

The quantity γ is often called the aspect ratio.

We assume that the rows of our predictor matrix X ∈ Rn×d, denoted xi ∈ Rd, i = 1, . . . , n, are i.i.d., and
importantly, each one is a “rotation” of a vector of i.i.d. random variables, so that we can write:

xi = Σ1/2zi, where zi ∈ Rd has i.i.d. entries with zero mean, unit variance. (9)

We’ll allow the feature covariance matrix Σ to be more or less arbitrary (subject to some limiting condi-
tions, described shortly), and the distribution of each entry of zij to be more or less arbitrary (subject to
some moment conditions, described shortly). Therefore, the condition (9) looks like a very weak assump-
tion on the features.

While this is certainly true in some sense, it is also worth noting that (9) is a not completely innocuous
assumption. In particular, left multiplication by the square root matrix Σ1/2 performs a kind of averaging
operation. Consequently, the entries xij can either have long-tailed distributions (for Σ close to the iden-
tity, and zij having heavy tails), or have complex dependence structures (for Σ far from the identity), but
not both, since then the averaging will mitigate any long tail of the distribution of zij .

Note that we can express (9) succinctly as X = ZΣ1/2, where Z ∈ Rn×d has i.i.d. entries zij .

Why exact asymptotics? As a foreshadowing of what is to come, we will derive exact asymptotic ex-
pressions for the risk of ridge regression, under a proportional asymptotics model. This stands in contrast
to the risk theory we developed for the lasso in last lecture, as well as theory we developed in nonparamet-
ric regression in previous lectures. All of our theory here was expressed in terms of risk bounds, which we
inspected primarily for their dependence on n, d. In the proportional asymptotics regime, this will simply
not do. This is because, under proportional asymptotics, essentially all estimators will have constant risk,
both interesting ones—like ridge, and trivial ones—like the null estimator β̂ = 0. Therefore, deriving exact
formulae for asymptotic risk is of critical importance, as we can no longer distinguish estimators in terms
of rates.

2.2 Stieltjes transform
In order to state and understand the main result we will use in our analysis, we need to define a few more
quantities. Given a symmetric positive semidefinite matrix A ∈ Rd×d, we define its spectral distribution
as the empirical distribution of its eigenvalues. This is denoted FA, and writing si(A), i = 1, . . . , d for the
eigenvalues of A, we have

FA(t) =
1

d

d∑
i=1

1{si(A) ≤ t}. (10)

This will be a useful tool because we can reason about the behavior of large covariance matrices by study-
ing their distribution of their eigenvalues.

Another key tool to introduce is called the Stieltjes transform. This takes as input a measure F supported
on the set R of real numbers, and produces a function mF , defined by

mF (z) =

∫
1

s− z
dF (s), for z ∈ C \ supp(dF ). (11)

The Stieltjes transform has many nice properties. For example, there is a one-to-one correspondence func-
tion between Sieltjes functions and probability measures. That is, if F,G are probability measures, then
mF = mG ⇐⇒ F = G.
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There is also is a close connection between the Stieltjes transform of a measure F and its moments, which
we denote by

µk(F ) =

∫
sk dF (s), k = 0, 1, 2, . . . .

We can see this because, by Taylor expansion,

1

s− z
= −1

z

1

1− s/z
= −1

z

∞∑
k=0

(s/z)k,

and under appropriate regularity conditions, we can integrate both sides of the above, and exchange the
order of the integral and infinite sum, to obtain

mF (z) = −
∞∑
k=0

µk(F )

zk+1
.

Given this connection, it should not be surprising that the Stieltjes transform is also connected to weak
convergence. That is, if mn = mGn is the Stieltjes transform of Gn, for n = 1, 2, 3, . . . , then

mn → mG as n→∞ =⇒ Gn
d→ G as →∞.

In other words, convergence in Stieltjes transform implies convergence in distribution. The converse is also
true: convergence in distribution implies convergence in Stieltjes functions, away from z = 0, because the
function s 7→ 1/(s− z) is continuous and bounded when z 6= 0.

Lastly, the Stieltjes transform is intricately connected to matrix functionals that appear in ridge regression:
for FΣ̂ denoting the empirical spectral distribution of the sample covariance Σ̂ = XTX/n, as in (10), note

mFΣ̂
(−λ) =

∫
1

s+ λ
dFΣ̂(s)

=
1

d

n∑
i=1

1

si(Σ̂) + λ

=
1

d
tr
[
(Σ̂ + λI)−1

]
.

We can recognize the term inside the trace from the expression from the ridge solution at tuning parame-
ter nλ: from (2), this is β̂ = (Σ̂ + λI)−1XTY/n.

2.3 Marchenko-Pastur theorem
We are now ready to state one of the most important results in random matrix theory, which is called the
Marchenko-Pastur theorem, or MP theorem, due to Marchenko and Pastur (1967). This result was further
developed and generalized by many other authors, including Silverstein (1995).

Theorem 1 (Marchenko and Pastur 1967; Silverstein 1995). Let X = ZΣ1/2 ∈ Rn×d, where the entries of
Z are i.i.d. from a distribution with zero mean and unit variance. Assume that as n, d→∞, it holds that
d/n→ γ ∈ (0,∞), and the spectral distribution of Σ converges weakly, FΣ

d→ H, where H is supported on
[0,∞). Then, almost surely, the spectral distribution of Σ̂ = XTX/n converges weakly to a deterministic
limit, FΣ̂

d→ F . This limiting distribution F = F (H, γ) depends on H and γ only. It can be identified with
its Stieltjes transform mF , which can be described as follows:

mF (z) + 1/z =
1

γ
(vF (z) + 1/z), (12)

where vF (z) is the unique solution of the nonlinear equation:

− 1

vF (z)
= z − γ

∫
s

1 + svF (z)
dH(s). (13)
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Several remarks are in order. First, the object vF defined in (12) is called the companion Stieltjes trans-
form, and is actually quite a natural object. Though the relationship in (12) may look obscure, you can
just think of it through the lens of the following fact: the companion Stieltjes transform of the spectral
distribution of XTX/n is the name that we give to the Stieltjes transform of the spectral distribution of
XXT/d, that is,

vF
XTX/n

= mF
XXT/d

.

Second, the equation in (13), which is sometimes called the Silverstein equation, is not generally solvable
in closed-form (for general H). However, in special cases it is. For example, in the isotropic case Σ = I,
whose spectral distribution FΣ = δ1 is a point mass at 1, we have of course H = δ1. In this case, equation
(13) is explicitly solveable, and the limiting distribution F in Theorem 1 admits an explicit form as well,
which we call the Marchenko-Pastur law, or MP law. For γ ≤ 1, this law is supported on an interval [a, b],
where a = (1−√γ)2 and b = (1 +

√
γ)2, and it can be defined by its density

dF (s)

ds
=

1

2πγs

√
(b− s)(s− a). (14)

For γ > 1, the Marchenko-Pastur law is just as above but has an additional point mass of probability 1−1/γ
at the origin s = 0. See Figure 1 for a visualization.
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Figure 1: Empirical verification of the MP theorem when n = 2000, d = 1000. The left panel shows
the empirical distribution of eigenvalues of XTX/n when it has standard Gaussian entries, and the right
panel shows the same but when it has standardized Bernoulli entries. The black curve in each panel is the
density of the MP law.

Third, the Marchenko-Pastur theorem displays a remarkable phenomenon called universality : no matter
the distribution of the elements of Z that give rise to our sample covariance matrix Σ̂ = XTX/n (recall
the relationship X = ZΣ1/2), we get the same limit F for the spectral distribution of Σ̂. This limit only
depends on γ and H. So for example, in the isotropic case, we learn that if we populate the entries of X
with i.i.d. standardized (zero mean, unit variance) random variables, whether they be Gaussian, Bernoulli,
Poisson, t, etc., and plot a histogram of the eigenvalues of XTX/n for large n, then it is “very likely” that
they will look like they follow (14). See again Figure 1.

Fourth, and last, it is worth emphasizing that the distribution F from Theorem 1 is the almost sure limit
of eigenvalues of Σ̂ = XTX/n. Interpreting this correctly can sometimes be challenging for people learning
this material for the first time. Let us be clear about what it does not say: the result does not imply that
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the eigenvalues of Σ̂ for large n will approximately concentrate around some deterministic number. (This
would be the case in classical asymptotics, with n → ∞ and d fixed.) Rather, it means that the eigenval-
ues will exhibit a predictable spread for large n. In other words, when seeking to empirically examine the
statement in Theorem 1, as we did in Figure 1, we do not need to average results over repetitions or any-
thing like that, because just a single draw of X should produce eigenvalues that approximately display the
predicted spread. And if we simply redrew the Gaussian or Bernoulli entries, then we would (and should)
get basically identical-looking plots.

2.4 Deterministic equivalents
It turns out that we can restate the Marchenko-Pastur theorem in modern (or at least, not-so-classical)
terms, using what is known as the language of deterministic equivalents. Two sequences of (deterministic
or random) matrices An, Bn, n = 1, 2, 3, . . . of growing dimension are said to be asymptotically equivalent,
written as An � Bn, provided that for all sequences Θn, n = 1, 2, 3, . . . that are bounded in trace norm,1

tr
[
Θn(An −Bn)

]
→ 0, as n→∞.

This language gives us a way to cleanly state the MP theorem, as promoted by Dobriban and Sheng (2021)
(these authors also develop a “calculus” for deterministic equivalents). The following is a transcription of a
result by Rubio and Mestre (2011), that can be viewed as a generalized version of the MP theorem.

Theorem 2 (Rubio and Mestre 2011). Let X = ZΣ1/2 ∈ Rn×d, where the entries of Z are i.i.d. from
a distribution with zero mean, unit variance, and finite 8 + η moment, for some η > 0. Assume that as
n, d → ∞, the aspect ratio γn = d/n remains bounded away from 0 and ∞, as do the eigenvalues of Σ.
Then the resolvent of Σ̂ = XTX/n is asymptotically equivalent to a deterministic matrix, namely:

(Σ̂− zI)−1 � (anΣ− zI)−1, for z ∈ C \ R+, (15)

where an is the unique solution of the fixed-point equation:

1

γn

(
1

an
− 1

)
=

1

d
tr
[
Σ(anΣ− zI)−1

]
. (16)

We note that this theorem is quite general: it does not require d/n to actually converge to anything, nor
require that the spectral distribution of Σ has a limit. Furthermore, asymptotic equivalence implies many
interesting things: for example, taking Θn = I/d in the definition of asymptotic equivalence shows that
(15) implies convergence in Stieltjes transforms, which effectively recovers the original MP result. However,
there is much more we can learn from (15), including convergence of eigenvectors; see Rubio and Mestre
(2011) for a discussion.

Lastly, as a particularly simple and hence notable consequence of Theorem 2, it is shown in Dobriban and
Sheng (2021) that we can take z → 0 in (15), which gives

Σ̂−1 � 1

1− γn
Σ−1, (17)

where we have used the fact (which can easily be verified) that an = 1− γn solves the fixed-point equation
(16) in the case z = 0.

3 Least squares analysis
In this section, we will analyze the out-of-sample risk of least squares regression in a proportional asym-
potics model, both as a warm-up for ridge regression (the focus of the following sections), but also because
it is a certainly important result in its own right—as we alluded to in previous lectures more than once.

1The trace norm of Θ ∈ Rn×n is ‖Θ‖∗ =
∑n

i=1 |σi(Θ)|, where σi(Θ), i = 1, . . . , n are the singular value of Θ. Equivalently,
‖Θ‖∗ = tr[(ΘTΘ)1/2].

7



We consider the linear model
Y = Xβ0 + ε, (18)

assuming as usual that ε ∈ Rn has i.i.d. entries with mean zero and variance σ2, and ε ⊥⊥ X. To clearly lay
out the conditions on the features X ∈ Rn×d, we assume the following:

(A1) X = ZΣ1/2, where the entries of Z ∈ Rn×d are i.i.d. with zero mean and unit variance;

(A2) the covariance matrix Σ ∈ Rd×d has eigenvalues bounded away from 0 and ∞;

(A3) d/n→ γ ∈ (0, 1) as n, d→∞,

To emphasize, we are placing the restriction here that γ < 1, called the underparametrized regime. We will
analyze the asymptotic risk of the ordinary least squares estimator, which we can write as

β̂ = (XTX/n)−1XTY/n. (19)

One can show that this is almost surely well-defined under the assumptions laid out.2 Now let x0 = Σ1/2z0

be i.i.d. to the rows of X, and consider the out-of-sample risk of least squares, conditional on X,

RiskX(β̂;β0) = E
[
(xT0 β̂ − xT0β0)2

∣∣X]. (20)

By standard calculations, as covered previously, we can decompose the risk (20) of the least squares esti-
mator (19) into bias and variance terms; the bias term is zero, so the risk is pure variance,

RiskX(β̂;β0) =
σ2

n
tr
(
E[x0x

T
0 ] (XTX/n)−1

)
=
σ2

n
tr
(

Σ
[
Σ1/2(ZTZ/n)Σ1/2

]−1
)

=
σ2d

n

1

d
tr
[
(ZTZ/n)−1

]
. (21)

There are now several ways to proceed to compute the limit of above line, all based around the Marchenko-
Pastur theorem. Of course, each way must arrive at the same answer, which is

RiskX(β̂;β0)
as→ σ2 γ

1− γ
, (22)

where to be clear, “almost surely” is to be interpreted with respect to the distribution of X. Looking back
at (21), clearly σ2d/n→ σ2γ, so in order to establish (22) it suffices to prove that

1

d
tr
[
(ZTZ/n)−1

] as→ 1

1− γ
. (23)

Below, we step through three routes for calculating this limit. But first, it is worth emphasizing the behav-
ior of the asymptotic risk profile in (22):

The out-of-sample risk of least squares blows up as γ → 1 from below, that is, as we grow the
aspect ratio until d = n in the limit, least squares regression exhibits catastrophic risk.

What happens past γ = 1? The answer may surprise you. We’ll return to this in the next lecture.

Marchenko-Pastur theorem, followed by calculus. We can recognize the left-hand side in (23) in
terms of the Stieltjes transform of the spectral distribution FZTZ/n,

1

d
tr
[
(ZTZ/n)−1

]
= mF

ZTZ/n
(0).

2To be more precise, as n, d → ∞ with d/n → γ ∈ (0, 1), the minimum eigenvalue of XTX/n will be almost surely lower
bounded away from zero. This follows from what is called the Bai-Yin theorem (Bai and Yin, 1993), along with the fact that
Σ has eigenvalues bounded away from zero.
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To study the limit of mF
ZTZ/n

(0), we can use the Marchenko-Pastur theorem, transcribed in Theorem 1.
This tells us that FZTZ/n converges weakly almost surely to F , the MP law in (14), hence we get conver-
gence of Stieltjes transforms, so

mF
ZTZ/n

(0)
as→ mF (0).

Fortunately, the Stieltjes transform of F in (14) has an explicit form, for real z > 0:

m(−z) =
−(1− γ + z) +

√
(1− γ + z)2 + 4γz

2γz
. (24)

Since the limit as z → 0 is indeterminate, we can use l’Hôpital’s rule to calculate:

lim
z→0

m(−z) = lim
z→0

−1 + 1+γ+z√
(1−γ+z)2+4γz

2γ

=
−1 + 1+γ

1−γ

2γ
=

1

1− γ
,

which establishes the result in (23).

Gaussian calculation, in expectation. We can actually get away with a simpler calculation. Observe
that the Marchenko-Pastur theorem tells us that the limit of the left-hand side in (23) is both universal
and almost sure, and thus it suffices to compute it in the Gaussian case, in expectation. That is, it suffices
to study the limit of

1

d
tr
[
E
[
(ZTZ/n)−1

]]
, for Z having i.i.d. N(0, 1) entries.

In this case, ZTZ is Wishart, and (ZTZ)−1 is inverse Wishart, so it has a known expectation E[(ZTZ)−1] =
I/(n− d− 1). This means that

1

d
tr
[
E
[
(ZTZ/n)−1

]]
=

n

n− d− 1
→ 1

1− γ
,

as desired, which establishes (23).

Deterministic equivalents. The formulation of the Marchenko-Pastur theorem in terms of determin-
istic equivalents, as transcribed in Theorem 2, leads to the simplest calculation. To be precise, in order
to use this result, we must assume a bit more about the distribution of entries of Z: recall that we must
assume that it has 8 + η moments, for some η > 0. Now recall that an implication of this theorem is that
we have the deterministic equivalence (17), in the isotropic case. But we are in this case—there are no
appearances of Σ in (22). A direct implication of (17) (just use Θn = I/d in the definition of asymptotic
equivalence) is that

1

d
tr
[
(ZTZ/n)−1

]
and

1

1− d/n
1

d
tr(I) =

1

1− d/n
have the same asymptotic limit,

and we can just read off that right-hand quantity converges to 1/(1− γ), which again proves (23).

4 Ridge analysis
On to the analysis of ridge regression, which we will break up into two cases: the isotropic case, in which
Σ = I, and the general case, in which Σ is arbitrary (subject to minor restrictions, as usual, like eigenval-
ues bounded away from 0 and ∞). In the isotropic case, we will be able to analyze the ridge risk with the
random matrix theory tools introduced previously. The general Σ case will be more challenging, and there
we will simplify the bias calculation by taking underlying signal β0 to be random, i.e., by imposing a prior
on β0. We will discuss briefly what happens for general Σ and fixed β0 at the end.

As in the least squares analysis, we will assume the linear model (18), and will use similar assumptions to
(A1)–(A3) for the feature model, but considering the full range γ ∈ (0,∞). To be specfic, we assume:
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(B1) X = ZΣ1/2, where the entries of Z ∈ Rn×d are i.i.d. with zero mean, unit variance, and finite 8 + η
moment, for some η > 0;

(B2) the covariance matrix Σ ∈ Rd×d has eigenvalues bounded away from 0 and ∞, and satisfies FΣ
d→ H,

as n, d→∞;

(B3) d/n→ γ ∈ (0,∞) as n, d→∞.

We will analyze the asymptotic out-of-sample risk (20) of the ridge estimator. (Recall that this is condi-
tional on X.) For convenience we will reparametrize the ridge estimator as

β̂ = (XTX/n+ λI)−1XTY/n, (25)

which can either be seen as the original ridge estimator in (2) with tuning parameter nλ, or as the solution
in the original ridge problem (1) after rescaling the loss term by 1/n.

At the outset, we will record the following facts, which are straightforward to verify (by direct calculation).
The bias and variance components of the risk (20) of the ridge estimator (25) are:

BX(β̂;β0) = λ2βT
0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0 (26)

VX(β̂) =
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ

]
, (27)

respectively, where recall Σ̂ = XTX/n. It is worth noting that the variance does not depend on β0.

4.1 Isotropic Σ, fixed β0

We consider the isotropic case, Σ = I. We will assume that ‖β0‖2 = r (which is a constant that does not
vary with n, d), for the true signal vector in (18). Below we analyze the bias and variance separately.

Bias analysis. When Σ = I, the bias (26) becomes

BX(β̂;β0) = λ2βT
0 (Σ̂ + λI)−2β0. (28)

The key is to recognize this as the derivative with respect to λ of a certain functional,

βT
0 (Σ̂ + λI)−2β0 = − d

dλ

{
βT

0 (Σ̂ + λI)−1β0

}
. (29)

By the deterministic equivalence in (15) from Theorem 2, we know (just take Θn = β0β
T
0 in the definition

of deterministic equivalence) that

βT
0 (Σ̂ + λI)−1β0 and βT

0 (anI + λI)−1β0 =
r2

an + λ
have the same asymptotic limit.

We need to figure out the asymptotic limit of an. Instead of trying to solve the fixed-point equation (16),
it is easier to “sneak up on the answer”, by approaching it this way:

1

d
tr
[
(Σ̂ + λI)−1

]
and

1

d
tr
[
(anI + λI)−1

]
=

1

an + λ
have the same asymptotic limit,

and by the standard MP asymptotics, we know that the left-hand side converges almost surely to mF (−λ),
the Stieltjes transform (24) of the MP law (14), evaluated at −λ. Thus we have 1/(an + λ)→ mF (−λ), and

βT
0 (Σ̂ + λI)−1β0

as→ r2mF (−λ).

Returning to (29), some calculations involing Vitali’s theorem (whose details we omit) show that we may
exchange the order of the derivative and the limit, yielding

βT
0 (Σ̂ + λI)−2β0

as→ r2m′F (−λ),

and finally from (28),
BX(β̂;β0)

as→ λ2r2m′F (−λ). (30)
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Variance analysis. When Σ = I, the variance (27) becomes

VX(β̂) =
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2

]
=
σ2

n

(
tr
[
(Σ̂ + λI)−1

]
− λ tr

[
(Σ̂ + λI)−2

])
,

where in the second line we added and subtracted λI to the leading Σ̂ inside the trace. Calculation of the
limit of the above is now straightforward, given what we have done above for the bias. After multiplying
and dividing by d, this is the same as

σ2d

n

(
1

d
tr
[
(Σ̂ + λI)−1

]
− λ

d
tr
[
(Σ̂ + λI)−2

])
.

The first term inside the parentheses has limit mF (−λ) by standard MP asymptotics, and the second term
has limit −λm′F (−λ) by the same arguments as above. Thus

VX(β̂)
as→ σ2γ

(
mF (−λ)− λm′F (−λ)

)
. (31)

Putting it together. Adding the bias (30) and variance results (31) together, we get

RiskX(β̂;β0)
as→ σ2γ

(
mF (−λ)− λ(1− αλ)m′F (−λ)

)
, (32)

where we have introduced α = r2/(σ2γ). Note that we can think of this as α = SNR/γ, where SNR =
r2/σ2 can be thought of the signal-to-noise ratio for our problem. Recall that mF is the Stieltjes trans-
form (24) of the MP law (14).

It can be shown that the asymptotically optimal tuning parameter value—the one minimizing the asymp-
totic risk in (32), is λ∗ = 1/α. This has the general behavior that we would intuitively expect: it shrinks
(less regularization) as α grows (higher SNR), or equivalently, it grows (more regularization) as α shrinks
(lower SNR). Moreover, the asymptotic risk (32) at the tuning parameter value λ∗ = 1/α simplifies to

σ2γmF (−1/α) = σ2−(1− γ + 1/α) +
√

(1− γ + 1/α)2 + 4γ/α

2γ/α
.

It is worth emphasizing that this does not blow up at γ = 1, unlike the asymptotic least squares risk (22).
Regularization has saved the day!

4.2 General Σ, random β0

We consider the general Σ case. We follow the general approach in Dobriban and Wager (2018), but adopt
the perspective of deterministic equivalents as suggested by Dobriban and Sheng (2021). We will place a
spherical prior on β0, such that

E[β0β
T
0 ] =

r2

d
I. (33)

Note this implies E‖β0‖22 = r2. Our measure of risk is now a kind of Bayes out-of-sample prediction risk,

RiskX(β̂) = E
[
(xT0 β̂ − xT0β0)2

∣∣X], (34)

where to be clear the expectation is over ε, x0, and β0 (all independent), and conditional on X.

Bias analysis. For the bias, after taking an expectation in (26) over β0 drawn from (33), we get

BX(β̂) = λ2E
[
βT

0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0

]
=
λ2r2

d
tr
[
Σ(Σ̂ + λI)−2

]
, (35)
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where in the second line we used trace rotation, as in βT
0Mβ0 = tr(β0β

T
0M) for a matrix M , and invoked

the prior (33). To compute the limit of (35), the key, similar to the isotropic case, is to recognize that

1

d
tr
[
Σ(Σ̂ + λI)−2

]
= − d

dλ

{
1

d
tr
[
Σ(Σ̂ + λI)−1

]}
. (36)

By the deterministic equivalence in (15) from Theorem 2, we know that

1

d
tr
[
Σ(Σ̂ + λI)−1

]
and

1

d
tr
[
Σ(anΣ + λI)−1

]
have the same asymptotic limit.

Again, we need to figure out the asymptotic limit of an. Solving the fixed-point equation (16) will not be
possible, but nonetheless we can “sneak up on the answer”, by rewriting (16) for z = −λ as

1

an
= 1 +

γn
d

tr
[
Σ(anΣ + λI)−1

]
.

What does this remind you of? Recall the Silverstein equation (13); at z = −λ, this can be rewritten as

1

λvF (−λ)
= 1 + γ

∫
s

sλvF (−λ) + λ
dH(s).

Writing a for the limit of an, note that the second-to-last display converges as n, d→∞ to the last display,
with the relationship a = λvF (−λ). That is, to be clear, we have learned that an → λvF (−λ), where vF is
the companion Stieltjes transform of the limiting spectral distribution F from the MP theorem, and

1

d
tr
[
Σ(anΣ + λI)−1

]
=

1

γn

(
1

an
− 1

)
→ 1

γ

(
1

λvF (−λ)
− 1

)
,

and therefore
1

d
tr
[
Σ(Σ̂ + λI)−1

] as→ 1

γ

(
1

λvF (−λ)
− 1

)
︸ ︷︷ ︸

φF (−λ)

.

Returning to (36), after checking some conditions (whose details we omit), we may exchange the order of
the derivative and the limit, yielding

1

d
tr
[
Σ(Σ̂ + λI)−2

]
= φ′F (−λ),

and finally from (35),
BX(β̂)

as→ λ2r2φ′F (−λ). (37)

Variance analysis. For the variance (27), by adding and subtracting λI in the leading Σ̂ in the trace,
we get

VX(β̂) =
σ2d

n

(
tr
[
Σ(Σ̂ + λI)−1

]
− λ tr

[
Σ(Σ̂ + λI)−2

])
=
σ2d

n

(
1

d
tr
[
Σ(Σ̂ + λI)−1

]
− λ

d
tr
[
Σ(Σ̂ + λI)−2

])
.

We can apply the same logic as developed for the bias to each of the two terms above inside the parenthe-
ses: the first has limit φF (−λ) and the second has limit −λφ′F (−λ), therefore

VX(β̂)
as→ σ2γ

(
φF (−λ)− λφ′F (−λ)

)
. (38)

It is worth remarking that this variance calculation did not actually depend on the prior assumption (33).
It is still valid for fixed and arbitrary β0.
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Putting it together. Adding the bias (37) and variance results (38) together, we get

RiskX(β̂)
as→ σ2γ

(
φF (−λ)− λ(1− αλ)φ′F (−λ)

)
, (39)

where as before α = r2/(σ2γ). Recall that

φF (z) = − 1

γ

(
1

zvF (z)
+ 1

)
,

and vF is the companion Stieltjes transform of the limit F of the spectral distribution of Σ̂, as given by
Theorem 1. It is worth noting the close similarity between the results in the general Σ case (39) and in the
Σ = I case (32), where mF in the latter plays the role of φF in the former.

There is an alternative formulation that we can obtain by simply calculating the derivative of φF , then
reducing it to as simple terms as possible involving the companion Stieltjes transform vF , which results in:

RiskX(β̂)
as→ r2

γ

(
1

vF (−λ)
− λv′F (−λ)

vF (−λ)2

)
+ σ2

(
v′F (−λ)

vF (−λ)2
− 1

)
. (40)

It is worth being clear that, in the general Σ case, while we were able to obtain an exact expressions for
the limiting risk, either (39) or equivalently (40), these are no longer truly closed-form, as the solution
vF to the Silverstein equation (13) does not have an explicit closed-form for general H (though we could
compute it numerically).

Optimal tuning. Remarkably, despite the lack of a closed-form limiting risk, it is shown in Dobriban
and Wager (2018) that the asymptotically optimal tuning parameter value—the one that minimizes the
asymptotic risk in (39) or (40), is once again λ∗ = 1/α, regardless of the sequence of covariance matrices
Σ (regardless of H). Their argument is too clever to pass by in these notes, and so we outline it here.
Specialize to the case where ε ∼ N(0, σ2I) and β0 ∼ N(0, (r2/d)I) in (18) and (33), respectively. As we
argued previously (recall (3), (5)), note that the ridge estimator with

λ∗n = (σ2d)/(r2n)

is the Bayes estimator in this normal-normal model. In fact, it is the unique Bayes estimator, and thus it
obtains a smaller Bayes risk than any other estimator. Note that λ∗n → σ2γ/r2 = λ∗. Since the limit of the
risk in (34) is both universal and almost sure, we can use the optimality of λ∗n as argued above, along with
an equicontinuity argument, to show that λ∗ = 1/α is optimal in the limit.

4.3 General Σ, fixed β0?
For a general Σ, the behavior of ridge regression along an arbitrary sequence of fixed signal vectors β0 can
actually be surprisingly exotic. First, it is no longer true that the optimal limiting tuning parameter value
λ∗ is simply 1/α, and furthermore, it is no longer true that it is even positive (it may be zero). The reason
for this exotic behavior is the bias term (26), specifically the way that it depends on the joint geometry of
β0 and Σ.

The results describing the asymptotic risk here are very recent, and relate to the study of overparametriza-
tion, so we will touch on them in the next lecture.
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