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We will take a brief tour of core concepts in statistics and machine learning. Most of this will/should be
familiar to you already. Refer to, e.g., Wasserman (2004); Hastie et al. (2009) for (much) more details.

1 Probability: modes of convergence and limit laws
Let Xn, n = 1, 2, 3, . . . be a sequence of real-valued random variables.

• Almost sure convergence: Xn
as→ X means that P(limn→∞Xn = X) = 1.

• Convergence in probability: Xn
p→ X means that, for each ε > 0, P(|Xn −X| > ε)→ 0 as n→∞.

• Convergence in distribution: Xn
d→ X means that P(Xn ≤ x)→ P(X ≤ x) at all continuity points x

of the law of X.

• Almost sure convergence implies convergence in probability.

• Convergence in probability implies convergence in distribution.

• Convergence in distribution does not imply convergence in probability (except in the special case
that the limiting distribution is a constant).

• Convergence in distribution is equivalent to E[f(Xn)]→ E[f(X)] for all bounded, continuous f (this,
together with a collection of other equivalences, is often called the portmanteau lemma).

• Asymptotic probability notation: Xn = Op(an) means that Xn/an is bounded in probability, i.e., for
each ε > 0, there exists an M > 0 such that for sufficiently large n,

P
(∣∣∣∣Xn

an

∣∣∣∣ > M

)
≤ ε.

Meanwhile, Xn = op(an) means that Xn/an
p→ 0.

• Law of large numbers (LLN): if X1, X2, . . . are i.i.d. with µ = E[Xi], then for the sample mean

X̄n =
1

n

n∑
i=1

Xn,

it holds that X̄n
as→ µ.

Note: this implies X̄n
p→ µ, but there are some cases where latter holds (convergence in probability)

but the former does not (almost sure convergence), i.e., when the mean is not defined (infinite).

• Central limit theorem (CLT): under the same conditions, if additionally a second moment exists and
we let σ2 = Var[Xi], then √

n(X̄n − µ)

σ

d→ N(0, 1).

• Gilvenko-Cantelli theorem: if X1, X2, . . . are i.i.d. then for the empirical distribution function Fn
defined as

Fn(x) =
1

n

n∑
i=1

1{Xn ≤ x},
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it holds that
sup
x
|Fn(x)− F (x)| as→ 0.

• Kolmogorov-Smirnov theorem: under the same conditions,
√
n sup

x
|Fn(x)− F (x)| as→ sup

t∈[0,1]

|B(t)|,

where B is a Brownian bridge (standard Brownian motion subject to B(0) = 0 and B(1) = 0).

2 Probability: basic concentration inequalities
• Markov’s inequality: if X ≥ 0 and µ = E[X], then for any a > 0,

P(X ≥ a) ≤ µ

a
.

• Chebyshev’s inequality: let µ = E[X] and σ2 = Var[X], then for any t > 0,

P(|X − µ| ≥ t) ≤ σ2

t2
.

• Hoeffding’s inequality: if X1, . . . , Xn are independent and mean zero with ai ≤ Xi ≤ bi for each i,
then for any t > 0,

P(X̄n ≥ t) ≤ exp

(
−2nt2

1
n

∑n
i=1(b2i − a2

i )

)
.

• Bernstein’s inequality: if X1, . . . , Xn are independent and mean zero with σ2
i = Var[Xi], and |Xi| ≤

M for each i, then for any t > 0,

P(X̄n ≥ t) ≤ exp

(
−nt2/2

1
n

∑n
i=1 σ

2
i +Mt/3

)
.

3 Statistics: maximum likelihood and GLMs

3.1 Maximum likelihood
Let {Pθ : θ ∈ Θ} be a parametric family of models, and write pθ for the probability density function (or
probability mass function, in the discrete case). We write L(θ; z) = pθ(z) for the likelihood function.

Then given i.i.d. Z1, . . . , Zn ∼ Pθ, the problem

maximize
θ∈Θ

n∏
i=1

L(θ;Zi),

is called maximum likelihood estimation, and a maximizer θ̂ of the above is called a maximum likelihood
estimator (MLE). (We are often imprecise and call this the MLE, ignorning nonuniqueness of the solution.)
Note that we can equivalently write this via the negative log-likelihood function `(θ; z) = − logL(θ; z), i.e.,
the above is equivalent to

minimize
θ∈Θ

n∑
i=1

`(θ;Zi).

The Fisher information is given by the expectation of the Hessian,

I(θ) = E[∇2`(θ;Z)],
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where the expectation is taken over Z ∼ Pθ. In the univariate case, Θ ⊆ R, this is simply

I(θ) = E
[
d2`(θ;Z)

dθ2

]
.

Under appropriate regularity conditions, when Z1, . . . , Zn ∼ Pθ,
√
n(θ̂ − θ)
sn

d→ N(0, 1),

where sn = 1/

√
I(θ̂). In the multivariate case, Θ ⊆ Rd, under regularity conditions,

√
nS−1

n (θ̂ − θ) d→ N(0, Id),

where Sn = I(θ̂)−1/2, which is the symmetric square root of the inverse Fisher information matrix at the
MLE.

The following result is also true (under regularity conditions):

√
n(θ̂ − θ) d→ N(0, I(θ)−1).

From this we can discern

‖θ̂ − θ‖22 = Op

(
tr[I(θ)−1]

n

)
,

and under standard conditions this will be Op(d/n). This should give you a rough sense for the squared
error of the MLE, in standard (idealized) settings.1 We will do a related but even simpler and more direct
calculation later for least squares regression.

3.2 Generalized linear models
An exponential family distribution is of the form

pη(z) = exp
(
T (z)Tη − ψ(η)

)
h(z),

Here η ∈ Rd is called the natural parameter of the exponential family (often we use η, rather than θ, here).
We call the function ψ the log-partition function, we call T the sufficient statistic, and we call h the base
measure.

A remarkable fact: in any exponential family distribution, the log-partition function ψ is always convex,
by virtue of the fact that pη must be a bona fide density and therefore must integrate to one (sum to one,
in the discrete case). This means that the map η 7→ pη(z) is always log-concave (for fixed z), and the
resulting maximum likelihood problem

minimize
η

− 1

n

( n∑
i=1

T (Zi)

)T
η + ψ(η)

is always a convex optimization problem. (Convexity and optimization will be discussed shortly.)

A generalized linear model (GLM) builds off the exponential family distribution. We observe independent
draws of a response variable yi, i = 1, . . . , n, with each one sampled from an exponential family distribu-
tion. The form here is common (the functions T, ψ, h are common), but we have sample-specific natural
parameters: to each yi, we assign a natural parameter ηi, and model it as

ηi = xTi β

1Note carefully, however, that for the asymptotic normal approximation to be accurate we require d � n; when d scales
proportionally to n, d/n→ γ > 0, we get very different asymptotic behavior.
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for a feature vector xi ∈ Rd and parameter β ∈ Rd. Maximum likelihood becomes:

minimize
β

n∑
i=1

(
− T (yi)x

T
i β + ψ(xTi β)

)
.

Maximum likelihood in a GLM has many special properties. For example, the Hessian of the criterion is
the same as the Fisher information matrix,2 since the second-order term has no dependence on yi.

The three most important special cases are the Gaussian: ψ(u) = u2

2 , Bernoulli: ψ(u) = log(1 + eu), and
Poisson: ψ(u) = eu families. This gives rise to the following maximum likelihood problems,

Gaussian : minimize
β

n∑
i=1

(
− yixTi β +

(xTi β)2

2

)
(where each yi ∈ R)

Bernoulli : minimize
β

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
(where each yi ∈ {0, 1})

Poisson : minimize
β

n∑
i=1

(
− yixTi β + exp(xTi β)

)
(where each yi ∈ N).

These are known as least squares regression, logistic regression, and Poisson regression, respectively. The
Hessians in these problems are:

Gaussian : H(β) =

n∑
i=1

xix
T
i (no dependence on β)

Bernoulli : H(β) =

n∑
i=1

xip(x
T
i β)(1− p(xTi β))xTi where p(u) = 1/(1 + e−u)

Poisson : H(β) =

n∑
i=1

xiλ(xTi β)xTi where λ(u) = eu.

This can be written more succintly in terms of X ∈ Rn×d, the predictor matrix (whose ith row is xi):

Gaussian : H(β) = XTX (no dependence on β)

Bernoulli : H(β) = XTW (β)X where W (β) is diagonal with [W (β)]ii = p(xTi β)(1− p(xTi β))

Poisson : H(β) = XTW (β)X where W (β) is diagonal with [W (β)]ii = λ(xTi β).

4 Convexity and optimization
A convex set C ⊆ Rd is one that satisfies

x, y ∈ C =⇒ tx+ (1− t)y ∈ C, for all t ∈ [0, 1].

A convex function f : Rd → (−∞,∞] is one such that its effective domain dom(f) (the set of x for which
f is defined and finite) is a convex set, and

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y), for all x, y ∈ dom(f) and t ∈ [0, 1].

It is called strictly convex if the above inequality is satisfied strictly whenever x 6= y and t ∈ (0, 1). Con-
cavity of f means that −f is convex, and same with strict concavity.

A differentiable function f is convex if and only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)T(y − x), for all x, y ∈ dom(f),

2Here we are referring to the total Fisher information matrix, which has been summed over the observations.
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where ∇f denotes the gradient of f . This is called the first-order characterization of convexity. A twice
differentiable function f is convex if and only if dom(f) is convex and

∇2f(x) � 0, for all x ∈ dom(f).

where ∇2f denotes the Hessian of f , and we write A � 0 to mean that a matrix A is positive semidefinite
(symmetric and its smallest eigenvalue is nonnegative). This is called the second-order characterization of
convexity.

From the expressions for the Hessians given above, you can check directly that the criterions in the least
squares, logistic regression, and Poisson regression problems are convex.

4.1 Optimization basics
An optimization problem is of the form

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k.

Here the minimization is implicitly restricted to D = dom(f) ∩
⋂m
i=1 dom(gi) ∩

⋂k
j=1 dom(hj), the intersec-

tion of relevant effective domains.

A convex optimization problem is one of the above form such that f and gi, i = 1, . . . ,m are all convex
functions, and hj , j = 1, . . . , k are all affine functions. In other words, the problem

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

is convex whenever f and gi, i = 1, . . . ,m are convex (and A and b are arbitrary).

The function f in such problems is called the objective or criterion. A feasible point is a point in D such
that all constraints (inequality and equality constraints) are met. The infimal criterion value among all
feasible points is often denoted f?, and called the optimal value.

A feasible point that achieves the optimal value is denoted x? (note that f? = f(x?)), and is called a solu-
tion or minimizer. However, in statistics, we often use “hat notation”, as in θ̂ for the MLE. An important
fact: if the criterion f is strictly convex, and a solution exists, then it must be unique.

A point x̄ is called a local solution if it is feasible and there is some δ > 0 such that

f(x̄) ≤ f(x), for all feasible x such that ‖x− x̄‖2 ≤ δ.

For a convex optimization problem, the following holds: any local solution x̄ must also be a global solu-
tion: f(x̄) ≤ f(x) for all feasible points x. This result is so important that it may as well be called the
fundamental theorem of convex optimization.

A huge number of estimators in statistics and machine learning are defined by optimization problems, and
many of these are convex problems. There has been a surge in interest in (smooth) nonconvex optimiza-
tion recently due to the rise of deep neural networks.

4.2 Subgradients
For a function f on Rd, we say that s ∈ Rd is a subgradient of f at x ∈ dom(f) provided that

f(y) ≥ f(x) + sT(y − x), for all y ∈ dom(f).
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This is analogous to the first-order characterization for convexity, where s playes the role of ∇f(x). We
write ∂f(x) for the set of all subgradients of f at x, which is called the subdifferential.

For convex f , if f is differentiable at x, then ∂f(x) = {x}. The converse is true as well (if the subdifferen-
tial is a singleton, then f must be differentiable at x, with its gradient given by the single subgradient).

Subgradients play a big role in nonsmooth optimization, but are also key for statistical analysis for certain
problems/estimators, such as the lasso. For example, the subgradient optimality condition gives us the
following characterization:

x minimizes f ⇐⇒ 0 ∈ ∂f(x).

We note that this is true without any assumptions on f (no need to assume convexity of f). The proof is
so simple it’s nearly vacuous: x minimizes f if and only if f(y) ≥ f(x) for all y, which is the definition of 0
being a subgradient of f at x. And for differentiable convex f , we get the familiar condition 0 = ∇f(x).

4.3 Algorithms
The two most basic methods for unconstrained minimization of a function f are gradient descent :

xk+1 = xk − tk∇f(xk), k = 1, 2, 3, . . . ,

for differentiable f , where each tk ≥ 0 is a step size, and Newton’s method :

xk+1 = xk − tk[∇2f(xk)]−1∇f(xk), k = 1, 2, 3, . . . ,

for twice differentiable f , where again each tk ≥ 0 is a step size. For nonsmooth and/or constrained opti-
mization, variants exist (as do many, many other optimization algorithms).

These two algorithms (or close cousins of them) appear frequently in statistics and machine learning. For
example, for optimization in a GLM, Newton’s method reduces to what is known as iteratively reweighted
least squares (IRLS), which is important both computationally and inferentially.

5 Regression
Suppose that we observe (X,Y ) from some unknown joint distribution, where Y ∈ R, and we are inter-
ested in predicting Y from X. Over all functions f , the prediction error as measured in terms of squared
loss

E
[
(Y − f(X))2

]
is minimized at

f(x) = E[Y |X = x],

called the regression function of Y on X. If we observe i.i.d. pairs (xi, yi), i = 1, . . . , n from the same joint
distribution as (X,Y ), then we can use this to estimate f . This is the most generic problem formulation
available for regression, and we’ll call it the XY-Pairs model.

5.1 Signal-plus-noise models
You’ll often see authors writing down a model of the form:

yi = f(xi) + εi, i = 1, . . . , n.

This is often referred to as a “signal-plus-noise” model. You might initially think that this is assuming
more than an XY-Pairs model, but it’s actually the same, for i.i.d. mean zero stochastic errors εi, i =
1, . . . , n, provided we treat the predictors xi, i = 1, . . . , n as suitably random as well. Let’s ammend the
above to emphasize this:

(xi, yi), i = 1, . . . , n are i.i.d.,
where each yi = f(xi) + εi, and E[εi] = 0.

(1)
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which we’ll call the Random-X signal-plus-noise model. To see that

XY-Pairs ⇐⇒ Random-X signal-plus-noise,

the key is that we can always define εi = yi − f(xi). This has zero mean as E[f(xi)] = E[E[yi|xi]] = E[yi].

But what if we assume that each xi is fixed? To contrast, we’ll call this the Fixed-X signal-plus-noise
model :

xi, i = 1, . . . , n are fixed,
δi, i = 1, . . . , n are i.i.d.,

where each yi = f0(xi) + δi, and E[δi] = 0.

(2)

The interpretation you’ll often hear: this is just given by the Random-X signal-plus-noise model (1) (which
is itself equivalent to the XY-Pairs model) after we condition on each xi.

However, there is an important subtlety here! The precise connection is this:

Fixed-X signal-plus-noise ⇐⇒ Conditioning on each xi in Random-X signal-plus-noise,
provided that each xi ⊥⊥ ε.

The reason for the extra independence assumption is this: if didn’t have independence of each xi and εi,
then after conditioning on xi, i = 1, . . . , n in (1), the distributions of δi = εi|xi, i = 1, . . . , n need not be
identical.

5.2 Independence of xi and εi

To be frank, assuming independence of xi and εi is fairly common. But to be clear, it is an extra assump-
tion and does not fall out of the generic XY-Pairs model. It’s also not totally harmless. To see this, sup-
pose that we were in a situation where the true model is:

(xi, zi, yi), i = 1, . . . , n are i.i.d.,
where each yi = f(xi) + g(zi) + ξi, and E[ξi] = 0,

Let’s even assume that each xi ⊥⊥ ξi, and E[g(zi)|xi] = 0. Then the regression function (of yi on xi) is
indeed f . But in the signal-plus-noise model for yi on xi, the noise variable is

εi = g(zi) + ξi,

and if zi is dependent on xi, then εi will be too.

Therefore, assuming that εi is independent of xi, in general, is like assuming that any omitted variables are
independent of the current ones. Which could certainly be seen as a strong assumption.

5.3 Prediction error metrics
The Random-X and Fixed-X settings call to mind similar but distinct notions of prediction error. In the
former, it is natural to ask: how would well would we predict at a new test point (x0, y0)? That is, given
an estimator f̂ that we fit to training data (xi, yi), i = 1, . . . , n, we consider

Err(f̂) = E
[
(y0 − f̂(x0))2

]
, (3)

where the expectation is taken over the training data (xi, yi), i = 1, . . . , n and the test point (x0, y0), all
i.i.d. We’ll call Err(f̂) the out-of-sample prediction error, often (here and frequently with other terms as
well) dropping “prediction” for simplicity.

Meanwhile, in the Fixed-X setting, it would instead be more natural to consider

Err(f̂ ;x1:n) = E
[

1

n

n∑
i=1

(y∗i − f̂(xi))
2

]
, (4)
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where the expectation is taken each over yi and an independent copy y∗i of the response value. The nota-
tion Err(f̂ ;x1:n) emphasizes the dependence of this metric, which we call the in-sample prediction error,3
on x1:n = {x1, . . . , xn}. It can be interpreted as the prediction error had we encountered new responses at
the exact same feature values.

If you think the latter interpretation sounds strange, then—well, you’re right, it is a bit strange in a mod-
ern prediction context! (More discussion soon.)

5.3.1 Risk equivalents

Assuming independence of ε0 = y0 − f(x0) and x0, we have, by adding and subtracting f(x0) in (3) and
expanding:

E
[
(y0 − f̂(x0))2

]︸ ︷︷ ︸
Err(f̂)

= E
[
(f(x0)− f̂(x0))2

]︸ ︷︷ ︸
Risk(f̂)

+σ2,

where σ2 = Var[ε0] is the noise variance (also known as the Bayes error or irreducible error in the current
context). We’ll call the first term on the right-hand side the out-of-sample prediction risk4 and denote it
by Risk(f̂). Like the above relationship, we can also write down a similar equivalence to risk in the Fixed-
X context, by adding and subtracting f(xi) in each summand of (4) and expanding:

E
[

1

n

n∑
i=1

(y∗i − f̂(xi))
2

]
︸ ︷︷ ︸

Err(f̂ ;x1:n)

= E
[

1

n

n∑
i=1

(f(xi)− f̂(xi))
2

]
︸ ︷︷ ︸

Risk(f̂ ;x1:n)

+σ2,

where σ2 = Var[εi] is the noise variance. Similarly, we’ll call the first term on the right-hand side the
in-sample prediction risk, and denote it by Risk(f̂ ;x1:n).

So to recap, in the Random-X setting, we have as a natural metric

Risk(f̂) = E
[
(f(x0)− f̂(x0))2

]
, (5)

called the out-of-sample risk, which only differs from the out-of-sample error by σ2. Meanwhile, in the
Fixed-X setting, we have the natural metric

Risk(f̂ ;x1:n) = E
[

1

n

n∑
i=1

(f(xi)− f̂(xi))
2

]
, (6)

called the in-sample risk, which again only difference from the in-sample error by σ2.

5.3.2 Interlude: same roses, different names

Note that we can also view Risk(f̂) and Risk(f̂ ;x1:n) in terms of the L2(P ) and L2(Pn) error metrics:

Risk(f̂) = E
∥∥f − f̂∥∥2

L2(P )
= E

[ ∫
(f(x)− f̂(x))2 dP (x)

]
,

Risk(f̂ ;x1:n) = E
∥∥f − f̂∥∥2

L2(Pn)
= E

[ ∫
(f(x)− f̂(x))2 dPn(x)

]
,

where P is the feature distribution and Pn the empirical distribution of x1:n. Thus out-of-sample and in-
sample error could also be called the (expected) L2(P ) risk and L2(Pn) risk, respectively. Other names
you’ll hear are the population L2 risk and empirical L2 risk, respectively.

Empirical process theory gives us bounds on the L2(Pn) and L2(P ) norms (typically, these bounds hold
for all functions in some particular function class, with high probability over draws of x1, . . . , xn). We’ll
cover this later in the course.

3Don’t confuse this with training error! This may be tempting as the name “in-sample” may remind you of training error.
But they’re not the same thing! (Even worse, some other authors use “in-sample error” and “training error” synonomously).

4Admittedly, many authors use the terms “risk” and “error” interchangeably, and do not use it to distinguish whether the
target is f(x0) or y0. In fact, we will do so ourselves in future lectures! However, when considering both metrics in a single
discussion—either (3) and (5), or (4) and (6)—it is helpful to use nomenclature to distinguish the two.
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5.3.3 Discussion: how different are they?

Classically, statisticians really love in-sample risk (6). A big part of this is probably that it gives a very
clean framework in which we can develop various powerful tools for analysis (e.g., the covariance formula,
Stein’s unbiased risk estimator, etc.). To be more charitable, there may have also been more genuine mo-
tivations for in-sample risk from experimental design: if the values x1, . . . , xn were chosen (i.e., designed),
and we ran an experiment in which we measured y1, . . . , yn, then looking at Err(f̂ ;x1:n) would not seem so
crazy.

In machine learning and in most modern application of statistical prediction, however, out-of-sample risk
(5) seems to be much more fitting. So this begs the question: how different can (5) and (6) be? This turns
out to be a rich question, and there is a lot to say about it. The short answer is:

• usually not very different in classical regimes (low-dimensional, smooth f̂ , f); but

• can be very different in modern regimes (high-dimensional, and/or nonsmooth f̂ , f).

For example, in the interpolation regime (of great interest recently, along with overparametrized machine
learning methods more generally), they can be extremely different. Again, we may study this later in
the course if there is time and interest. For now, we’ll just look at least squares regression which already
provides some insights into the matter. Before that, we’ll quickly review the bias-variance decomposition.

5.4 Bias and variance
In general, for an estimator θ̂ of θ, it holds (just add and subtract E[θ̂], and expand) that

E[(θ − θ̂)2] = (θ − E[θ̂])2︸ ︷︷ ︸
Bias2(θ̂)

+ E[(θ̂ − E[θ̂])2]︸ ︷︷ ︸
Var(θ̂)

.

This is commonly known as the bias-variance decomposition. In a Fixed-X regression context, where the
feature values x1:n = {x1, . . . , xn} are treated as fixed, we just apply this to each θ̂ = f̂(xi) and average
over i = 1, . . . , n to obtain

Risk(f̂ ;x1:n) =
1

n

n∑
i=1

Bias2(f̂(xi)) +
1

n

n∑
i=1

Var(f̂(xi)).

Meanwhile, in a Random-X setting, we can condition on the test point x0, apply this to θ̂ = f̂(x0), and
then integrate over x0 to obtain

Risk(f̂) = E
[
Bias2(f̂(x0)|x0)

]
+ E

[
Var(f̂(x0)|x0)

]
,

where the expectation is over x0.

The bias-variance decomposition is useful for a variety of reasons, from analytical to conceptual. The
typical trend is that underfitting means high bias and low variance, whereas overfitting means low bias but
high variance. And the conventional wisdom is that we want to balance these in order to make accurate
predictions.

Interestingly, the bias-variance decomposition has been called into question in recent years, with regards to
the study of overparametrized estimators in machine learning. But I don’t really think that the fundamen-
tal idea of “balancing bias and variance being a good thing” is actually contradicted here. It’s more that
bias and variance can manifest themselves in strange ways in these settings. We’ll cover this later in the
course.

Finally, it should be noted that the decompositions presented above aren’t the only bias-variance decompo-
sitions available, and certainly not the only ones that are useful. We can obtain other ones by conditioning
on—and later integrating out over—other parts of data. For example, in the next subsection, to analyze
the risk of least squares, we will see that it is useful to also condition on the training features.
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5.5 Least squares regression
Let X ∈ Rn×d denote the predictor matrix (whose ith row is xi). Analogously, let Y ∈ Rn denote the
vector of response variables. Least squares regression of Y on X is given by

f̂(x) = xTβ̂,

where
β̂ = argmin

β
‖Y −Xβ‖22 = (XTX)−1XTY.

Critically, here we are assuming that rank(X) = d, which necessarily requires that d ≤ n, which makes the
least squares criterion admit a unique solution. Note that the fitted values (i.e., in-sample predictions) are

Xβ̂ = X(XTX)−1XTY = PXY,

where PX = X(XTX)−1XT denotes the projection onto the column space of X.

5.5.1 In-sample risk

To investigate its risk properties with as simple math as possible, let’s assume an underlying linear model

Y = Xβ0 + ε, (7)

with X fixed, and ε ∈ Rn having i.i.d. entires with mean zero and variance σ2. First, observe that

E[Xβ̂] = PXE[Y ] = PXXβ0 = Xβ0,

so least squares regression has zero bias, in the in-sample sense. Thus its in-sample error is pure variance,
and we compute

Risk(f̂ ;x1:n) =
1

n
tr[Var(PXY )] = σ2 d

n
. (8)

5.5.2 Out-of-sample risk

Meanwhile, for the out-of-sample risk we’ll take X to be random, and assume X is independent of ε in (7),
with (x0, y0) being another i.i.d. draw from the same linear model. Then, conditioning on both X,x0, we
can see that

E[xT0 β̂ |X,x0] = xT0 (XTX)−1XTE[Y |X] = xT0β0.

Hence the out-of-sample bias will still be zero, after integrating over X,x0. (Note that unbiasedness here
doesn’t actually require the strong assumption of X, ε being independent.) To compute the out-of-sample
variance, we again first condition on X,x0:

Var(xT0 β̂ |X,x0) = xT0 (XTX)−1XT Var(Y |X)X(XTX)−1x0 = σ2xT0 (XTX)−1x0.

Then integrating over X,x0 gives the out-of-sample risk:

Risk(f̂) = σ2 tr
(
E[x0x

T
0 ]E[(XTX)−1]

)
, (9)

where we have used the independence of X,x0. An exact formula will not be possible in full generality
here, since as we can see the out-of-sample risk depends on the distribution of the predictors. Contrast
this with the in-sample risk, which did not.

However, we can still go further than (9) from several perspectives.

• In the special case when each xi ∼ N(0,Σ), with Σ invertible, we can compute the out-of-sample
risk exactly. In this case, it holds that XTX ∼ W (Σ, n), a Wishart distribution, and (XTX)−1 ∼
W−1(Σ−1, n), an inverse Wishart distribution. Thus

Risk(f̂) = σ2 tr

(
Σ

Σ−1

n− d− 1

)
= σ2 d

n− d− 1
.
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• If we assume conditions that are standard in random matrix theory (which permit Gaussian features
but also many other types of feature distributions), and let d/n = γ ∈ (0, 1), then as d, n grow,

Risk(f̂) ≈ σ2 γ

1− γ
.

This agrees with the normal calculation from the last bullet point. Comparing the above display to
(8), which we can simply write as Risk(f̂ ;x1:n) = σ2γ, we see that the in-sample and out-of-sample
risks can be very different—with the latter being much larger—when γ is close to 1 (d is close to n).
We’ll revisit this and related calculations later in the course.

• In general, we can always rewrite (9) as

Risk(f̂) =
σ2

n
tr
(
E[XTX]E[(XTX)−1]

)
,

just by using the fact that x0 and the rows of X have the same distribution. It can be shown (Groves
and Rothenberg, 1969) that

E[(XTX)−1]− (E[XTX])−1 is positive semidefinite,

for any feature distribution such that XTX is almost surely invertible. Then from the above display,

Risk(f̂) ≥ σ2

n
tr
(
E[XTX] (E[XTX])−1

)
= σ2 d

n
.

That is, the out-of-sample risk is always larger than the in-sample risk for least squares.

On the homework, you will generalize this last result by showing that it still holds without assuming
a true linear model (i.e., allowing the regression function to be possibly nonlinear).

5.6 Regularization
As we just saw, the risk of least squares regression degrades as d grows close to n—in the case of Gaussian
features or “RMT features” (which we use to mean feature models compatible with the standard assump-
tions in random matrix theory), the out-of-sample risk actually diverges when d = n. Meanwhile, the least
squares estimator is not even well-defined when d > n, in that the optimization problem

minimize
β

‖Y −Xβ‖22

does not have a unique solution.

How do we deal with such issues? The short answer is regularization. At its core, regularization provides
us with a way to navigate the bias-variance tradeoff: we (ideally greatly) reduce the variance at the ex-
pense of introducing bias. In regression, canonical choices of regularizers are the `0, `1, and `2 norms:

‖β‖0 =

d∑
j=1

1{βj 6= 0}, ‖β‖1 =

d∑
j=1

|βj |, ‖β‖2 =

( d∑
j=1

β2
j

)1/2

.

This gives rise to the regularized least squares problems:

Best subset selection : minimize
β

‖Y −Xβ‖22 + λ‖β‖0 (10)

Lasso regression : minimize
β

‖Y −Xβ‖22 + λ‖β‖1 (11)

Ridge regression : minimize
β

‖Y −Xβ‖22 + λ‖β‖22, (12)

where λ ≥ 0 is called the tuning parameter (typically chosen by cross-validation or similar techniques.)

11



One of these is not like the other: convexity. Calling ‖ · ‖0 the “`0 norm” is a misnomer, since it is
not a norm. Critically, ‖ · ‖0 is not convex, while ‖ · ‖1 and ‖ · ‖2 are (indeed, any norm is a convex function).
This makes (10) a nonconvex problem, and one that is generally very hard to solve in practice except for
very small d (e.g., its constrained form is known to be NP-hard). On the other hand, problems (11) and
(12) are convex optimization problems, and many efficient algorithms exist for them.

One of these is not like the other: sparsity. Meanwhile, best subset selection and the lasso have a
special and useful property: their solutions β̂ are sparse, which means β̂j = 0, for many j. Larger λ typi-
cally means sparser solutions. This is not true of the ridge regression estimator, which will be generically
dense (all nonzero components), for any λ ≥ 0. Sparsity is often desirable because it corresponds to per-
forming variable selection in the fitted linear model.

6 Classification
We conclude with a quick recap of classification. Many of the same ideas from regression carry over. For
(X,Y ) ∼ P , with Y ∈ {0, 1}, the regression function is

f(x) = E[Y |X = x] = P(Y = 1|X = x),

which now becomes the conditional probability of observing class 1, given X = x. Over all classifiers C,
the one that minimizes misclassification risk

Risk(C) = P(Y 6= C(X))

is called the Bayes classifier, defined by

C(x) =

{
0 if f(x) ≤ 1/2

1 if f(x) > 1/2
.

To see this, consider any classifier C ′ and any fixed x,

P(Y 6= C ′(X) |X = x) = 1− P(Y = 1, C ′(X) = 1 |X = x)− P(Y = 0, C ′(X) = 0 |X = x)

= 1− C ′(x)f(x) + (1− C ′(x))(1− f(x))

= f(x) + (1− 2f(x))C ′(x).

Thus, we can compute the conditional risk difference between C ′ and C as

P(Y 6= C ′(X) |X = x)− P(Y 6= C(X) |X = x) = (2f(x)− 1)(C(x)− C ′(x)).

When f(x) > 1/2, we have C(x) = 1 by construction, and so the right-hand side above is nonnegative.
When f(x) ≤ 1/2, we have C(x) = 0 by construction, and so again the right-hand side is nonnegative.
Therefore we have shown P(Y 6= C ′(X)|X = x)− P((Y 6= C(X)|X = x) ≥ 0 for every x; integrating over x
gives the result

P(Y 6= C(X)) ≤ P(Y 6= C ′(X)),

for any classifier C ′.

Many classifiers are plug-in classifiers, of the form

Ĉ(x) =

{
0 if f̂(x) ≤ 1/2

1 if f̂(x) > 1/2
,

for an estimator f̂ of the regression function. It is often useful to recode so that Y ∈ {−1, 1}, because then
plug-in classifiers take the form

Ĉ(x) = sign(ĥ(x)),
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for some ĥ.

Note that in this coding, we can write misclassification risk as

Risk(Ĉ) = P(Y 6= Ĉ(X)) = P(Y ĥ(X) < 0).

This is of the form
E[L(Y ĥ(X))], where L(u) = 1{u < 0},

where L is clearly a nonconvex function. Often, we replace this with a convex surrogate loss, such as

Logistic : L(u) = log(1 + exp(−u))

Exponential : L(u) = exp(−u)

Hinge : L(u) = (1− u)+,

as used in logistic regression, AdaBoost, and support vector machines, respectively.
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