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1 Introduction
When we are doing theory for nonparametric regression (or really statistical estimation in general), how
can we tell if a convergence rate that we can prove for a particular method is “impressive”? Can the anal-
ysis be tightened? Or the method itself improved? And even if we carried this out, will such refinements
actually lead to a better convergence rate?

The answer to the last question can be provided by minimax theory, which is a set of techniques for char-
acterizing the best worst-case behavior of a procedure over a class of distributions for a particular statisti-
cal learning task.

Let P be a set of distributions, and let Z1, . . . , Zn be i.i.d. from P ∈ P. Let θ(P ) be some functional of P
(we will give several concrete examples shortly), and let θ̂ = θ̂(Z1, . . . , Zn) denote an estimator of θ, based
on the sample Z1, . . . , Zn. Given a symmetric nonnegative loss function d (acting over the space in which
θ(P ) lies), we define the minimax risk over P with respect to d to be

Rn = inf
θ̂

sup
P∈P

EP
[
d(θ(P ), θ̂)

]
,

where the infimum is over all estimators θ̂, and we use the subscript P on the expectation to refer to the
fact that we are averaging over the samples Z1, . . . , Zn drawn from P , that are used to form θ̂.

This may all look a little obscure. What does the class P look like for some typical problems? What about
the functional θ(P ), and the loss d? Examples will help.

Example: Gaussian mean estimation. As a simple parametric example, suppose that P = {N(θ, 1) :
θ ∈ R}. For P = N(θ, 1), we can just take our functional to be θ(P ) = θ, the mean. Consider estimating
the mean with the squared loss d(a, b) = (a− b)2. The minimax risk is

Rn = inf
θ̂

sup
θ

E[(θ̂ − θ)2].

It is implicit notationally that the expectation here is taken over i.i.d. samples Z1, . . . , Zn ∼ N(θ, 1), used
to fit θ̂.

For parametric models, where P = {Pθ : θ ∈ Θ} and Θ ⊆ Rd, recall that under regularity conditions, the
MLE has risk . tr[I(θ)−1]/n at θ, where I(θ) is the Fisher information matrix (and for typical models this
will be of the order d/n). Meanwhile, it can be shown that there is a local minimax lower bound—local in
the sense that the sup is taken over a neighborhood around θ—of the same order tr[I(θ)−1]/n. Thus the
MLE is locally minimax. In fact, it is more than this, because this statement can be made to be uniform
over all local neighborhoods around all θ ∈ Θ. This is due to a general theory developed by Hájek and Le
Cam, but we won’t cover any of this. We’ll focus on nonparametric minimax theory (assuming you’ve seen
parametric minimax theory in previous courses).

Example: nonparametric function estimation at a point, Random-X. Let Q be a fixed distribu-
tion on [0, 1]d (e.g, the uniform distribution), and let Zi = (xi, yi), i = 1, . . . , n be i.i.d. from P , with

yi = f(xi) + εi, xi ∼ Q, εi ∼ N(0, σ2), and xi ⊥⊥ εi, (1)
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for some fixed σ2 > 0. Let θ(P ) = f , which is an entire function. Suppose that P is the set of distributions
P of the form (1) for which f ∈ F , for some class of functions F on [0, 1]d. To study function estimation
at a single point—say, the origin—we can take the loss to be d(f̂ , f) = (f̂(0)− f(0))2. The minimax risk is

Rn = inf
f̂

sup
f∈F

E
[
(f̂(0)− f(0))2

]
. (2)

The expectation is understood to be with respect to (1), which describes the samples used to fit f̂ .

Example: nonparametric function estimation at a point, Fixed-X. Similar to the last example,
but now suppose that yi, i = 1, . . . , n are independent draws from P , with

yi = f(xi) + εi, xi fixed, and εi ∼ N(0, σ2). (3)

We can still define the minimax risk as in (2), where now the expectation is understood to be with re-
spect to (3). This requires some notational adjustment in the introductory paragraphs, because now yi,
i = 1, . . . , n are independent but no longer i.i.d. (this will be true of all Fixed-X models that we’ll dis-
cuss henceforth). Similarly, we would need to adjust some of the techniques (Le Cam, Fano) that will
be introduced below, because as written they assume i.i.d. data. In several cases, these adjustments will
be straightforward and the minimax risk for the Random-X and Fixed-X models will behave the same.
However, interestingly, in other cases this will not be true, and the minimax risk for the Random-X and
Fixed-X models will be very different. We’ll discuss this at the end.

Example: nonparametric function estimation in population L2 norm, Random-X. As in our
running example, under the Random-X model (1), consider the loss d(f̂ , f) = ‖f̂ − f‖2L2(Q), where recall Q
is the input distribution. This yields the minimax risk

Rn = inf
f̂

sup
f∈F

E

[∫
(f̂(x)− f(x))2 dQ(x)

]
, (4)

where the expectation is with respect to (1), which describes the samples used to fit f̂ .

1.1 KL divergence
The Kullback-Leibler divergence (KL) between two distributions P,Q, having densities p, q, respectively, is

KL(P,Q) =

∫
log

(
dP

dQ
(z)

)
dP (z) =

∫
log

(
p(z)

q(z)

)
p(z) dz.

KL divergence will play a prominent role in a lot of the calculations that follow. The following elementary
fact will be useful for us. For Gaussians, P = N(θ, σ2) and Q = N(µ, σ2), we have

KL(P,Q) =
(θ − µ)2

2σ2
.

In general, KL(P,Q) is nonnegative and zero iff P = Q. This one of the properties required of a distance
(interpreting “distance” as being an equivalent term to “metric”). Yet KL divergence is not a distance, as it
fails each of the other two properties: it is not symmetric, nor does it satisfy the triangle inequality.

Nonetheless, you’ll sometimes hear people calling it “KL distance” anyway. There are many other distances
on distributions (TV, L1, Hellinger, χ2, etc.) as well many relationships known between them, including
relationships to KL divergence. We do not review these here, but will simply define other distances and
use known relationships as they naturally arise in what follows. See, e.g., Chapter 2.4 of Tsybakov (2009)
for a more thorough treatment of distances on distributions.

1.2 Notation
As in the nonparametric regression lectures, for sequences an, bn, we will write an . bn to mean an =
O(bn), and we use an � bn to mean an = O(bn) and b = O(an). We also use a ∧ b = min{a, b}.
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2 Standard reduction
Typically we will not be interested in Rn exactly, but only its dependence on n. (We may also be inter-
ested in how it depends on auxiliary parameters that define P. For example, in function estimation, if F
is a norm ball in some function space, then we may also be interested in how Rn scales with the radius of
this ball—and indeed, below, we’ll track minimax rates as a function of n and the Lipschitz constant L of
the regression function.) Of course, if θ̂ is a particular estimator, then

Rn ≤ sup
P∈P

EP
[
d(θ(P ), θ̂)

]
,

so if the rate of convergence of θ̂ over the class of distributions P is (say) n−w, then we learn Rn . n−w.

Finding a lower bound on Rn will require a totally different technique, which we will outline below. But if
we can establish that Rn & n−w, matching the upper bound in rate, then we conclude that Rn � n−w and
we consider the case to be closed.

How do we find a lower bound? We reduce the problem to a hypothesis testing problem. We do this be-
cause, in (certain simple) hypothesis testing problems, it can be easier to reason about optimality. The
general approach works like this. Fix a finite set of distributions S = {P1, . . . , PN} ⊆ P. Then

Rn = inf
θ̂

sup
P∈P

EP
[
d(θ(P ), θ̂)

]
≥ inf

θ̂
max
Pj∈S

Ej
[
d(θj , θ̂)

]
,

where we abbreviate where θj = θ(Pj) and Ej = EPj
. By Markov’s inequality, for each j, and any t > 0,

Ej
[
d(θj , θ̂)

]
≥ tPj

{
d(θj , θ̂) ≥ t

}
,

thus
Rn ≥ t · inf

θ̂
max
Pj∈S

Pj
{
d(θj , θ̂) ≥ t

}
. (5)

Any value of t will give us a valid lower bound, but to find the “right” value of t, let’s look at a calculation
involving the minimum gap between distinct θj , j = 1, . . . , N .

Minimum gap calculation. Define
s = min

j 6=k
d(θj , θk). (6)

Given an arbitrary estimator θ̂, define
ψ∗ = argmin

j=1,...,N
d(θj , θ̂). (7)

Let’s assume that d satisfies a quasi-triangle inequality, of the form

d(θ, θ′) ≤ Cd(θ, θ′′) + Cd(θ′, θ′′), for all θ, θ′, θ′′, (8)

and a global constant C > 0. For example, if d is a metric, then it would satisfy (8) with C = 1, and if
d(θ, θ′) = ‖θ − θ′‖22, then it would satisfy it with C = 2.

Now, if ψ∗ 6= j, then letting k = ψ∗, observe that

s ≤ d(θj , θk)

≤ Cd(θj , θ̂) + Cd(θk, θ̂)

≤ 2Cd(θj , θ̂).

In the second line we use the quasi-triangle inequality, and in the third we use d(θk, θ̂) ≤ d(θj , θ̂) (because
k = ψ∗). Therefore we have shown that ψ∗ 6= j implies that d(θj , θ̂) ≥ s/(2C), and

Pj

{
d(θj , θ̂) ≥

s

2C

}
≥ Pj(ψ∗ 6= j). (9)

3



Back to minimax risk. Backing up, we have shown from (5) and (9), plugging in t = s/(2C), that

Rn ≥
s

2C
· inf
θ̂

max
Pj∈S

Pj(ψ
∗(θ̂) 6= j),

where we write ψ∗ = ψ∗(θ̂) to emphasize its dependence on θ̂. But in fact we can go further. We can ψ∗ as
defined in (7) as multiple hypothesis test: given access to θ̂, it tries to pick out which one of θj it thinks is
most likely. We can continue on lower bounding the right-hand side in the last display by considering all
hypothesis tests that have access to the data (on which the estimator θ̂ is fit). We’ll summarize this in a
proposition for easy reference.

Proposition 1. Let S = {P1, . . . , PN} ⊆ P be any finite set, and d be a nonnegative symmetric loss
satisfying the quasi-triangle inequality (8) with a constant C > 0. Then

Rn = inf
θ̂

sup
P∈P

EP
[
d(θ(P ), θ̂)

]
≥ s

2C
· inf
ψ

max
Pj∈S

Pj(ψ 6= j), (10)

where s is the minimum gap as in (6), and the infimum is over all maps ψ from the data to {1, . . . , N}.

This is called the standard reduction for minimax lower bounds. Making the best use of (10) (i.e., getting
a tight lower bound) requires carefully crafting S = {P1, . . . , PN}. If S is too big then s will be small. But
if S is too small then maxPj∈S Pj(ψ 6= j) will be small.

3 Le Cam’s method
Le Cam’s method is only a short hop away from the standard reduction. Consider just two hypotheses
θ0 = θ(P0) and θ1 = θ(P1), so that s = d(θ0, θ1). Let’s also start with n = 1 so we only have a single
observation. Then (10) tells us that

Rn ≥
s

2C
· inf
ψ

max
j=0,1

Pj(ψ 6= j).

Since a maximum is no smaller than an average,

Rn ≥
s

4C
· inf
ψ

[
P0(ψ 6= 0) + P1(ψ 6= 1)

]
.

The reason that we switched from max testing risk to aggregate testing risk is that, for the latter, we know
what optimality looks like: this is given by the Neyman-Pearson test

ψ∗(z) =

{
0 if p0(z) ≥ p1(z)

1 if p0(z) < p1(z)
.

We will use (without proof) the elementary yet critical fact that infψ[P0(ψ 6= 0) + P1(ψ 6= 1)] = P0(ψ∗ 6=
0) + P1(ψ∗ 6= 1). This is the essence of the Neyman-Pearson lemma.

Now we compute

P0(ψ∗ 6= 0) + P1(ψ∗ 6= 1) =

∫
p1>p0

p0(z) dz +

∫
p0≥p1

p1(z) dz

=

∫
p1>p0

p0(z) ∧ p1(z) dz +

∫
p0≥p1

p0(z) ∧ p1(z) dz

=

∫
p0(z) ∧ p1(z) dz.

Thus we have shown that

Rn ≥
s

2C

P0(ψ∗ 6= 0) + P1(ψ∗ 6= 1)

2
=

s

4C

∫
p0(z) ∧ p1(z) dz.

4



Supposing we have n observations, we replace p0 and p1 with pn0 (z) =
∏n
i=1 p0(zi) and pn1 (z) =

∏n
i=1 p1(zi),

and by the same arguments, we have

Rn ≥
s

4C

[
P0(ψ 6= 0) + P1(ψ 6= 1)

]
=

s

4C

∫
pn0 (z) ∧ pn1 (z) dz. (11)

The integral on the right-hand side above is often called the affinity between pn0 and pn1 . Using relation-
ships between affinity, TV distance, and KL divergence gives the set of results summarized in the next
theorem.

Theorem 1 (Le Cam’s lower bound). Let P0, P1 ∈ P, and let d be a nonnegative symmetric loss satisfying
the quasi-triangle inequality (8) with a constant C > 0. Then

Rn ≥
d(θ0, θ1)

4C

[
1− TV(Pn0 , P

n
1 )
]
, (12)

where TV(P,Q) = 1
2

∫
|p(z)− q(z)| dz denotes the total variation distance between distributions P,Q with

densities p, q. We also have the further lower bound

Rn ≥
d(θ0, θ1)

8C
e−nKL(P0,P1). (13)

The lower bounds in (12) and (13) simply come from (11), combined with the following facts about affinity,
TV distance, and KL divergence of distributions P,Q with densities p, q.

•
∫
p(z) ∧ q(z) dz = 1− TV(P,Q).

•
∫
p(z) ∧ q(z) ≥ 1

2e
−KL(P,Q).

• KL(Pn, Qn) = n ·KL(P,Q).

A useful corollary of Le Cam’s KL bound (13) is the following.

Corollary 1. Under the same conditions on d as in Theorem 1, suppose there exists P0, P1 ∈ P such that
KL(P0, P1) ≤ (log 2)/n. Then Rn ≥ d(θ0, θ1)/(16C).

3.1 Example: Lipschitz function estimation at a point, Random-X
We can demonstrate the utility of Le Cam’s method by considering a Random-X nonparametric regression
model of the form (1). For simplicity, let’s take the input distribution to be uniform, Q = Unif([0, 1]d),
and just take σ2 = 1. Consider F = C1(L; [0, 1])d, the space of functions that are L-Lipschitz continuous
on [0, 1]d, and consider pointwise risk at the origin, in squared loss, as in (2).

To be clear, in this context, θ0 = f0(0) and θ1 = f1(0), where f0, f1 are functions on [0, 1]d, and they are
required to be Lipschitz in order for P0, P1 ∈ P . Our loss is d(θ0, θ1) = (f0(0)− f1(0))2. Let’s just fix f0 = 0
(the zero function). Let K be any 1-Lipschitz function supported on the unit `2 ball {x : ‖x‖2 ≤ 1}, such
that K(0) = 1 and

0 <

∫
K(x)2 dx <∞.

Then let f1(x) = LhK(x/h), for a value h > 0 that we will specify later. It is not hard to verify that f1 is
L-Lipschitz continuous. We compute

KL(P0, P1) =

∫
[0,1]d

∫
p0(x, y) log

(
p0(x, y)

p1(x, y)

)
dy dx

=

∫
[0,1]d

∫
p0(y|x) log

(
p0(y|x)

p1(y|x)

)
dy dx

=

∫
[0,1]d

∫
φ(y) log

(
φ(y)

φ(y − f1(x))

)
dy dx
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=

∫
[0,1]d

KL
(
N(0, 1), N(f1(x), 1)

)
dx

=
1

2

∫
[0,1]d

f1(x)2 dx

=
L2h2

2

∫
[0,1]d

K(x/h)2 dx

≤ L2h2+d‖K‖22
2

.

In the second line, we use that p0(x) = p1(x) = 1 for all x; in the third, we use φ for the standard normal
density; in the fourth, we recognize the inner integral as a KL divergence between N(0, 1) and N(f1(x), 1);
in the fifth, we use the closed-form expression for the KL divergence between normals; and in the sixth
and seventh, we recall the definition of f1 and use variable substitution to compute the integral, denoting
‖K‖22 =

∫
K(x)2 dx.

Now let h = ((2 log 2)/(L2n‖K‖22))1/(2+d). Then KL(P0, P1) ≤ (log 2)/n, so by Corollary 1 (where we note
that squared loss satisfies the quasi-triangle inequality (8) with C = 2):

inf
f̂

sup
f∈C1(L;[0,1]d)

E
[
(f̂(0)− f(0))2

]
≥ f1(0)2

32

=
L2h2

32

� L2d/(2+d)n−2/(2+d).

Meanwhile, kNN regression or kernel smoothing can be shown to achieve the same pointwise rate, which
means we have found a tight lower bound.

4 Fano’s method
When we move from a pointwise loss to an integrated loss, such as population or empirical L2 loss, Le
Cam’s method—which only allows us to construct a pair of hypotheses that are hard to distinguish—is
usually insufficient.

Recall, however, that the standard reduction (10) was based on an arbitrarily large but finite set S =
{P1, . . . , PN} ⊆ P. Like we did in the derivation of Le Cam’s method, we can use the fact that a maxi-
mum is no smaller than an average, which gives

Rn ≥
s

2C
· inf
ψ

1

N

n∑
j=1

Pj(ψ 6= j).

Now Fano’s inequality, a well-known result in information theory, tells us that for any ψ,

1

N

n∑
j=1

Pj(ψ 6= j) ≥ 1− nβ + log 2

logN
,

where
β = max

j 6=k
KL(Pj , Pk). (14)

Putting this together gives the following result.

Theorem 2 (Fano’s lower bound). Let P1, . . . , PN ∈ P, and let d be a nonnegative symmetric loss satisfy-
ing the quasi-triangle inequality (8) with a constant C > 0. Then

Rn ≥
s

2C

(
1− nβ + log 2

logN

)
, (15)

where s is the minimum d-gap as in (6), and β is the maximum KL-gap as in (14).
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Corollary 2. Under the same conditions on d as in Theorem 2, suppose there exists P1, . . . , PN ∈ P such
that N ≥ 4 and β ≤ (logN)/(4n). Then Rn ≥ s/(8C).

There are many more methods for constructing lower bounds than just the Le Cam and Fano methods.
We won’t cover these, but see, e.g., Yu (1997); Yang and Barron (1999), as well as Chapter 2.7 of Tsy-
bakov (2009), for other techniques.

4.1 Varshamov-Gilbert lemma
To use Fano’s method, we need to construct a finite class of distributions. Often we will use set of the
form {Pω : ω ∈ Ω}, where

Ω = {0, 1}m =
{
ω = (ω1, . . . , ωm) : ωi ∈ {0, 1}, i = 1, . . . ,m

}
,

which is called a hypercube. There are 2m elements in Ω. For ω, ν ∈ Ω, their Hamming distance is

H(ω, ν) =

m∑
i=1

1{ωi 6= νi}.

One “problem” with a hypercube, in terms of using it to index distributions that we will construct, is that
some pairs Pω, Pν might be very close together which will make the minimum d-gap, which recall is given
in (6), too small. This will result in a poor lower bound.

We can try to fix this problem by pruning the hypercube. That is, we will seek some subset Ω′ ⊆ Ω having
nearly the same number of elements as Ω, but where each pair Pω, Pν is far apart in Hamming distance,
for ω, ν ∈ Ω′ with ω 6= ν. The technique for constructing such a pruned hypercube is given to us by what
is known as the Varshamov-Gilbert lemma.

Lemma 1 (Varshamov-Gilbert). Let Ω = {0, 1}m, where m ≥ 8. Then there exists a pruned hypercube
Ω′ = {ω1, . . . , ωN} ⊆ Ω such that

1. N ≥ 2m/8; and

2. H(ωj , ωk) ≥ m/8 for each j 6= k.

This is a standard result in information theory and its proof is somewhat interesting because it involves
randomization and Hoeffding’s inequality, but we won’t cover it here. See, e.g., Chapter 2.6 in Tsybakov
(2009).

4.2 Example: Lipschitz function estimation in L2 norm, Random-X
We now demonstrate the utility of Fano’s method by consdering the same problem setup as in Section 3.1
but now with the squared L2 loss defined with respect the uniform distribution Q = Unif([0, 1]d),

d(f̂ , f) = ‖f̂ − f‖2L2(Q) =

∫
[0,1]d

(f̂(x)− f(x))2 dx.

Note that in this context, each θj = fj , which is a particular Lipschitz regression function, and the loss
is d(θj , θk) = ‖fj − fk‖2L2(Q). We will define these regression functions below using a two-step strategy.
First we define locally-supported Lipschitz functions by translating a certain kernel function to be centered
at points on a grid. Then we use the Varshamov-Gilbert lemma to prune this set of regression functions
into a set whose minimum gap, as measured by the minimum of d(fj , fk), is large enough to yield a useful
lower bound in Fano’s method.

As before, let K be any 1-Lipschitz function supported on the unit ball {x : ‖x‖2 ≤ 1}, such that K(0) = 1
and 0 <

∫
K(x)2 dx <∞. For an integer r > 0 to be specified later, define grid points

xα =

(
α1 − 1/2

r
, . . . ,

αr − 1/2

r

)
∈ [0, 1]d, for α ∈ [r]d,
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where we abbreviate [r] = {1, . . . , r}. Let h = 1/(2r) and define the functions

gα(x) = LhK

(
x− xα
h

)
, for α ∈ [r]d.

It is straightforward to check that each gα is L-Lipschitz, and that they have non-overlapping supports.
Now just enumerate these functions as g1, . . . , gm, for m = rd, and define

fω(x) =

n∑
i=1

ωigi(x), for ω ∈ {0, 1}m.

In other words, we construct each hypothesis fω by adding together some subset of the locally-supported
kernels g1, . . . , gm, this subset being indexed by ω.

For ω, ν ∈ Ω, note that by the non-overlapping supports property,∫
[0,1]d

(fω(x)− fν(x))2 dx =

∫
[0,1]d

( m∑
i=1

(ωi − νi)gi(x)

)2

dx

= H(ω, ν) · L2h2
∫
[0,1]d

K

(
x

h

)2

dx

= H(ω, ν) · L2h2+d‖K‖22, (16)

where H(ω, ν) is the Hamming distance between ω, ν, and ‖K‖22 =
∫
K(x)2 dx. A similar calculation to

that done in the pointwise loss case shows that for the hypotheses Pω, Pν corresponding to the regression
functions fω, fν , respectively,

KL(Pω, Pν) =
1

2

∫
[0,1]d

(fω(x)− fν(x))2 dx

= H(ω, ν) · L2h2+d‖K‖22/2, (17)

with the calculation for the second line just following like that for (16).

At this point we apply the Varshamov-Gilbert lemma to produce a pruned hypercube Ω′ = {ω1, . . . , ωN} ⊆
Ω = {0, 1}d, with cardinality N ≥ 2m/8, such that H(ωj , ωk) ≥ m/8 for each j 6= k. Then for each
j = 1, . . . , N , denote by Pj the distribution corresponding to the regression function fωj . Observe that,
from (16) and the lower bound on the Hamming distance over distinct pairs in Ω′,

s = min
j 6=k
‖fωj − fωk‖22 ≥ mL2h2+d‖K‖22/8 = cL2r−2.

for a constant c > 0. Meanwhile, from (17), and the trivial upper bound on the Hamming distance of m,

β = max
j 6=k

KL(Pj , Pk) ≤ mL2h2+d‖K‖22/2 = 4cL2r−2.

Finally, it is time to choose the grid side length r. We would like to have β ≤ (logN)/(4n) in order to be
able to apply Corollary 2. Recalling that N ≥ 2m/8, we have logN ≥ (log 2)m/8 = (log 2)rd/8, so we want

4cL2r−2 ≤ (log 2)rd/(16n),

which leads us to choose r = dc′(L2n)1/(2+d)e for another constant c′ > 0. Corollary 2 then tells us (using
again that squared loss satisfies the quasi-triangle inequality (8) with C = 2) that

inf
f̂

sup
f∈C1(L;[0,1]d)

E
[ ∫

[0,1]d
(f̂(x)− f(x))2 dx

]
≥ s

16

=
cL2r−2

16

� L2d/(2+d)n−2/(2+d).

Recall, we know from our earlier nonparametric regression lecture that kNN regression and kernel smooth-
ing each achieve the above rate in squared L2 norm, so we know that our lower bound is tight.
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5 Fixed-X minimax theory?
The Fixed-X minimax rate is not always the same as the Random-X rate. In some cases, it the same; in
other cases, it is different—and in fact, in particular cases, it is just about as different as it can get. The
high-level conclusion is that you have to be careful how you set up minimax estimation problems, in the
Fixed-X world.

Recall, in order to establish a minimax rate, we always require a matching upper and lower bound. The
upper bounds from our previous lecture on kNN regression and kernel smoothing were in the Random-X
setting. The lower bounds constructed thus far were also in the Random-X setting, and they matched, for
the Lipschitz smoothness class.

Below we walk through examples of Fixed-X minimax estimation in different smoothness classes, in order
to demonstrate how it can be similar in some cases and different in others.

5.1 Example: Lipschitz function estimation at a point, Fixed-X
To revisit the example from Section 3.1, suppose that we change the problem setting from a Random-X
to a Fixed-X model, i.e., now assuming (3) instead of (1). Then yi, i = 1, . . . , n are independent but no
longer i.i.d. Thankfully, very few changes will be required to amend the arguments given earlier, with Le
Cam’s method in the i.i.d. case. Careful inspection shows that we must only replace Pnj , j = 0, 1 in (11),
(12) with Pj1 × · · · × Pjn, j = 0, 1, whose densities are (Pj1 × · · · × Pjn)(z) =

∏n
i=1 pji(zi), j = 0, 1. After

this change, the lower bounds still hold. The KL bound (13) similarly becomes

Rn ≥
d(θ0, θ1)

8C
e−

∑n
i=1 KL(P0i,P1i). (18)

Using an analogous construction to that from Section 3.1, we define f0 = 0 and f1(x) = LhK(x/h), where
K is 1-Lipschitz, supported on the unit ball, with K(0) = 1, and now satisfies

‖K‖2n =
1

n

n∑
i=1

K(xi)
2 = c,

for some 0 < c < ∞ that does not grow with n. Satisfying this last requirement, which requires us to
construct K so that we have precise control over its empirical norm, is easiest to do when xi, i = 1, . . . , n
are on a regular lattice in [0, 1]d, which is a typical assumption in Fixed-X lower bounds.

Similar calculations to those in Section 3.1 can be used to show

1

n

n∑
i=1

KL(P0i, P1i) =
L2h2

2n

n∑
i=1

K(xi/h) . L2h2+d.

From (18), we learn that if we set h � (L2n)−1/(2+d), then we get

inf
f̂

sup
f∈C1(L;[0,1]d)

E
[
(f̂(0)− f(0))2

]
& f1(0)2

� L2h2

� L2d/(2+d)n−2/(2+d),

just as in the Random-X setting.

Meanwhile, if we assume a “grid design”, more precisely, we assume N = n1/d is an integer and the input
points form a regular grid on [0, 1]d

{x1, . . . , xn} = [N ]d/N,

then a matching upper bound can be constructed using kNN regression or kernel smoothing. (For example,
go back to own kNN analysis from last lecture, and convince yourself it can be adapted.)

This means that n−2/(2+d) is still the minimax rate for pointwise loss over the Lipschitz class C1(L; [0, 1]d)
in the Fixed-X grid design setting.
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5.2 Example: Lipschitz function estimation in L2 norm, Fixed-X
To revisit the example from Section 4.2, suppose again that we change the problem setting from Random-
X to Fixed-X, i.e., assuming (3) instead of (1). Assume a grid design, as above. Then a very similar calcu-
lation to that in Section 4.2 shows that in this Fixed-X model,

inf
f̂

sup
f∈C1(L;[0,1]d)

E
[ ∫

[0,1]d
(f̂(x)− f(x))2 dx

]
& n−2/(2+d),

just as in the Random-X setting. For details of the calculation, see, e.g., Chapter 2.6.1 of Tsybakov (2009).

Meanwhile, a matching upper bound can be constructed using kNN or kernel smoothing. (For example, go
back to own kNN analysis from last lecture, and convince yourself it can be adapted.)

This means that n−2/(2+d) is still the minimax rate for squared L2 loss over the Lipschitz class C1(L; [0, 1]d)
in the Fixed-X grid design setting. (Note: remaining in Fixed-X, we can relax the grid design to a milder
condition on the inputs that requires them to sufficiently “fill” the domain [0, 1]d, and the minimax rate in
squared L2 norm is still n−2/(2+d) over C1(L; [0, 1]d). See Stone (1982).)

5.3 Example: Sobolev function estimation, Random-X versus Fixed-X
Now let’s take the example of nonparametric regression over the Sobolev class F = W s,2(L; [0, 1]d), which
we write to mean the set of functions f on [0, 1]d that are s times weakly differentiable with∫

[0,1]d

∑
|α|=s

[Dαf(x)]2 dx ≤ L2.

As we have done thus far, assume for simplicity that L does not grow with n. To discuss minimax theory,
we’ll divide into cases.

5.3.1 Random-X

Consider the Random-X model (1). Assuming that the input distribution is uniform on [0, 1]d (or other-
wise satisfies mild conditions), one can show that

inf
f̂

sup
f∈W s,2(L;[0,1]d)

E
[ ∫

[0,1]d
(f̂(x)− f(x))2 dx

]
� n−2s/(2s+d).

For the lower bound, we can appeal to facts about Hölder spaces. To see why this is relevant, note that
if f ∈ Cs([0, 1]d) with Hölder constant M , then Dαf is M -Lipschitz for all |α| = s − 1, which implies
(by Rademacher’s theorem) that f is s times weakly differentiable and |Dαf(x)| ≤ M for all |α| = s and
almost all x. Thus ∫

[0,1]d

∑
|α|=s

[Dαf(x)]2 ≤ Ns,dM2,

where Ns,d is the number of multi-indices α ∈ Zd+ such that |α| = s (its exact value is unimportant at the
moment, but it is Ns,d =

(
s+d−1
d−1

)
). In other words, we have shown Cs(cL; [0, 1]d) ⊆ W s,2(L; [0, 1]d) for a

constant c that does not depend on n. Therefore a lower bound on Cs(cL; [0, 1]d) implies a lower bound on
W s,2(L; [0, 1]d). For the Hölder class Cs(cL; [0, 1]d), we can construct a lower bound of order n−2s/(2s+d)
for estimating Hölder functions in squared L2 norm, using arguments similar to what we did above with
Lipschitz functions (involving Varshamov-Gilbert and Fano). You will pursue this on the homework.

For the upper bound, a few different estimators achieve a squared L2 norm error on the order n−2s/(2s+d)
over the Sobolev class. For example, spectral series estimators, and “discretized” versions of such estima-
tors which are based on the graph Laplacian. See Green et al. (2023). To be clear there, are no restrictions
on s, d in any of this discussion. (The fact that the minimax rate remains n−2s/(2s+d) in the regime 2s ≤ d
is a fairly remarkable feature of the Random-X setting. This will be more clear once we cover the failures
in the Fixed-X case, given shortly.)
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5.3.2 Fixed-X, 2s > d

Consider now the Fixed-X model (3), with a grid design. When 2s > d, one can show that

inf
f̂

sup
f∈W s,2(L;[0,1]d)

E
[ ∫

[0,1]d
(f̂(x)− f(x))2 dx

]
� n−2s/(2s+d),

just as in the Random-X setting. The lower bound again comes from known results in the Hölder class for
Fixed-grid design. A matching upper bound can be obtained using different techniques. One such example
is given in Nussbaum (1987), who considers regression onto a tensor-product B-spline basis.

5.3.3 Fixed-X, 2s ≤ d

In the Fixed-X model (3), with 2s ≤ d, the minimax rate over W s,2(L; [0, 1]d) a constant—meaning that
the there is no estimator that is consistent over W s,2(L; [0, 1]d) in the sense of sup risk!

The underlying issue here is similar to what we encountered in the splines lecture. Recall, when 2s ≤ d,
we cannot generally talk about point evaluation in a Sobolev space, in the sense that the point evaluation
operator is not continuous. In a Fixed-X model, therefore, obtaining knowledge of f(xi), i = 1, . . . , n
doesn’t help you reason about what f looks like on the rest of the domain [0, 1]d, for f ∈W s,2(L; [0, 1]d).

Indeed, we can make this idea explicit. Fix any small ε > 0, and let f, g ∈W s,2((1− ε)L; [0, 1]d) be any two
functions with ‖f − g‖L2([0,1]d) > 0. Define δi = g(xi)− f(xi), and

hi,N (x) = δi · h(N(x− xi)), i = 1, . . . , n.

When 2s < d, we can take h to be the “bump” function used in the last lecture: any smooth function that
is unimodal about the origin, supported on the unit ball, with h(0) = 1. When 2m = d, recall, we would
need to modify this construction somewhat, but the same key conclusions in what follows would still hold.
By the calculation from last time, for each i = 1, . . . , n, we have: (i) ‖hi,N‖W s,2([0,1]d) → 0 as N →∞, and
(ii) hi,N (xi) = δi for each N . We now use these functions to perturb the evaluations of g, defining:

g̃N = g +

n∑
i=1

hi,N .

Note that the two properties above imply ‖g̃N − g‖W s,2([0,1]d) → 0 as N →∞ (so for large N , we will have
g̃N ∈W s,2(L; [0, 1]d)), and g̃N (xi) = f(xi) for each i = 1, . . . , n and each N .

To summarize, we have constructed a sequence of functions, eventually lying in the Sobolev space of inter-
est, whose evaluations are equal to those of f :

max
i=1,...,n

|f(xi)− g̃N (xi)| = 0,

yet is bounded away from f in L2 norm (as convergence in Sobolev norm implies convergence in L2 norm):

lim
N→∞

‖f − g̃N‖L2([0,1]d) = ‖f − g‖L2([0,1]d) > 0.

It should therefore be clear that when 2s ≤ d one cannot hope to estimate a function in W s,2(L; [0, 1]d) in
L2 norm by observing its evaluations at fixed points.

We can formalize this using the Le Cam’s two-point hypothesis method, adjusted to the case of indepen-
dent but not identically distributed data, as in (18). We set the two distributions to be

P0i : yi ∼ N(f(xi), 1), i = 1, . . . , n,

P1i : yi ∼ N(g̃N (xi), 1), i = 1, . . . , n,

where in the current context θ0 = f , θ1 = g̃N , and d(θ0, θ1) = ‖f − g̃N‖L2([0,1]d) ≥ 1/2.
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For simplicity take f = 0 and g = 1 (constant functions). Then ‖f − g‖L2([0,1]d) = 1 and we can take N
large enough so that ‖f − g̃N‖L2([0,1]d) ≥ 1/2. Meanwhile, each KL(P0i, P1i) = 0, since each g̃N (xi) = f(xi)
by construction, and therefore (18) yields a minimax lower bound of

Rn ≥
1

32
,

where we have used again the fact that squared loss satisfies the quasi-triangle inequality (8) with C = 2.

Reflecting back on the Random-X model, in light of the failures just discussed, it is actually pretty remark-
able that estimation at the L2 rate n−2s/(2s+d) is possible when 2s ≤ d. In a sense, the randomness in the
inputs xi, i = 1, . . . , n sort of finesses the problem of discontinuous point evaluation.
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