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1 Introduction
Sometimes nonparametric analyses can be carried out with “stone knives and bearskins”, as was the case
for k-nearest neighbors regression and kernel smoothing. Other times, we will require more sophisticated
techniques, as with methods defined in terms of variational optimization, such as smoothing splines, thin
plate splines, and RKHS regression. In the current lecture, we’ll learn how to leverage such “sophisticated
techniques” from empirical process theory in order analyze the smoothing spline. The smoothing spline is
chosen by way of example, and is by no means the only estimator that can be analyzed with the tools you
will learn.

Of course, empirical process theory is a vast subject and we cover this material in a utilitarian manner,
that is, we’ll mostly stick to the details needed to understand the example error analysis to come in the
last section. For a broader perspective, two excellent references on the subject are van de Geer (2000);
Wainwright (2019).

1.1 Problem setup
To get us started, as motivation, we’ll develop a basic inequality for estimators that are defined by varia-
tional optimization. Assume that we observe data (xi, yi), i = 1, . . . , n according to

yi = f0(xi) + εi, i = 1, . . . , n. (1)

We don’t even need to specify anything else about the distribution yet: all calculations in this section will
be deterministic. Consider defining an estimator by solving the optimization problem

minimize
f

1

n

n∑
i=1

(yi − f(xi))
2 + λJ(f), (2)

for some penalty functional J . The minimization is over all functions f for the which the criterion is well-
defined and finite.

Throughout, we’re going to assume that J is a seminorm acting on a vector space of functions. Recall, this
means that it satisfies the following three properties, for all f, g in its domain and a ∈ R:

1. J(f + g) ≤ J(f) + J(g);

2. J(af) = |a|J(f);

3. J(f) ≥ 0.

Note that this is weaker than a norm. For a norm, we would make an addendum to the third property
to assert that equality holds iff f = 0. But a seminorm can have a nontrivial null space (we can have
J(f) = 0 for f 6= 0).

A prominent example of a seminorm regularizer J is J(f) =
∫ b
a

(Dmf)2(x) dx, which acts on functions f :
[a, b]→ R that are m times weakly differentiable. Note that the null space of J is the space of polynomials
of degree m− 1. Note also that for this choice of penalty functional, problem (2) gives rise to the smoothing
spline estimator of polynomial degree k = 2m − 1. The most common choice, m = 2, yields the cubic
smoothing spline.
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Another interesting example is the seminorm J(f) = TV(Dkf), acting on functions f : [a, b] → R that
are k times weakly differentiable, where TV(·) denotes the total variation functional. This can be seen
as an L1 analog of the last penalty functional; its null space is now the space of polynomials of degree k.
Using this functional in problem (2) gives rise to an estimator that is called the locally adaptive regression
spline (Mammen and van de Geer, 1997). We haven’t studied this estimator yet, but it has powerful local
adaptivity properties above and beyond the properties of the smoothing spline. It is not a linear smoother.
It is also more difficult to fit computationally.

1.2 Basic inequality
Let f̂ be a solution in (2). It does not need to be unique; the analysis that follows applies to any solution
in (2). By virtue of optimality, note that we have, for any function f ,

1

n

n∑
i=1

(yi − f̂(xi))
2 + λJ(f̂) ≤ 1

n

n∑
i=1

(yi − f(xi))
2 + λJ(f). (3)

We’re going to manipulate the above inequality and it’s going to be convenient to write this using empir-
ical norm and inner product notation. Recall we write Pn for the empirical distribution of x1 . . . , xn, and
define the L2(Pn) norm by

‖g‖2n =
1

n

n∑
i=1

g2(xi).

We can also define an L2(Pn) inner product by

〈g, h〉n =
1

n

n∑
i=1

g(xi)h(xi),

so it is clear that ‖g‖2n = 〈g, g〉n. For simplicity, we’ll refer to these as the empirical L2 norm and empir-
ical L2 inner product (and we’ll often drop “L2” when it is clear from the context). In a slight abuse of
notation, we’ll extend this notation to vectors in Rn, so that if v ∈ Rn, then 〈g, v〉n = 1

n

∑n
i=1 g(xi)vi.

With this notation, note that we can rewrite (3) compactly as

‖Y − f̂‖2n + λJ(f̂) ≤ ‖Y − f‖2n + λJ(f),

where Y = (y1, . . . , yn) ∈ Rn is the response vector. Rearranging,

‖Y − f̂‖2n − ‖Y − f‖2n ≤ λ(J(f)− J(f̂)).

Adding and subtracting f in the leftmost term, and expanding, we get

‖f̂ − f‖2n ≤ 2〈Y − f, f̂ − f〉n + λ(J(f)− J(f̂))

where we have moved the inner product term to the right-hand side.

This is true for any function f . Taking f = f0 in particular, the regression function from (1), and noting
that Y − f0 = ε = (ε1, . . . , εn) ∈ Rn, the noise vector, we get from the last display

‖f̂ − f0‖2n ≤ 2〈ε, f̂ − f0〉n + λ(J(f0)− J(f̂)), (4)

This is often called the basic inequality for f̂ . We see that the empirical error of f̂ is bounded by the sum
of two terms. The second term is a difference of penalties between f0 and f̂ , and if we regularize (choose
λ) “appropriately”, then we will see that this term can be controlled. The first term is an empirical inner
product between the noise vector ε and the error vector f̂ − f0. Dealing with this term will be the primary
challenge.
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1.3 Enter empirical processes
Our strategy will be to bound the first term in (4) by first rewriting it as

〈ε, f̂ − f0〉n = (J(f̂) + J(f0))

〈
ε,

f̂ − f0

J(f̂) + J(f0)︸ ︷︷ ︸
g

〉
n

.

Since J is a seminorm, we can upper bound the empirical inner product by

〈ε, f̂ − f0〉n ≤ (J(f̂) + J(f0))

(
sup

J(g)≤1

|〈ε, g〉n|︸ ︷︷ ︸
Zg

)
.

Thus we can reduce our problem to controlling the supremum of an empirical process Zg indexed by g.

In general, a stochasic process is a collection of random variables {Zt : θ ∈ t ∈ T} indexed by t over a set
T . The most canonical examples are the discrete-time and continuous-time settings, t ∈ Z+ and t ∈ R+,
respectively. But the index t and index set T can be very general. We usually reserve the term empirical
process for the case when the index is a function t = f , and the index set a space of functions T = F .

To make progress on bounding the supremum, supJ(g)≤1 Zg, we’ll need several ingredients. First, we need
some assumption about the distribution of the noise vairable εi, and sub-Gaussianity (which is weaker
than Gaussianity) will do the job. Second, we need some conditions on J , in particular, a condition that
quantifies the “richness” of its unit ball, {g : J(g) ≤ 1}. Metric entropy will be our tool for this job.

We introduce these tools over the next several sections, before returning to our main analysis on the error
of an estimator f̂ defined by solving (2).

2 Entropy and Rademacher complexity
Given a class of functions F , we define its metric entropy (or simply entropy) as the logarithm of smallest
number of balls in a norm ‖ · ‖ of radius δ > 0 needed to cover F . This is denoted

logN(δ,F , ‖ · ‖),

and also referred to as its log covering number. A visualization is given in Figure 1.

Seemingly unrelated, but actually connected, is Rademacher complexity. This itself comes in two flavors.
The empirical Rademacher complexity based on a sample x1, . . . , xn is the expected largest absolute inner
product achievable with i.i.d. Rademacher noise σ1, . . . , σn (each of which take on the value ±1 with equal
probability). To be precise, this is defined as

Rad(F , x1:n) = Eσ

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]
.

The expectation above is over σ1, . . . , σn (as signified by the subscript notation, Eσ), with x1, . . . , xn fixed.
The population Rademacher complexity is then defined as the expected value of the empirical Rademacher
complexity over i.i.d. draws x1, . . . , xn,

Rad(F) = Ex,σ

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
]
.

To emphasize, the expectation above is over both σ1, . . . , σn and x1, . . . , xn.

A general result connecting these two notions of complexity is called Dudley’s entropy integral, which we
can state as follows. Denote by Bn(ρ) the ball in the norm ‖ · ‖n (the empirical norm based on x1, . . . , xn)
of radius ρ > 0 centered at the origin. Then there exists a constant c > 0 such that

Rad(F ∩Bn(ρ), x1:n) ≤ c√
n

∫ ρ

0

√
logN(δ,F , ‖ · ‖n) dδ. (5)
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Figure 1: Illustration of a covering using balls of radius δ. The entropy is the logarithm of the smallest
possible number of balls in such a covering. Credit: Chapter 5.1 of Wainwright (2019).

Entropy and Rademacher complexity are each interesting and important, and have several applications in
probability and nonparametric analysis, but for our purposes, we can think of them as follows. Entropy
arises naturally in a probabilistic technique known as chaining. This can be used to control sub-Gaussian
processes; in particular, it can be used to bound what is known as the sub-Gaussian complexity

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣,
where ε1, . . . , εn are i.i.d. mean zero sub-Gaussian random variables (to be defined precisely below). We’ll
see this quantity arising naturally in our error analysis of smoothing splines, and we’ll see the role entropy
plays in Lemma 1 below.

On the other hand, Rademacher complexity appears when using a technique called symmetrization, and
other techniques, to analyze the fluctuations of empirical averages around their population means. For us,
we will see it can be used to control the difference between the empirical ‖ · ‖n and population ‖ · ‖2 norms,
with high probability (over the draws of x1, . . . , xn). We’ll see this in Lemma 2 below.

Lastly, we remark that we are commonly interested in (an upper bound on) how logN(δ,F , ‖ · ‖n) scales
with δ, as δ → 0, and since we are considering here the empirical norm ‖ · ‖n, we ideally want log covering
number bounds that hold for any arrangement of x1, . . . , xn. Observe that this can be upper bounded by
logN(δ,F , ‖ · ‖∞) where ‖ · ‖∞ is the sup norm (because ‖f − g‖∞ ≤ δ implies ‖f − g‖n ≤ δ). Table 1 gives
entropy rates for a few example function classes of interest.

3 Sub-Gaussian random variables
Sub-Gaussianity is a condition that captures some of the key properties of the Gaussian tail (but at the
same time accomodates many distributions that are not Gaussian).

A random variable X is said to be sub-Gaussian with mean µ and variance proxy σ2 > 0 if

E[et(X−µ)] ≤ eσ
2t2/2, for all t ∈ R.

4



Function class F Norm ‖ · ‖ Entropy rate

r-dimensional (e.g., class of natural splines with
r knots) with diam(F , ‖ · ‖n) = ρ

‖ · ‖n r log(ρ/δ)

L-Lipschitz functions on [0, 1]d ‖ · ‖∞ (L/δ)d

m times weakly differentiable functions on [0, 1]

such that
∫ 1

0
[Dmf(x)]2 dx ≤ L and ‖f‖∞ ≤ b, for

an integer m ≥ 1

‖ · ‖∞ (L/δ)1/m + log(b/δ)

Table 1: Entropy rates for some function classes of interest in nonparametric analysis.

This says that the moment generating function of X is dominated by the moment generating function of
N(µ, σ2) random variable. It turns out that an equivalent characterization of sub-Gaussianity is that

P(|X − µ| ≥ t) ≤ cP(|Z| ≥ t), for all t ∈ R,

for some constant c > 0, where Z ∼ N(0, 1). This is perhaps more intuitive and explains the name “sub-
Gaussian”: the tails must decay at least as fast as that of the Gaussian distribution.

Here are some examples of sub-Gaussian random variables.

• A N(µ, σ2) random variable.

• A bounded random variable. Thus, e.g., Rademacher, Bernoulli, and binomial random variables are
all sub-Gaussian.

• A random variable X for which all even moments exist and satisfy

E[X2k] ≤ (2k)!

2kk!
θ2k, for all k = 1, 2, 3, . . . ,

for some parameter θ ≥ 0. In fact this moment condition is equivalent to sub-Gaussianity.

An example of a random variable that is not sub-Gaussian is a Poisson random variable with any mean µ
(this is instead sub-exponential, which is a weaker condition).

Next we give several useful bounds for sub-Gaussian random variables. We won’t need all of them in our
main analysis, but they are simple and important nonetheless (and we may use them in later lectures).

3.1 Tail bound for averages
An important fact about sub-Gaussian random variables is that they admit a Bernstein-type tail bound:
if Xi, i = 1, . . . , n are independent sub-Gaussian random variables, with each Xi having mean zero and
variance proxy σ2

i , then for all t > 0,

P(X̄n ≥ t) ≤ exp

(
−nt2

2
n

∑n
i=1 σ

2
i

)
, (6)

where X̄n = 1
n

∑n
i=1Xi. We can also get a two-sided bound where we multiply right-hand side above by 2

(since X is mean zero sub-Gaussian with variance proxy σ2 if and only if −X is).

3.2 Tail bound for maxima
Another useful fact about sub-Gaussian random variables is that maximum of a large number of them
sharply concentrates: if Xi, i = 1, . . . , n are sub-Gaussian random variables, which need not be indepen-
dent, and each Xi has mean zero and variance proxy σ2, then for all t > 0,

P
(

max
i=1,...,n

Xi ≥ σ
√

2(log n+ t)
)
≤ e−t. (7)
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It also holds that
E
[

max
i=1,...,n

Xi

]
≤ σ

√
2 log n. (8)

3.3 Tail bound for quadratic forms
A last useful fact we will cite about sub-Gaussian random variables concerns tail concentration for quadratic
forms: if Xi, i = 1, . . . , n are independent sub-Gaussian random variables, with each having mean zero and
variance proxy σ2, then for any positive semidefinite matrix Q ∈ Rn×n and all t > 0,

P
(
XTQX ≥ σ2

[
tr(Q) + 2‖Q‖F

√
t+ 2‖Q‖op t

])
≤ e−t, (9)

where X = (X1, . . . , Xn) ∈ Rn is the vector of sub-Gaussian variates, so that XTQX =
∑n
i,j=1QijXiXj ,

and ‖Q‖F , ‖Q‖op denote the Frobenius and operator norms of Q, respectively. The result we are stating
here is from Hsu et al. (2012), which is similar to the Hanson-Wright inequality (but has simple explicit
constants). Note in particular that when Q = 1

nI, we get

P
(

1

n

n∑
i=1

X2
i ≥ σ2

[
1 + 2

√
t/n+ 2t/n

])
≤ e−t. (10)

4 Sub-Gaussian complexity
We now present the first of two powerful tools we’ll use from empirical process theory. It will be used to
control the supremum of a sub-Gaussian process, indexed by functions f ∈ F . We call such a quantity

sup
f∈F
|〈ε, f〉n|

the sub-Gaussian complexity associated with F , based on a sample x1, . . . , xn, used to define the empirical
inner product. The next result controls this quantity, uniformly over all x1, . . . , xn.

Lemma 1 (Adapted from Lemma 8.4 of van de Geer 2000). Let εi, i = 1, . . . , n denote independent sub-
Gaussian random variables, each having mean zero variance proxy σ2. Assume that there exist constants
0 < w < 2 and C > 0 such that for some fixed x1, . . . , xn (which define the empirical norm ‖ · ‖n),

logN
(
δ,F , ‖ · ‖n

)
≤ Cδ−w, (11)

for sufficiently small δ > 0. Then for any fixed ρ > 0, there exist constants n0, c0, c1 > 0, depending only
on σ, ρ, C,w, such that for all n ≥ n0 and γ ≥ c0,

sup
f∈F∩Bn(ρ)

|〈ε, f〉n|
‖f‖1−w/2n

≤ γ√
n
, (12)

with probability at least 1− exp(−c1γ2).

To get a sense of what the result in the lemma gives us, let’s rewrite the conclusion in (12) a little differ-
ently: it says that uniformly over all f ∈ F with ‖f‖n ≤ ρ, we have

|〈ε, f〉n| ≤ γ‖f‖n
‖f‖−w/2n√

n
,

with high probability. Now think about what a simple application of Cauchy-Schwarz would give us:

|〈ε, f〉n| ≤ ‖ε‖n‖f‖n ≤ c‖f‖n,

where the second inequality holds with high probability, for some constant c > 0, by the result (10) for a
quadratic form of sub-Gaussians. If we ignore the leading factors of γ, c, then we see that the second-to-
last display is better than the last display when

‖f‖−w/2n√
n

≤ 1 ⇐⇒ ‖f‖n ≥ n−1/w.
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That is, except for functions f of really small empirical norm, we improve on Cauchy-Schwarz, and dra-
matically so when f is of larger empirical norm. For example, when ‖f‖n = n−1/(2+w) (this is not an arbi-
trarily chosen rate, you’ll see why we’re interested in this a bit later, when we do the error analyis), then
the “speedup” we get from (12) is:

‖f‖−w/2n√
n

= n−1/(2+w).

5 Empirical and population norm coupling
This section states the second of two powerful tools we’ll use from empirical process theory. It will be used
to control the supremum of difference between empirical and population norms, over all f ∈ F for some
function class F . Strictly speaking it won’t be needed for the result in the main analysis, which bounds
the empirical norm error, but we’ll use it in the corollary given at the end, on the population norm error.

We need to cover a few more preliminary concepts before stating the result. We say that F is star-shaped
if f ∈ F implies αf ∈ F for all α ∈ [0, 1]. We say that F is b-bounded if F ⊆ B∞(b), the sup norm ball of
radius b. Lastly and most importantly, we will introduce localized notions of Rademacher complexity. For
δ > 0, we define the localized empirical Rademacher complexity by

R̂n(δ) = Rad(F ∩Bn(δ), x1:n) = Eσ

[
sup

f∈F∩Bn(δ)

1

n

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
]
,

where Bn(δ) is the empirical norm ball of radius δ. Similarly, we define the localized population Rademacher
complexity by

Rn(δ) = Rad(F ∩B2(δ)) = Ex,σ

[
sup

f∈F∩B2(δ)

1

n

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
]
,

where B2(δ) is the population norm ball of radius δ. We are now ready to state the result, which we infor-
mally call a “coupling” between empirical and population norms.

Lemma 2 (Adapted from Theorem 14.1 and Proposition 14.25 of Wainwright 2019). Let F be a star-shaped
and b-uniformly bounded class of functions for some b > 0. Denote by δ̂n the smallest positive solution to

R̂n(δ) ≤ δ2/b.

and denote by δn the smallest positive solution to

Rn(δ) ≤ δ2/b.

Assume nδ2
n ≥ c0 log log(1/δn) for a constant c0 > 0. Then there exist constants a,m1,m2, c1 > 0 such that

with probability at least 1− a exp(−nδ2
n/(c0b)), both of the following two statements hold:

m1δn ≤ δ̂n ≤ m2δn, (13)∣∣∣‖f‖n − ‖f‖2∣∣∣ ≤ c1δn, for all f ∈ F . (14)

The punchline in the lemma is really (14), which says that the empirical and population norms are uni-
formly close over all f ∈ F . In traditional nonparametric applications, we should think of δn as being
small, scaling as n−α for some α < 1/2, in which case the uniform coupling (14) gives us a strong result.
Note that for such a scaling on δn, we will meet the required assumption nδ2

n ≥ c0 log log(1/δn), since

nδ2
n = n1−2α and log log(1/δn) = α log log n.

Backing up somewhat, we call δn the population critical radius of F , and δ̂n the empirical critical radius of
F . The reason for introducing the latter (which, note, is a random quantity) is that it can be sometimes
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easier to bound, using Dudley’s entropy integral (5). Then, the result in (13) provides the link between
the two—it says that the scaling of the empirical critical radius determines that of the population critical
radius, with high probability.

The following calculation demonstrates this connection, and will be useful later on.

Lemma 3. Assume that F satisfies the entropy bound (11) for sufficiently small δ > 0 and all x1, . . . , xn,
where 0 < w < 2 and C > 0 are constants. Then the empirical critical radius of F satisfies δ̂n ≤ c1n−1/(2+w)

for a constant c1 > 0. By (13), assuming further that F is star-shaped and b-bounded, we hence also have
δn ≤ c2n−1/(2+w) with probability at least 1− exp(−c3n2/(2+w)), for constants c2, c3 > 0.

Proof. By (5), we have

Rad(F ∩Bn(δ), x1:n) ≤ c√
n

∫ δ

0

√
logN(t,F , ‖ · ‖n) dt

≤
√
Cc√
n

∫ δ

0

t−w/2 dt

=
c√
n
δ1−w/2.

In the second line we applied the entropy bound (11), and in the third we simply computed the integral,
redefining the constant c > 0 as necessary. The smallest positive solution δ̂n to R̂n(δ) ≤ δ2/b can therefore
by upper bounded by solving

c√
n
δ1−w/2 = δ2/b ⇐⇒ δ1+w/2 =

(c/b)√
n
,

which gives δ̂n ≤ c1n−1/(2+w) for a constant c1 > 0. The statement for δn is given by applying (13).

6 Main analysis
Euipped with these tools, we are now ready to dive into the main analysis. In this section, we will prove
the following theorem.

Theorem 1. Let (xi, yi), i = 1, . . . , n be i.i.d. satisfying (1), where each εi is sub-Gaussian with mean
zero and variance proxy σ2 > 0, each xi ∼ Q, an arbitrary continuous distribution supported on [0, 1], and
each xi ⊥⊥ εi. Let J be a seminorm acting on m times weakly differentiable functions, and assume that the
following conditions hold for an integer k ≥ 0, and constants 0 < w < 2 and M,C > 0:

A1. the null space of J consists of kth order polynomials;

A2. supx∈[0,1]D
mf(x)− infx∈[0,1]D

mf(t) ≤M for all functions f ∈ BJ(1);

A3. F = BJ(1) ∩B∞(1) satisfies the entropy bound logN(δ,F , ‖ · ‖∞) ≤ Cδ−w, for small enough δ > 0.

To be clear, here we denote by BJ(1) the unit ball in J , and by B∞(1) the unit ball in sup norm. Finally,
assume that the underlying regression function satisfies 1 ≤ J(f0) <∞.

Then there exists constants c0, c1, c2, c, n0 > 0 that depend only on σ, k,M,C,w such that for all n ≥ n0

and γ ≥ c0, the following holds. Fix any fixed exponent v > 2w/(2 + w). Any solution f̂ to the problem

minimize
f

1

n

n∑
i=1

(yi − f(xi))
2 + λJv(f), (15)

with tuning parameter value γn−2/(2+w)J(f0)2w/(2+w)−v ≤ λ ≤ σ2J(f0)2−v, satisfies

‖f̂ − f0‖2n ≤ 2λJv(f0) and J(f̂) ≤ cJ(f0), (16)

with probability at least 1− exp(−c1γ)− exp(−c2n).
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In particular, for λ = γn−2/(2+w)J(f0)2w/(2+w)−v, it holds that

‖f̂ − f0‖2n ≤ 2γn−2/(2+w)J(f0)2w/(2+w), (17)

with the same probability.

The proof is similar to that for Theorem 10.2 in van de Geer (2000), except we make all the statements
finite-sample, following a development similar to that in Theorem 1 of Sadhanala and Tibshirani (2019).

6.1 Remarks
Before delivering the proof in the next subsection, we make several remarks.

• The proof for the estimator defined by the analogous constrained problem

minimize
f

n∑
i=1

(yi − f(xi))
2 subject to J(f) ≤ t,

is actually much simpler. (We’ll see this when we analyze the lasso, in the next lecture.) But penal-
ized estimators are more common in practice.

• Theorem 1 is not the “pinnacle” of what can be achieved with this type of analysis, it’s just supposed
to be a (relatively simple and clean) example of what can be achieved. For example, we could also
use similar techniques to analyze multivariate estimators, such as thin plate splines (in the supercriti-
cal regime 2m > d; see Chapter 10.3 of van de Geer (2000)) and RKHS regression (see Chapter 13.4
of Wainwright 2019).

• Another important generalization that is important to mention is the following. We can extend the
result in Theorem 1 to an estimator that is defined by minimization over a set S:

minimize
f∈S

1

n

n∑
i=1

(yi − f(xi))
2 + λJv(f),

for a set of functions S of our choosing. The set S need not contain any solutions to the unrestricted
problem in (15). It need not contain the true regression function f0. It’s just something we choose
for (say) computational convenience. For example, we may choose S to be a space of splines, since
splines are nice to work with computationally—and again, we do not need it to be true that S actu-
ally contains a solution in (15). Then an extension of the analysis you’ll see in the coming subsection
will produce a guarantee of the form

‖f̂ − f0‖2n ≤ inf
f̄∈S

(
‖f̄ − f0‖2n + cλmax{J(f0), J(f̄)}v

)
,

with high probability (for some constant c > 0). This is often called an oracle inequality. The first
term in the above ‖f̄ − f0‖2n can be made small by ensuring that S is chosen to have good approx-
imation guarantees over {f : [0, 1] → R : J(f) < ∞}. For example, this is true, with respect to
various seminorms J , if we choose S to be a space of splines with suitably chosen knots. In such
cases, the approximation error term ‖f̄ − f0‖2n will be of much smaller order than the second term
2λmax{J(f0), J(f̄)}v, which will scale as n−2/(2+w) when J(f0) � 1 (as seen in (17)).

This is very useful because it means that we can use splines to approximately solve (2) (regardless
of whether or not splines actually solve (2) or not) and we will not incur any loss in the statistical
error rate. We will not cover the details, but refer to Theorem 1 and Corollary 1 in Sadhanala and
Tibshirani (2019) for an example of such a result. (We’ll also derive explicit oracle inequalities in the
next lecture on the lasso.)

• The rate in (17) is minimax optimal. This can be shown using Fano’s inequality along with a con-
struction that leverages a concept complementary to covering numbers (metric entropy) called pack-
ing numbers. See Theorem 4 in Sadhanala and Tibshirani (2019) for details.
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6.2 Proof
We now prove Theorem 1. By the exact same arguments used earlier to produce (4) from problem (2), we
have for our current problem (15) the basic inequality

‖f̂ − f0‖2n ≤ 2〈ε, f̂ − f0〉n + λ(Jv(f0)− Jv(f̂)), (18)

We break down the rest of the proof into parts, henceforth abbreviating Ĵ = J(f̂) and J0 = J(f0).

Localization. In this part, we prove that ‖f̂ − f0‖n is bounded. This is important because it will be
enable us to apply Lemma 1. By the sub-Gaussian tail bound in (10), taking t = n, we know that

‖ε‖2n ≤ 5σ2,

on an event Ω1 with probability at least 1− exp(−n). Hence, returning to (18), using Cauchy-Schwarz and
the above bound, we have on Ω1,

‖f̂ − f0‖2n ≤ 2
√

5σ‖f̂ − f0‖n + λ(Jv0 − Ĵv)

≤ 2
√

5σ‖f̂ − f0‖n + λJv0 .

This is a quadratic inequality of the form x2 ≤ bx + c in x = ‖f̂ − f0‖n, so we can upper bound x by the
larger of the two roots, x ≤ (b+

√
b2 + 4c)/2 ≤ b+

√
c, which gives, on Ω1,

‖f̂ − f0‖n ≤ 2
√

5σ +
√
λJv0

≤ (2
√

5 + 1)σJ0, (19)

where in the second line we use J0 ≥ 1 and λ ≤ σ2J2−v
0 . This completes the desired “localization” step.

Bounding the sub-Gaussian complexity. In this part, we focus on bounding the first-term on the
right-hand side in (18) using a sub-Gaussian complexity argument. The idea is the same as what we de-
scribed in the introduction. Let

g =
f̂ − f0

(Ĵ + J0)
.

By construction, we have J(g) ≤ 1. Further, from (19), we have ‖g‖n ≤ (2
√

5 + 1)σ on Ω1.

We would like to apply Lemma 1 in order to bound 〈ε, g〉n, but we need one more step first. Assumption
A3 in the theorem statement is about an entropy condition for the class F = BJ (1)∩B∞(1). But at present,
we do not know that g is bounded in sup norm, only in empirical norm. An argument (whose details we
do not give) involving orthogonalization with respect to functions in the null space of J , which recall are
polynomials of degree k, can be used to show that for constants q1, q2, c2 > 0,

‖g‖∞ ≤ q1J(g) + q2‖g‖n,

on an event Ω2 with probability at least 1− exp(−c2n). See Lemma 7 (and Lemmas 4, 5, and 6 leading up
to it) in Sadhanala and Tibshirani (2019). We note that this is why we need Assumptions A1 and A2, and
the assumption that the input distribution Q is continous.

Thus, rescaling the definition of g by a constant c > 0 as needed,

g =
f̂ − f0

c(Ĵ + J0)
,

we have J(g) ≤ 1 and ‖g‖∞ ≤ 1 on Ω1 ∩ Ω2. Lemma 1 then says that for constants c0, c1 > 0 and all γ ≥ c0
and sufficiently large n,

〈ε, g〉n ≤
γ‖g‖1−w/2n√

n

10



on an event Ω1 ∩ Ω2 ∩ Ω3 with probability at least with probability at least 1 − exp(−c1γ2) − exp(−c2n).
Plugging this into the right-hand side of (18) gives

‖f̂ − f0‖2n ≤ 2cγ
(Ĵ + J0)√

n
‖g‖1−w/2n + λ(Jv0 − Ĵv)

= 2cγ
(Ĵ + J0)w/2√

n
‖f̂ − f0‖1−w/2n + λ(Jv0 − Ĵv), (20)

on the event Ω = Ω1 ∩ Ω2 ∩ Ω3, where we have redefined the constant c as needed.

Transforming to squared empirical norm. The next part is to transform (20) so that we remove the
fractional exponent on the empirical norm error term ‖f̂ − f0‖n, and end up with only squared empirical
norm terms. First, we use the following inequality that holds for any a, b ≥ 0, and any w,

ab1−w/2 ≤ a1/(1+w/2)b+ a2/(1+w/2).

Applying this to the first term on the right-hand side in (20) with a = (Ĵ + J0)w/2/
√
n and b = ‖f̂ − f0‖n,

and abbreviating rn = n−1/(2+w), yields

‖f̂ − f0‖2n ≤ 2cγrn(Ĵ + J0)w/(2+w)‖f̂ − f0‖n + 2cγr2
n(Ĵ + J0)2w/(2+w) + λ(Jv0 − Ĵv),

on Ω. At this point, we could recognize the above as a quadratic of the form x2 ≤ bx+ c in x = ‖f̂ − f0‖n,
and proceed as we did in the localization step, but we take a different approach that leads to a slightly
sharper dependence on various problem parameters. We apply 2ab ≤ a2 + b2 to the first term on the
right-hand side of the above display, with a =

√
2cγrn(Ĵ + J0)w/(2+w) and b = ‖f̂ − f0‖n/

√
2, which yields

‖f̂ − f0‖2n ≤
1

2
‖f̂ − f0‖2n + γr2

n(Ĵ + J0)2w/(2+w) + λ(Jv0 − Ĵv),

on Ω, where we have redefined γ as needed. We have been careful to end up with a factor of the squared
empirical norm on the right-hand side with a leading constant less than 1. Subtracting this term 1

2‖f̂ − f0‖2n
to the left-hand side gives, on Ω,

1

2
‖f̂ − f0‖2n ≤ γr2

n(Ĵ + J0)2w/(2+w) + λ(Jv0 − Ĵv). (21)

Bounding the achieved penalty term. The next part is to bound the achieved penalty term Ĵ . Start-
ing from (21), we can simply lower bound the left-hand side by zero, and rearrange, yielding

Ĵv ≤ γr2
n

λ
(Ĵ + J0)2w/(2+w) + Jv0 ,

on Ω. Suppose Ĵ > 2J0. Then upper bounding the first term on right-hand side above,

Ĵv ≤ cγr
2
n

λ
Ĵ2w/(2+w) +

1

2
Ĵv,

on Ω, for a constant c > 0. Subtracting 1
2 Ĵ

v to the left-hand side, we learn that provided λ ≥ γr2
n,

1

2
Ĵv ≤ cĴ2w/(2+w), (22)

on Ω. Since v > 2w/(2 + w), this means that Ĵ ≤ c on Ω, where we redefine the constant c as necessary.
Recall that this was established in the case Ĵ > 2J0. Hence, altogether, we learn that Ĵ ≤ 2J0 + c ≤ cJ0

on Ω, redefining c once again as needed.

The home stretch: choosing λ. Returning to (21), and using our penalty bound from (22), we have

‖f̂ − f0‖2n ≤ γr2
nJ

2w/(2+w)
0 + λJv0 ,

on Ω, redefining γ as needed. Choosing λ ≥ γr2
nJ

2w/(2+w)−v
0 establishes (16), and completes the proof.
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6.3 Corollary: population error
Using the coupling between empirical and population norms, we can also bound the population error as a
corollary to Theorem 1.

Corollary 1. Under the same conditions and notation as in Theorem 1, there exists constants c3, c4 > 0
such that for all n ≥ n0 and γ ≥ c0,

‖f̂ − f0‖22 ≤ 4λJv(f0) + c3n
−2/(2+w)J2(f0), (23)

with probability at least 1− exp(−c1γ)− exp(−c4n2/(2+w)).

Proof. Let g = (f̂ − f0)/((c+ 1)J0). Then, as in the proof of Theorem 1, we have J(g) ≤ 1 and ‖g‖∞ ≤ b
for a constant b > 0, on the event Ω. By Lemma 3 applied to F = BJ(1) ∩B∞(b), the population critical
radius satisfies δn ≤ c3n−1/(2+w) with probability at least 1− exp(−c1γ)− exp(−c2n)− exp(−c4n2/(2+w)),
for constants c3, c4 > 0. Applying Lemma 2—specifically, applying (14) to g, we see that

‖f̂ − f0‖2 ≤ ‖f̂ − f0‖n + c3n
−1/(2+w)J0,

with probability at least 1− exp(−c1γ)− exp(−c2n)− exp(−q2n
2/(2+w)), where we adjust c3 as necessary.

The result in (23) follows by squaring both sides in the above display, using (16), and adjusting c3, c4 once
again as needed.

A remark: choosing λ = γn−2/(2+w)J(f0)2w/(2+w)−v, we see from (23) that when J(f0) � 1 we are able to
bound the population error at the same rate n−2/(2+w) as the empirical error. But when J(f0) is growing
with n, the population error rate established by the above corollary is worse. This is likely an artifact of
the proof strategy.

6.4 Corollary: smoothing splines
Finally, we apply Theorem 1 and Corollary 1 to smoothing splines, where J(f) =

∫ 1

0
(Dmf)2(x) dx, in

order to get the following result.

Corollary 2. Let (xi, yi), i = 1, . . . , n be i.i.d. satisfying (1), where each εi is sub-Gaussian with mean zero
and variance proxy σ2 > 0, each xi ∼ Q, an arbitrary continuous distribution supported on [0, 1], and each
xi ⊥⊥ εi. Fix an integer m ≥ 1 and assume that the underlying regression function satisfies

1 ≤ J2
0 =

∫ 1

0

(Dmf0)2(x) dx <∞.

Then there exists constants c0, c1, c2, c3, c4, c, n0 > 0 that depend only on σ,m such that for all n ≥ n0 and
γ ≥ c0, the smoothing spline estimator f̂ , defined by solving

minimize
f

1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫ 1

0

(Dmf)2(x) dx,

for any tuning parameter value γn−2m/(2m+1)J
−4m/(2m+1)
0 λ ≤ σ2, satisfies

‖f̂ − f0‖2n ≤ 2λJ2
0 and

∫ 1

0

(Dmf̂)2(x) dx ≤ cJ2
0 ,

with probability at least pn = 1− exp(−c1γ)− exp(−c2n), and

‖f̂ − f0‖22 ≤ 4λJ2
0 + c3n

−2m/(2m+1)J2
0 ,

with probability at least qn = 1− exp(−c1γ)− exp(−c4n2m/(2m+1)). In particular, for a choice of tuning
parameter λ = γn−2m/(2m+1)J

−4m/(2m+1)
0 , it holds that

‖f̂ − f0‖2n ≤ 2γn−2m/(2m+1)J
2/(2m+1)
0 , and ‖f̂ − f0‖22 ≤ n−2m/(2m+1)(4γJ

2/(2m+1)
0 + c3J

2
0 ),

with the same probabilities as above: pn and qn, respectively.
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Proof. We must simply check the conditions A1–A3 in Theorem 1 for the choice J(f) =
∫ 1

0
(Dmf)2(x) dx.

It is straightforward to see that A1 and A2 are satisfied with k = m− 1. The condition A3 is satisfied for
w = 1/m, as cited in Table 1, which is a result due to Birman and Solomyak (1967). The rest is just given
by reading off the results of Theorem 1 and Corollary 1 for w = 1/m.
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