
Homework 3
Advanced Topics in Statistical Learning, Spring 2024

Due Friday March 22

1 Carathéodory’s view on sparsity of lasso solutions [18 points]
In this exercise, we will prove the fact we cited in lecture about sparsity of lasso solutions, by invoking
Caratheodory’s theorem. Let Y ∈ Rn be a response vector, X ∈ Rn×d be a predictor matrix, and consider
the lasso estimator defined by solving

minimize
β

1

2
‖Y −Xβ‖22 + λ‖β‖1,

for a tuning parameter λ > 0.

(a) Let β̂ be any solution to the lasso problem. Let α̂ = β̂/‖β̂‖1. Prove that Xα̂ lies in the convex hull
of the vectors [4 pts]

{±Xj}dj=1.

Note: here Xj ∈ Rn denotes the jth column of X.

(b) Recall that Carathéodory’s theorem states the following: given any set C ⊆ Rk, every element in its
convex hull conv(C) can be represented as a convex combination of k + 1 elements of C.

Use this theorem and part (a) to prove that there exists a lasso solution β̃ with at most n+ 1 nonzero
coefficients. [4 pts]

Hint: start with a generic solution β̂, and use Carathéodory’s theorem to construct a coefficient vec-
tor β̃ such that (i) the fit is the same, Xβ̃ = Xβ̂; (ii) the penalty is at worst the same, ‖β̃‖1 ≤ ‖β̂‖1;
and (iii) Xβ̃ is a nonnegative linear combination of at most n+ 1 of ±Xj , j = 1, . . . , d.

(c) Now, assuming λ > 0, use the subgradient optimality condition for the lasso problem to prove that
the fit Xβ̃ from part (b) is supported on a subset of [6 pts]

{±Xj}dj=1

that has affine dimension at most n− 1.

Hint: this is similar to the proof of Proposition 1 in the lasso lecture notes. Assume that Xβ̃ is a
nonnegative combination of exactly n + 1 of ±Xj , j = 1, . . . , d. Then one of these n + 1 vectors,
denote it by siXi (where si = sign(β̃i)) can be written as a linear combination of the others. Take an
inner product with the lasso residual and use the subgradient optimality condition for the lasso to
prove that the coefficients in this linear combination must sum to 1, and therefore, siXi is actually
an affine combination of the others. Notice that this shows the affine span of the n + 1 vectors in
question is (n− 1)-dimensional.

(d) A refinement of Carathéodory’s is as follows: given a set C ⊆ Rk, every element in its convex hull
conv(C) can be represented as a convex combination of r + 1 elements of C, where r is the affine
dimension of conv(C).

Use this theorem and part (c) to prove that there exists a lasso solution β̌ with at most n nonzero
coefficients. [4 pts]
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2 Variance of least squares in nonlinear feature models [30 points]
In this exercise, we will examine the variance of least squares (in the underparametrized regime) and min-
norm least squares (in the overparametrized regime) in nonlinear feature models. Recall for a response
vector Y ∈ Rn and feature matrix X ∈ Rn×d, the min-norm least squares estimator β̂ = (XTX/n)+XTY/n
has a variance component of its out-of-sample prediction risk (conditional on X) given by:

VX(β̂) =
σ2

n
tr(Σ̂+Σ). (1)

Here Σ̂ = XTX/n, and Σ = Cov(xi), for an arbitrary row xi of X (the rows all have the same distribu-
tion). Also, σ2 = Var[yi|xi] is the noise variance. In lecture, we studied a linear feature model of the form

X = ZΣ1/2, (2)

for a covariance matrix Σ ∈ Rd×d and a random matrix Z ∈ Rn×d that has i.i.d. entries with mean zero
and unit variance. When Σ = I, which we will assume throughout this homework problem, recall that we
proved that the variance (1) satisfies, under standard random matrix theory conditions, as n, d→∞ and
d/n→ γ ∈ (0,∞),

VX(β̂)
as→

{
σ2 γ

1−γ for γ < 1

σ2 1
γ−1 for γ > 1.

(3)

(The result for γ < 1 actually holds regardless of Σ.) Instead, we can consider a nonlinear feature model of
the form

X = ϕ(ZΓ1/2WT), (4)

for a covariance matrix Γ ∈ Rk×k, and a random matrix Z ∈ Rn×k as before (except with k in place of d).
Moreover, now W ∈ Rd×k is a matrix of i.i.d. N(0, 1/k) entries, and ϕ : R → R is a nonlinear function—
called the activation function in a neural network context—that we interpret to act elementwise on its
input.

There turns to be an uncanny connection between the asymptotic variance in linear and nonlinear fea-
ture models, which will you uncover via simulation in this homework problem. Attach your code as an
appendix to this homework.

For parts (a)–(d) below, consider isotropic features, so that Σ = I in (1) and (2), and Γ = I in (4).

(a) Fix n = 200, and let d = [γn] over a wide range of values for γ (make sure your range covers both
γ < 1 and γ > 1). each n, d, draw X from the linear feature model (2) and your choice of distribu-
tion for the entries of Z. Compute the finite-sample variance (1), and plot it, as a function of γ, on
top of the asymptotic variance curve (3). To get a general idea of what this should look like, refer
back to Figure 2 in the overparametrization lecture notes. [6 pts]

(b) For the same values of n, d, and k = 100, draw X from the nonlinear feature model (4), for three
different choices of ϕ:

i. ϕ(x) = a1 tanh(x);

ii. ϕ(x) = a2(x+ − b2);

iii. ϕ(x) = a3(|x| − b3).

Here a1, a2, b2, a3, b3 are constants that you must choose to meet the standardization conditions
E[ϕ(G)] = 0 and E[ϕ(G)2] = 1, for G ∼ N(0, 1). Produce a plot just as in part (a), with the
finite-sample variances for choice of each activation function plotted in a different color, on top of
the asymptotic variance curve (3) for the linear model case. Comment on what you find: do the
nonlinear finite-sample variances lie close to the asymptotic variance for the linear model case? [18 pts]

(c) Now use a linear activation function φ(x) = ax − b, and create a plot as in part (b) with the same
settings (same values of n, d, k, and so on). What behavior do the finite-sample variances have as a
function of γ? Is this surprising to you? Explain why what you are seeing is happening. [6 pts]

2



(d) As a bonus, in light of part (c), elaborate on why the results in part (b) are remarkable.

(e) As another (large) bonus, rerun the analysis in this entire problem but with a non-isotropic covari-
ance Σ in (2), and Γ in (4). Extra bonus points if you properly recompute the asymptotic variance
curves.

3 The implicit regularization of gradient flow [25 points]
We will study gradient flow, as a continuous-time limit of the gradient descent path, in least squares re-
gression. To build up motivation, consider gradient descent applied to the least squares regression problem

minimize
β

1

2n
‖Y −Xβ‖22,

for a response vector Y ∈ Rn and predictor matrix X ∈ Rn×d. For a given fixed step size ε > 0, and for an
initialization β(0) = 0, gradient descent repeats the iterations:

β(k) = β(k−1) + ε · X
T

n
(Y −Xβ(k−1)),

for k = 1, 2, 3, . . .. Rearranging gives

β(k) − β(k−1)

ε
=
XT

n
(Y −Xβ(k−1)),

and letting k → ∞ and ε → 0, in such a way that kε = t, we get a continuous-time ordinary differential
equation

β̇(t) =
XT

n
(Y −Xβ(t)), (5)

over time t > 0, subject to an initial condition β(0) = 0. We refer to the solution as the gradient flow path
for least squares regression.

(a) Prove that the gradient glow path, the solution in (5), is [4 pts]

β̂gf(t) = (XTX)+(I − exp(−tXTX/n))XTY.

Here A+ is the Moore-Penrose generalized inverse of a matrix A, and exp(A) = I+A+A2/2!+A3/3!+
· · · is the matrix exponential of A. Note: you may use whatever properies of the matrix exponential
that you want, as long as you clearly state them. (Also, you do not have to prove uniqueness of the
solution in (5), you just have to plug in the above expression and show that it solves (5).)

(b) Let X =
√
nUS1/2V T be a singular value decomposition, so that XTX/n = V SV T is an eigendecom-

position. Letting ui, i = 1, . . . , p denote the columns of U , and si, i = 1, . . . , p the diagonal entries of
S, prove that the vector of in-sample predictions from gradient flow are [4 pts]

Xβ̂gf(t) =

p∑
i=1

(1− exp(−tsi))uiuTi Y.

(c) Recall, the vector of in-sample predictions from ridge regression with tuning parameter λ > 0,

minimize
β

1

n
‖Y −Xβ‖22 + λ‖β‖22,

can be written as

Xβ̂ridge(λ) =

p∑
i=1

si
si + λ

uiu
T
i Y.
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Thus both gradient flow and ridge perform a shrunken regression, by shrinking the eigenvalues of the
empirical covariance matrix, but they use different underlying shrinkage maps, respectively:

ggf(s, t) = 1− exp(−ts),

gridge(s, λ) =
s

s+ λ
.

Plot gridge as a heatmap with s on the x-axis, and λ on the y-axis. Then, using the parametrization
t = 1/λ, plot ggf as a heatmap, again over s (x-axis) and λ (y-axis). Do you notice a similarity? [4 pts]

(d) Under the model

Y = Xβ0 + ε,

where E[ε] = 0, Cov(ε) = σ2I,

and with X treated as fixed, prove that the estimation risk of gradient flow is [8 pts]

E‖β̂gf(t)− β0‖22 =

p∑
i=1

(
|vTi β0|2 exp(−2tsi) +

σ2

n

(1− exp(−tsi))2

si

)
,

where recall XTX/n = V TSV is an eigendecomposition, and we use si, i = 1, . . . , p for the diagonal
entries of S, and vi, i = 1, . . . , p for the columns of V .

(e) Prove that, under the model from part (d), [5 pts]

E‖β̂gf(1/λ)− β0‖22 ≤ 1.6862 · E‖β̂ridge(λ)− β0‖22,

for any λ > 0. In words, the estimation risk of gradient flow at time t = 1/λ is no more than 1.6862
times that of ridge at regularization parameter λ.

Hint: you may use the fact that the estimation risk of ridge is

E‖β̂ridge(λ)− β0‖22 =

p∑
i=1

(
|vTi β0|2

λ2

(si + λ)2
+
σ2

n

si
(si + λ)2

)
.

Bonus: derive this. Another hint: you may use the fact that for all x ≥ 0, it holds that

(i) e−x ≤ 1/(1 + x), and

(ii) 1− e−x ≤ 1.2985 · x/(1 + x).

Bonus: prove these facts.
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