
Homework 2
Advanced Topics in Statistical Learning, Spring 2024

Due Friday March 1

1 Properties of RKHS regression [32 points]
In this exercise, we will work out some facts about RKHS regression.

(a) First, let k : X × X → R be an arbitrary kernel. Recall that this means there exists a feature map
φ : X → H, and a Hilbert space H with inner product 〈 · , · 〉H, such that for any x, y ∈ X ,

k(x, y) = 〈φ(x), φ(y)〉H.

Prove that k is positive semidefinite, meaning, it is symmetric, and for any n ≥ 1 and x1, . . . , xn ∈ X ,
if we define a matrix K ∈ Rn×n to have entries Kij = k(xi, xj), then [6 pts]

aTKa ≥ 0, for all a ∈ Rn.

Hint: express aTKa in terms of the feature map φ.

(b) Henceforth, suppose that k is the reproducing kernel for H (and hence H is an RKHS). Recall that
this means the following two properties are satisfied:

(a) for any x ∈ X , the function k(·, x) is an element of H;

(b) for any function f ∈ H and x ∈ X , it holds that 〈f, k(·, x)〉H = f(x).

Let f be a function of the form

f(x) =

n∑
i=1

βik(x, xi),

for coefficients β1, . . . , βn ∈ R. Show that [4 pts]

‖f‖2H =

n∑
i,j=1

βiβjk(xi, xj).

(c) Let h be any function (in H) that is orthogonal (with respect to 〈 · , · 〉H) to the linear space of func-
tions of the form in part (b). Prove that [6 pts]

h(xi) = 0, i = 1, . . . , n,

and
‖f + h‖H ≥ ‖f‖H, with equality iff h = 0.

(d) Argue that for any λ > 0, the infinite-dimensional RKHS optimization problem

minimize
f

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

(where the minimization is implicitly over f ∈ H) has a unique solution of the form in part (b), and
we can rewrite it as [4 pts]
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minimize
β

‖Y −Kβ‖22 + λβTKβ.

for the matrix K ∈ Rn×n with entries Kij = k(xi, xj).

For the uniqueness part, you may assume may assume that k is a positive definite kernel (strictly),
so that K is positive definite matrix (strictly).

Hint: let g = f + h and use the results in part (c) to argue that g has a larger criterion value, unless
h = 0. Use part (b) to complete the reduction to finite-dimensional form.

(e) Finally, we establish a cool fact about leave-one-out cross-validation (LOOCV) in RKHS regression
problems. Recall that in general, the LOOCV error of an estimator f̂ is defined as

CV(f̂) =
1

n

n∑
i=1

(yi − f̂−i(xi))2,

where f̂−i is the estimator trained on all but the ith pair (xi, yi). Prove the following shortcut for-
mula for LOOCV with an RKHS regression estimator f̂ : [12 pts]

1

n

n∑
i=1

(yi − f̂−i(xi))2 =
1

n

n∑
i=1

(
yi − f̂(xi)

1− Sii

)2

,

where S = K(K + λI)−1 is the smoother matrix for the RKHS estimator (so that the vector of fitted
values is given by Ŷ = SY ).

Hint: prove that for each i,

f̂−i(xi) =
1

1− Sii
[f̂(xi)− Siiyi].

The desired result will follow by rearranging, squaring both sides, and summing over i = 1, . . . , n.
There are different ways to establish the above display; one nice way is as follows. Consider solving
the RKHS regression problem on

(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn),

and consider solving it on

(x1, y1), . . . , (xi−1, yi−1), (xi, ỹi), (xi+1, yi+1), . . . , (xn, yn),

where ỹi = f̂−i(xi). Argue that these should produce the same solutions. Derive the zero gradient
condition for optimality (differentiate the criterion and set it equal to zero) for each problem, and
use these to solve for ỹi = f̂−i(xi).

2 Minimax lower bounds for Hölder classes [30 points]
Consider the d-dimensional Hölder ball

Cs(L; [0, 1]d) =
{
f : [0, 1]d → R : |Dαf(x)−Dαf(z)| ≤ L‖x− z‖2 for all |α| = s− 1, and x, z ∈ [0, 1]d

}
,

where s ≥ 1 is an integer and L > 0 is a constant (not growing with n). Consider i.i.d. samples (xi, yi),
i = 1, . . . , n where each

yi = f(xi) + εi, xi ∼ Unif([0, 1]d) εi ∼ N(0, σ2), and xi ⊥⊥ εi.

Generalize the calculations given in the minimax theory lecture for the minimax lower bound over the
Lipschitz ball to show that [30 pts]

inf
f̂

sup
f∈C1(L;[0,1]d)

E
[ ∫

[0,1]d
(f̂(x)− f(x))2 dx

]
& n−2s/(2s+d).
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Make sure to write the full calculation from start to finish (even detailing the steps that may be analogous
to those in lecture).

Hint: consider defining (adhering to the notation used in the lecture)

gα(x) = LhsK

(
x− xα
h

)
,

where K is any smooth function supported on the unit `2 ball {x : ‖x‖2 ≤ 1}, with the following proper-
ties: K(0) = 1, 0 <

∫
K(x)2 dx <∞, and DβK is 1-Lipschitz for all |β| < s (we can equivalently assume

bounded derivatives: ‖Dβf‖2 ≤ 1 for all |β| ≤ s). Then follow the calculations in the lecture, where we
used Fano’s method and the Varshamov-Gilbert lemma.

3 Sub-Gaussian maximal inequalities [24 points]
In this exercise, we will derive tail bounds on maxima of sub-Gaussian random variables Xi, i = 1, . . . , n.
Suppose each Xi has mean zero and variance proxy σ2. (We assume nothing about their dependence struc-
ture.)

(a) Prove that for any λ ∈ R, [6 pts]

exp

(
λE
[

max
i=1,...,n

Xi

])
≤ neσ

2λ2/2.

(b) Rearrange the result in part (a), then choose a suitable value of λ to show that [4 pts]

E
[

max
i=1,...,n

Xi

]
≤ σ

√
2 log n.

(c) Prove that for any λ ≥ 0, [4 pts]

P
(

max
i=1,...,n

Xi ≥ λ
)
≤ ne−λ

2/(2σ2).

Hint: use the fact that P(Xi ≥ λ) ≤ e−λ2/(2σ2), for any λ ≥ 0, which you can view as a consequence
of the tail bound for sub-Gaussian averages when n = 1.

(d) Reparametrize the result in part (c) to show that for any t > 0, [2 pt]

P
(

max
i=1,...,n

Xi ≥ σ
√

2(log n+ t)
)
≤ e−t.

(e) Now, we turn the question of the role of dependence: do correlations between Xi, i = 1, . . . , n make
their maximum stochastically larger or smaller? Conduct (and include the results of) a small simula-
tion in order to inform your answer. [8 pts]

4 Risk analysis for the constrained lasso [24 points]
This exercise explores simple in-sample and out-of-sample risk bounds for the lasso. Assume that we ob-
serve i.i.d. (xi, yi) ∈ [−M,M ]d × R, i = 1, . . . , n, where each

yi = xTi β0 + εi,

and each εi is sub-Gaussian with mean zero and variance proxy σ2. Consider the constrained-form lasso
estimator β̂, which solves

minimize
β

‖Y −Xβ‖22 subject to ‖β‖1 ≤ t,

where Y = (y1, . . . , yn) ∈ Rn is the response vector, X ∈ Rn×d is the predictor matrix (whose ith row is
xi ∈ Rd), and t ≥ 0 is a tuning parameter.
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(a) Prove that the lasso estimator, with t = ‖β0‖1, has in-sample risk satisfying [6 pts]

1

n
E‖Xβ̂ −Xβ0‖22 ≤ 8Mσ‖β0‖1

√
2 log(2d)

n
,

where the expectation is taken over the training data (xi, yi), i = 1, . . . , n.

Hint: follow the strategy that we used in lecture to derive the “slow” rate for the constrained lasso.
Note that this was for fixed X, so you will need to condition on X here. Then apply the result from
Q2 part (b). You may use the fact that for ε = (ε1, . . . , εn) ∈ Rn, a vector of i.i.d. sub-Gaussians
with mean zero and variance proxy σ2, and an arbitrary fixed vector a ∈ Rn, the random variable
aTε is mean zero sub-Gaussian with variance proxy σ2‖a‖22.

(b) For i.i.d. mean zero random variables Zi, i = 1, . . . , n that lie almost surely in [a, b], prove that for
any t ∈ R, [4 pts]

E
[

exp

(
t

n

n∑
i=1

Zi

)]
≤ et

2(b−a)2/(8n).

Hint: you may use the fact that each Zi is sub-Gaussian with variance proxy (b− a)/2, and the hint
about linear combinations of sub-Gaussians from part (a).

(c) Let Σ denote the predictor covariance matrix, that is, Σ = E[x0x
T
0 ] for a draw x0 from the predictor

distribution. Let Σ̂ = XTX/n be the empirical covariance matrix, and let V = Σ̂− Σ. Prove that [4 pts]

E
[

max
j,k=1,...,d

|Vjk|
]
≤M2

√
2 log(2d2)

n
.

Hint: apply part (b) to the entries of V .

(d) Prove that the lasso estimator, with t = ‖β0‖1, has out-of-sample risk satisfying [10 pts]

E[(xT0 β̂ − xT0β0)2] ≤ 8Mσ‖β0‖1

√
2 log(2d)

n
+ 4M2‖β0‖21

√
2 log(2d2)

n
,

where the expectation is taken over the training data (xi, yi), i = 1, . . . , n and an independent draw
x0 from the predictor distribution.

Hint: first, argue that the in-sample risk and out-of-sample risk can be written as

E
[
(β̂ − β0)TΣ̂(β̂ − β0)

]
and E

[
(β̂ − β0)TΣ(β̂ − β0)

]
,

respectively. (Note that the expectations above are each taken with respect to the training samples
(xi, yi), i = 1, . . . , n only—there is nothing else that is random.) Next, argue that

(β̂ − β0)TΣ(β̂ − β0)− (β̂ − β0)TΣ̂(β̂ − β0) ≤
d∑

j,k=1

|(β̂ − β0)j ||(β̂ − β0)k||Vjk|,

where recall Vjk = (Σ̂− Σ)jk. Then do a little bit more algebra to bound the right-hand side above
and apply the previous parts of this question to conclude the result.

(e) The bound derived in this question for the out-of-sample risk is always larger than that for the in-
sample risk (by nature of its construction). As a bonus, investigate: can the out-of-sample risk of the
lasso be lower than the in-sample risk? Use a simulation, a pointer to an experiment or result in the
literature, or any means of answering that you believe provides a convincing argument.
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