Nonparametric Regression: Splines and RKHS Methods
Advanced Topics in Statistical Learning, Spring 2023
Ryan Tibshirani

Note: we’re following the context, problem setup, notation, etc. from the last lecture on nonparametric
regression.

1 Regression splines

Regression splines and smoothing splines are motivated from a different perspective than kernels and local
polynomials; in the latter case, we started off with a special kind of local averaging, and moved our way
up to a higher-order local models. With regression splines and smoothing splines, we build our estimator
globally, from a set of select basis functions.

(We note that, at a broader level, the latter is often called the synthesis framework for modeling, where we
build our estimator from a set of atoms—here being basis functions.)

1.1 Splines

These basis functions, as you might guess, are splines. Let’s assume that d = 1. We’ll stick to the univari-
ate case for a little while, because splines are complex and interesting enough in dimension d = 1. A spline
f of degree k with knots at t; < --- < ¢, is a piecewise polynomial of degree k that is continuous and has

continuous derivatives of orders 1,...,k — 1 at its knots. To be clear:
e f is a polynomial of degree k on each of (—oo, 1], [t1,t2],. .., [tr, 00); and
e D'f is continuous at each of t1,...,t,, forall £ =0,...,k — 1.

Splines have some special (some might say amazing) properties, and we will only really scratch the surface
here. They have been a topic of interest among mathematicians and statisticians for a long time. Infor-
mally, a spline is a lot smoother than a piecewise polynomial, and so modeling with splines can serve as a
way of reducing the variance of an estimator. See Figure 1 for an illustration.

A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect the locations
of its knots by eye!

1.2 Spline bases

How can we parametrize the space of k™" degree splines with knots at ¢1,...,¢.? The most natural way is
to use the truncated power basis, g1, ..., gr+r+1, defined as
1
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Here x, = max{z,0} denotes the positive part of x. From this we can see that the linear space of k'
degree splines with knots at ¢y, ...,¢, has dimension r + k + 1.

While (1) gives us a simple and natural basis, calculations involving truncated power bases functions can
be troublesome because the ensuing basis matrix, G € R"*("+++1) with entries

Gij = gj(z:)
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Figure 1: Illustration of the effects of enforcing continuity at the knots for a cubic piecewise polynomial,
and for various orders of the derivative. Credit: Chapter 5.2 of Hastie et al. (2009).

is generally very poorly conditioned.

A much better computational choice, both for speed and numerical stability, is called the B-spline basis.
This was a major development in spline theory and is now much the standard in software. The key idea is
that B-splines have local support: each B-spline basis function for a k' degree spline space is supported
on k + 2 knots. Therefore the corresponding basis matrix is banded. It also tends to be much better condi-
tioned.

Defining B-splines is certainly requires more nuance than the truncated power basis, and the precise form
of a B-spline is unimportant for the rest of this lecture. For completeness, you can find the details behind
their construction in a supplementary note posted on the course website.

1.3 Regress away!

A first idea: let’s just perform regression on a spline basis. In other words, we use as our working model a
k' degree spline with knots at some pre-fixed locations ¢1,...,¢,.. This means expressing f as

r+k+1

f=> Big
j=1

where f31,...,Bryxs1 € R are coefficients and g1,. .., g, r11 is a basis for the space of k" degree splines
over the knots t1,...,t,; for example, the truncated power basis or B-spline basis.



Letting Y = (y1,...,Yn) € R™ be the response vector, and G € R™*(r+k+1) the basis matrix with entries
Gij = gj(xi)7

as before, we then just use least squares to determine estimate the coefficients, defining B = (Bl7 ... ,Br+k+1)
to solve

i=1

n r+k+1 2
minimize ;— gi(x; <= minimize ||Y — GB||3.
ize 3 2 pa )) mize Y — GA3

This yields the regression spline estimator, which makes predictions according to

r+k+1

flz) = Z Bigi(z).

Of course we know that § = (GTG)"'GTY, so we can write this as

f@)=(01(2),- g1 (2) (GTG)TIGTY = w(a)'Y,
which reveals that regression splines are linear smoothers.

This is a classic method, and can work well provided that we choose “good” knots t1,...,t,; but in general
choosing knots is a tricky business. There is a large literature on knot selection for regression splines via
greedy methods like recursive partitioning. In practice, smoothing splines seem to be more popular, which
we cover next.

2 Smoothing splines

Before delving into smoothing splines, we need to introduce a variant on the usual spline definition given
above. To motivate it: a problem with spline estimates is that they can have somewhat erractive behavior—
translating into high variance—at the boundaries of the input domain. (Recall that this is the opposite
problem to that with kernel smoothing, which had poor bias at the boundaries.) This only gets worse as
the polynomial order k gets larger.

2.1 Natural splines

One way to remedy this problem is to force the piecewise polynomial function to have a lower degree to
the left of the leftmost knot, and to the right of the rightmost knot—this is exactly what natural splines
do. A natural spline f of degree k with knots at t; < --- < ¢, is a piecewise polynomial of degree k such
that:

e fis a polynomial of degree k on each of [t1,t2], ..., [tr—1,t:];
e f is a polynomial of degree (k —1)/2 on (—o0, ;] and [t,., 00); and
e D'f is continuous at each of t1,...,t,, forall £=0,...,k— 1.

It is implicit here that natural splines are only defined for an odd degree k (linear, cubic, etc.) The choice
k = 3 yields a natural cubic spline, by far the most common case: this is just a cubic spline that reduces
to linear beyond the leftmost and rightmost knots.

What is the dimension of the span of k** degree natural splines with knots at ¢y,...,%,.? Recall for splines,
this was r + k + 1 (just count the number of truncated power basis functions). For natural splines, we can
compute this dimension by counting as follows:

(k—1)

(h+1)- (=1 + ( +1)2 = ker =

~—

a b c

In the above:



e qa is the number of parameters in the interior intervals [t1, 3], ..., [tr—1,tr];
e b is the number of parameters in the exterior intervals (—oo,t], [t,, 00); and
e ¢ is the number of constraints at the knots tq,...,t,.
The fact that the total dimension is r is pretty remarkable; this is independent of k!

We note that there are simple modifications the truncated power basis that gives rise to a basis for natural
splines, and similarly a modification of the B-spline basis for natural splines. And again, B-splines are the
preferred parametrization for computational speed and stability.

2.2 Smooth away!

Smoothing splines, at the end of the day, are given by an ¢s-regularized regression over a natural spline
basis that places knots at all input points z1,...,z,. They circumvent the problem of knot selection be-
cause they just use all inputs as knots, and they make this possible—starting with a saturated model and
producing meaningful function estimates—by using regularization to shrink the coefficients in the basis
expansion.

Interestingly, we can motivate and define a smoothing spline directly from a functional minimization per-
spective. With input points z1,...,z, lying in an interval [a, b], the smoothing spline estimator f, of a
given odd integer order k > 1, is defined to solve

n b
minifmize Z(yl — f(x:))* + )\/ [D™f(x)])? dz, where m = (k+1)/2. (2)

This is an infinite-dimensional optimization problem over all functions f for the which the criterion is well-
defined and finite. The criterion in (2) trades off the squared error of f over (x;,v;), 7 = 1,...,n, with a
penalty term that is large when the (m — 1)t derivative of f is wiggly. The tuning parameter A > 0 governs
the tradeoff between these two terms.

By far the most commonly considered case is k = 3, the cubic smoothing spline, defined via
n b
minimize > (i — fl@)? + A / [f" (x)]? da. (3)
i=1 @
This is so common that often you’ll just hear this called the smoothing spline.

2.3 Representer theorem

Remarkably, it so happens that the minimizer in the general smoothing spline problem (2) is unique, and
it is a natural k' degree spline with knots at the input points z1,...,z,! This is known as a representer
theorem for (2) (we will see more such results later).

Proof: we’ll just consider the cubic case, k = 3, and follow Chapter 2.2 of Green and Silverman (1993) who
give a nice direct proof.

The key result can be stated as follows: if g is any function on [a, b] such that the penalty is well-defined
(it has two derivatives, its second derivative is square integrable), and z1,...,z, € [a,b] are arbitrary, then
there exists a natural cubic spline f with knots at x1, ..., x, such that:

o f(x;))=g(x;),i=1,...,n; and
o [M1f"(@)2dx < [V]g" ()] da.

This would imply that we can restrict our attention in problem (3) to natural splines with knots at x1,...,x,.
To prove the key result, we start with the fact that the cubic natural spline space with knots at x1,...,x,
is n-dimensional, so given any n points z; = g(z;), i = 1,...,n, we can always find a natural spline f with



knots at 21, ..., x, that satisfies f(x;) = z;, i = 1,...,n. Now define h = g — f. Consider

L e

I
Yy / " DA @) da

-3 @)
i=1
- Z S (@) (M(@iv1) — h(x)).

/f” VA (z) dz = f" ()l (x

n—1

In the first line we used integration by parts; in the second line we used the fact that f”(a) = f”(b) =0
and f"”'(z) =0 for x < x1 and z > x,, since f is a natural spline; in the third line we used integration by
parts again; in the fourth we used the fact that f”’ is constant on each open interval (z;, z;1+1), and that
D*f = 0, again because f is a natural spline. Since each h(z;) = 0, we conclude from the last display that

b
/ " (x)h" (z) dx = 0.
From this, it follows that

/ o @) da = / 1)+ @) e = / ) e+ / @) d

since the cross term is zero, and therefore

b b
[r@pis <[5 @,
with equality if and only if A”(z) = 0 for all « € [a,b]. Note that A" = 0 implies that h must be linear, and
since we already know that h(z;) = 0 for all ¢ = 1,...,n, this is equivalent to h = 0. In other words, the

last display holds strictly except when g = f, so the solution in (3) is uniquely a natural spline with knots
at the inputs.

2.4 Finite-dimensional form

From the representer result, we can choose a basis 71, ...,7n, for the set of k" degree natural splines with
knots at x1,...,x,, and reparametrize the problem (2) as

n n 2 b n 2
miniﬁmize Z <yZ - Z Bn; (:cl)) + )\/ (Z ﬁijm(m)) dx. (4)
i=1 j=1 @ M=l

This is a finite-dimensional problem, and after we solve for the coefficients 3 € R™, the smoothing spline
estimator is simply given by
n
=D Bymj(w)
j=1

Defining the basis matrix N € R"*™ and penalty matrix 2 € R"*" to have entries

b
Nij = n;(xi), Qi =/ D™ ni(x) D™ n; (x) d,
a
the problem in (4) can be written more succintly as

minipize |Y — NB|I3 + A\8TQ8, (5)



which a type of generalized ridge regression problem. From (5), it is not hard to see that the solution has
the explicit form = (NTN + AQ)"!NTY, and thus, we can write the smoothing spline as

f@)=(n(@),...,70(@)"(NTN + X)INTY = w(z)TY,

which means, once again, smoothing splines are linear smoothers.

A remark on computation: the coefficients 5 = (NTN + AQ2)"'NTY can be computed in O(n) operations.
For this, we form N using the B-spline basis (for natural splines), since then the matrix NTN + QI will
be banded. In fact, more specialized computations are possible by taking advantage of more precise struc-
ture (beyond bandedness) afforded by splines. Altogether, in practice, smoothing spline computations are
extremely fast.

2.5 Reinsch form
The vector of fitted values Y = (f(z1), ..., f(z,)) € R™ from the smoothing spline can be written as

Y = N(NTN + Q)7 !NTY.
It is informative to rewrite this in what is called Reinsch form,
N -1
V= N(NT(I + /\N‘TQN‘l)N) NTY
= +2Q)7"

where Q@ = N~ TQN~!. Note that Q does not depend on A. Thus if we compute an eigendecomposition
Q = UXUT, then the eigendecomposition of the smoother matrix S = (I + A\Q)~!

S =
Z 1+ )\0] )
where ¥ = diag(o1,...,0,). Therefore, once more, the smoothing spline fitted values can be expressed as
n T
=3
=AY

The interpretation we may gather is as follows: smoothing splines perform a regression on the orthonormal
set u1,...,u, € R", but they shrink the coefficients, with more shrinkage applied to an eigenvector u; that
corresponds to a large eigenvalue ;.

What exactly are these vectors uq,...,u,? These are referred to as the Demmler-Reinsch basis, and some
nice properties of theirs can be worked out analytically (Demmler and Reinsch, 1975). In a nutshell: the
eigenvectors u; that correspond to smaller eigenvalues o; are smoother, and so with smoothing splines, we
shrink less in their direction. Or to put it differently, by increasing A in the smoothing spline estimator, we
are tuning out the more wiggly components. See Figure 2.

2.6 Equivalent kernel

Recall that we can write a smoothing spline prediction as f(z) = w(z)TY, for a weight function w(z) =
(wi(x),...,wy(z)) € R". We know the analytic form of this weight function, but how about its qualitative
behavior? To be more precise, if we denote each component function by w;(x) = w(x,z;) to emphasize
that this weight gets attributed to (z;,y;) in the weighted sum w(z)"Y = """, w(z, z;)y; which gives us
the smoothing spline prediction at z, then we can ask the following questions:

e What shape does z — w(x, z) have? Is it kernel-like?

e Does this shape change as we vary the test point x?
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Figure 2: Insights from the Reinsch form of the cubic smoothing spline, for an example with n = 50 input
points. Left: the bottom 8 eigenvectors of QQ, drawn using a color gradient where purple means the smallest
eigenvalue, and light blue the largest eigenvalue. We see that smoother eigenvectors correspond to lower
eigenvalues. Right: the shrinkage weights w; =1/(1+Aoj), j =1,...,n for 8 values of A\, again drawn using
a color gradient where purple means the largest A, and light blue the smallest A. For larger A\, the weights
decay faster, so the smoothing spline estimator more strongly filters out wiggly components.

It’s easy to just read off the answers to these questions from the rows of the smoother matrix S = N(NTN +
AQ)~INT, since in our expanded notation, its elements are

Sij = wj(xi) = w(s, 25).

Now, something very interesting happens when we plot a few rows of S. For evenly-spaced inputs, they
look like the translations of the same kernel: see the left panel of Figure 3. Even more interestingly, for
unevenly-spaced inputs, the rows still have a kernel shape but now the bandwidth appears to adapt to the
density of the input points: lower density, larger bandwidth. See the right panel of Figure 3.

What we are seeing is an empirical validation of a beautiful asymptotic result by Silverman (1984), who
proved that the cubic smoothing spline estimator is asymptotically equivalent to a kernel regression es-
timator, with an unusual choice of kernel. Specifically, under suitable regularity conditions, we have the

large n approximation,’
1 1 Tr—z
w(x, z) ~ K ,
@)= 07 ()

where K is the “Silverman kernel”:

K(t) = 5 exp(~1tl/V) sin([il/v3 + 7/4),

hz) = [pj)] "

where p(z) is the density of the input distribution at z. That is, the bandwidth adapts to the local distri-
bution of inputs.

and we have the local bandwidth:

ISilverman actually shows that w(z, z) ~ ﬁ 1 2K(%), but the version we are stating has a more natural interpreta-

. . ; . p(z .
tion with respect to Figure 3, and is a consequence of symmetry of the smoother matrix S.
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Figure 3: Three sample rows of the cubic smoothing spline operator S defined over n = 500. Left: evenly-
spaced inputs on a grid. The weights look like they are given by translations of the same kernel. Right:
inputs drawn i.i.d. from N(0.5,0.01). The weights still look like kernels, but the bandwidth is now larger in
low-density regions of the input domain.

The Silverman kernel is “kind of” a higher-order kernel. It satisfies

/K(t)dt:L /th(t)dt:07j:1,...,3, but /t4K(t)dt:—24.

So it lies outside the scope of usual kernel analysis. There is a lot more work building off of Silverman’s
initial work that connects smoothing splines to equivalent kernels.

2.7 Rate of convergence

Compared to that for kNN and kernel smoothing, the error analysis for smoothing splines is more nuanced.
Hence we’ll dedicate a whole lecture to learning the tools behind it, a bit later in the course. The upshot
is that we’ll learn a general framework, and accompanying probabilistic tools, that can be used to analyze
numerous other nonparametric estimators (such as other penalized empirical risk minimizers).

The punchline for smoothing splines will be as follows. If we assume that fo € W™2(L;[0,1]) for a con-
stant L > 0, we write to mean that D™ f; exists in the weak sense (to be defined precisely below) and
fol [D™ fo(2)]? dow < L?, and we assume mild conditions on the input points and sub-Gaussian noise, then
the smoothing spline estimator of degree k = 2m — 1 with tuning parameter \ < n'/(?m+1 satisfies

maX{Hf — follz I = fo||§} <72/ GmEDin probability,

with respect to randomness in the draws of (x;,v;), i =1,...,n.

3 Sobolev theory*

In somewhat of an interlude, we use this section to introduce Sobolev spaces. This material can be mostly
skipped without interrupting the flow of understanding the main ideas in the rest of this lecture, hence the
asterisk. Well actually, you should probably read the definition of weak differentiability, but you can treat
the rest as optional. Yes, optional, but also super interesting and fairly fundamental in many ways, which
is why we include some of the core details of Sobolev spaces here. To learn more, an excellent reference is
Evans (2010).



3.1 Weak derivatives

First we introduce what is known as weak differentiability. A function f : U — R, where U C R? is an
open set, is called weakly differentiable provided that there is some function g : U — R? such that

/ F(@) D) da = — / (2)é(z) dz, for all ¢ € C(U), (6)
U U

where C2°(U) is the set of all infinitely differentiable functions with compact support in U, and D¢ is the
derivative of one such function ¢. The function g satisfying (6) is unique almost everywhere, and denoted
by D f henceforth, called the weak derivative of f.

The motivation for this definition of weak differentiability is integration by parts: if f, ¢ are differentiable
in the classical (usual) sense, then [, f(2)D¢(x)dx = — [, Df(x)¢(x) dx by integration by parts (applied
componentwise), where there are no boundary terms because ¢ has compact support. Thus, we define the
weak derivative ¢ = D f such that this holds for all infinitely differentiable compactly-supported ¢.

Higher-order derivatives follow similarly. For a multi-index o = (aq,...,aq) € Z‘i, recall, we write |a| =
a1 + -+ + ag and we denote
olelg

DY =
¢ dx{0x5? ... 0xgt’

h

interpreted in the classical (usual) sense for a function ¢. In the weak sense, f is said to have o' weak

differentiable g if
/ f(z)D*¢(z) dx = —(1)\a|/ g(x)p(z) dz, for all ¢ € C(U). (7)
U U

Again, the function g satisfying (7) is unique almost everywhere, and we denote by D*f.

Of course, the weak derivative reduces to the classical derivative exists when the latter exists. However,
weak differentiability is more general. An example of a function that is weakly differentiable but not classi-
cally differentiable is

f(z) = x4, with weak derivative Df(z) = 1{z > 0}.

An example of a function that is not weakly differentiable is f(x) = 1{x > 0}. For this, one can check that
the condition (6) cannot hold: taking ¢ to be any function whose support includes 0, we learn that

This cannot possibly be true for all infinitely differentiable ¢. This cannot possibly be true for all ¢ unless
g = 0. But if g = 0, then we cannot recover ¢(0) through integration, since the right-hand side above will
always be 0.

3.2 Sobolev spaces

We are now equipped to define what are called Sobolev spaces. For an integer k£ > 0, and 1 < p < oo, and
an open domain U C R%, we define the Sobolev space

WhP(U) = {f :U — R : D“f exists in the weak sense, and ||[D®f||, < oo for all |a| < kz}

Here || - ||, denotes the LP norm on U:

17|12 = /U f@)Pdz for p < oo,

and || f||co = esssup,cy |f(x)] (the essential supremum, the smallest upper bound possible over all subsets
of U of full measure).



Sobolev spaces are central in the study of partial differential equations, which is commonly where you’ll
find people (mathematicians) referring to them. But they also play an important role in nonparametric
statistics. For example, if you recall the smoothing spline problem (2), where we said that “the minimiza-
tion is all functions f for the which the criterion is well-defined and finite”, we can actually take the do-
main here to be the L? Sobolev space?

W™2([a,b]) = {f : [a,0] = R : D™f exists in the weak sense, and ||D” f||3 < oo, for all a < m}

We note that, generally speaking, when working in Sobolev spaces (just like L? spaces), we identify two
functions that are equal almost everywhere. In other words, each element f in a Sobolev space is really an
equivalence class of functions, any pair of which agree except on a set of measure zero.

Now we recall Hélder spaces. We touched on these in the lecture on kernels. Formally, for an integer r» > 0,
and 0 < v < 1, we define the Holder space

C™(U) = {f :U = R : Df exists, ||Df|loo < oo for all |a] < r, and

p D) = D212

5 < oo for all |« :T‘}.
Tz |z — 2|3

In the above, we can interpret D®f as a classical derivative, and || - || as the supremum norm (we don’t
need the essential supremum norm). This may all seem more restrictive than Sobolev spaces, but as we’ll
discuss just below, we can actually identify the Holder space with a particular Sobolev space.

Let’s pause to examine the relationship between the Sobolev space W*:°°(U) and the Holder space C*(U).
The former contains all functions f such that the a'® weak derivative of f is bounded for all || < k.
The latter contains all functions f such that the ot derivative of f is bounded for all || < k, and D® f
Lipschitz for |o| = k. It turns out that these two conditions are really saying the same thing. Trying

to make this statement precise for general domains is probably not worth it, so we’ll just say that for a
bounded domain U with smooth boundary, we can identify W*>°(U) with C*(U). To be precise, in doing
so, we identify each f in the Sobolev space with its classically differentiable version.

Much more can be said about the connection between Sobolev and Hélder spaces, which is covered next.

3.3 Embedding theorems

Among the whole optional part of material on Sobolev spaces, this next bit really is the most optional, but
it’s too cool not to cover. We start by defining norms on Sobolev and Hélder spaces; namely,

1/p
( > IID“f£> if p < 0o

I fllwe.r @) lo <k for f € WEP(U),

Y D flle ifp=oo

la| <k

and

o D f(x) — D*f(z ,
1l = 3 1D f e+ 3 sup | |(|x)_z7 e, (1),
jal<r jal=r "7 2
Equipped with these norms, W¥*»(U) and C"7(U) are Banach spaces (complete normed linear spaces).
In fact, when p = 2, the space W*P(U) is a Hilbert space (complete inner product space) under the inner

product (f, g>W’<vP(U) = Z|a|gk<Daf7 Dg)s = Zla\gk fU D f(z)D%g(z) dz.

2We'll ignore here, and in several other places, the fact that the domain is closed. Recall, we defined Sobolev spaces on
open domains, and we will do the same for Holder spaces as well. Hence, we are being slightly imprecise by abruptly allowing
closed domains but it’s easiest to do so for simplicity of exposition.

10



Now here comes the cool part, which are special inequalities® involving Sobolev norms that lead to what
are known as embedding theorems. There are really several embedding theorems that were developed over
many years, by different authors (Gagliardo, Nirenberg, Sobolev, Morrey, others), but now the totality of
them is usually just called “the Sobolev embedding theorem”. In a nutshell, this is what it says (recall d is
the dimension of the domain U; and we're intentionally vague about what conditions it needs to satisfy).

The case pk < d, subcritical regime. In this case we a have lower smoothness-to-dimension ratio. Let
0 < ¢ < k be an integer, and p < g < 0o, such that the pair satisfies

1 ¢ 1 k

g d p d
Then we have, for a constant C' > 0 depending only on k,p,¥¢,q and U,
[ lweawy < Clliflwrrw), forall f e WHP(U).

This means that W*»?(U) C W%4(U), and moreover we have what is known as a continuous embedding of
normed spaces. From the above inequality, we learn that any norm ball of radius p in the former space is
contained in a normal ball of the latter, whose radius is at most Cp.

Note that in the special case where we take £ = 0, we get that for

__pd
d—pk’

and a constant C' > 0 depending only on k,p,q and U, it holds that
1£llq < Cllfllwerwy, forall f e WEP(U).

This means that W*P(U) C LI(U), and the embedding is continuous.

q

The case pk > d, supercritical regime. In this case we a have higher smoothness-to-dimension ratio.
Let 0 <r < k be an integer, and 0 < 7 < 1, such that the pair satisfies

r+T k1

d —d p
A technical detail: if the value of r, 7 satisfying the above results in 7 = 1, then we need to “downgrade”
it to a value less than 1. That is, let v = 7 if 7 < 1, and otherwise let 0 < v < 1. Then we have, for a
constant C' > 0 depending only on k,p,r,v and U,

I fller+ @y < Cllfllwro@, for all f € WHP(U).

This means that W*?(U) C C™7(U), and the embedding is continuous. In view of this, we can always
identify each function f € W*P(U) with its r times classically differentiable version.

(The critical regime pk = d is actually a bit more subtle and we’ll skip over it.)

How do we interpret the Sobolev embedding theorem? In the subcritical regime, it says that we can trade
off smoothness in the differential sense with smoothness in the integral sense. Given a k times (weakly)
differentiable function, whose derivatives are in L?(U), the embedding theorem tells us that its derivatives
of order £ < k are less “peaky” and more “evenly spread out”, since they are LI(U) with ¢ > p.

In the supercritical regime, the conclusion is arguably even more fascinating—it says that knowing a func-
tion’s derivatives are smooth in a global (integrated) sense tells us something about local smoothness of
lower order derivatives, at each point in the domain. Given a k times (weakly) differentiable function, the
embedding theorem starts off with a statement about the size of E\a|§k fU |D* f(x)|P dz, and translates
this into a statement about the Holder constant of D f for |a| < k.

Figure 4 gives an illustration of the tradeoffs navigated by the Sobolev embedding theorem (these types of
plots are sometimes called “DeVore diagrams” in honor of Ron DeVore).

3In an unfortunate clash of nomenclature with statistics, you'll often hear mathematicians calling these “estimates”.
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Figure 4: Illustrations of the Sobolev embedding theorem. In each plot, we parametrize the z-axis by 1/p
and the y-azis by k. Hence, as we move right-to-left, we increase the index of the LP norm that is used to
measure integral smoothness, and functions get less “locally peaked” and more “evenly spread out”. As we
move top-to-bottom, we decrease the number of (weak) derivatives under consideration. Left: subcritical
regime with pk < d. We traverse a line of slope d, moving down and to the left, in order to visit the differ-
ent Sobolev spaces into which W*P(U) embeds, culminating in an intersection with the z-azis (k = 0) at
q = pd/(d — pk). Right: supercritical regime with pk > d. Similarly, we traverse a line of slope d to find the
Hoélder space into which W*P(U) embeds, which is given by an intersection with the y-axis (@ = o0). The
open white circles denote cases in which the embedding fails for v = 1.

4 Multivariate splines

We move on to methods for fitting multivariate splines in nonparametric regression. In a sense, both of the
following statements are true.

1. There are several multivariate extensions of spline estimators: e.g, tensor product splines and thin
plate splines (among others). We’ll cover these.

2. There are no real multivariate extensions of spline estimators: tensor product splines and thin plate
splines are not “really” splines. In fact, even defining a multivariate spline is generally very tricky.

How can this be? Let’s go about this backwards, and start by explaining the very last part of the second
point: suppose you were to (reasonably) insist that a multivariate spline should be, like a univariate spline,
a piecewise polynomial of a degree k that is C*~1, which means it has continuous derivatives of all orders
less than k. Then in general this is going to be tricky to fulfill when d > 2. This is essentially due to the

number in the number of constraints such continuity imposes in the multivariate setting. Recall that a k!

degree polynomial in d dimensions is of the form (using multi-index notation o = (a1,...,qq) € fo_):
flz) = Z Bo xitas? . x?, (8)
la|<k

for coefficients B4, |a| < k. The number of coefficients, and hence the dimension of the space of k"' degree

12
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Figure 5: Illustration of the constraints for C' smoothness, for a cubic on each triangle. Credit: de Boor
(2009). A polynomial of an arbitrary degree on a triangle can be written be in what is called a B-form (as
an expansion of what are called Bernstein basis polynomials), whose coefficients can be assigned to anchor
points, drawn above as blue circles. The set of coefficients that are tied together in a linear equation needed
for C' smoothness are highlighted as a red quadrilateral. We can see that the linear systems are entangled,
since pairs of them overlap at an anchor point.

polynomials in d dinensions, is
S fd—140\  [(d+k
> ()= ()
Now let’s just think about cubic degree £ = 3 in dimension d = 2, and try to understand the claim that
it’s tricky to construct a C? piecewise cubic, when we consider the “pieces” to be triangles. In fact, it’s
already going to be hard enough to construct a C' piecewise cubic. Suppose that we have two triangles

sharing an edge e. Then on each triangle we have (g) = 10 parameters to define the cubic, and hence 20
parameters in total. Denoting by f, g the two cubics on our adjacent triangles, the C! condition says that

D®f(x) = D%(x), forall |o| <1 andallz€e.

It can be shown that this reduces to 10 constraints on the coefficients; but importantly, the structure of
these constraints is such that, for a given set of values at the vertices of the triangles, it is unclear whether
there will exist a set of coefficients that satisfies the constraints and meets the prescribed values at the
vertices. This basically happens because the linear constraints are all entangled. Figure 5 gives an illustra-
tion.

To get around this problem we have to increase the degree of the polynomial. As it turns out, for quintic
degree k = 5, this problem doesn’t occur for two adjacent triangles in dimension d = 2, and we get what is
sometimes called a “free” C'' smoothness condition, where this kind of entanglement of constraints doesn’t
happen. One can ask: in dimension d, what is the requirement on the degree k (for a generic partition of
points into simplices) such that we get a “free” C* smoothness condition? The answer is, disappointingly,

k> s(d+1)+d.

We see that for “free” C'' smoothness when d = 2, the minimal degree is indeed k = 5, and when d = 3 it is
k = 7. This seems very wasteful.

This is not a complete show-stopper for multivariate splines and there is much more to the story than this
but we’ll not travel down this path. To learn more, two definitive references are de Boor et al. (1993); Lai
and Schumaker (2007), and de Boor (2009) is a lighter, enjoyable review.
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4.1 Tensor product splines

One way forward in the multivariate setting is just to take tensor products. Recall, a tensor product of
two univariate functions fi, fo on [a,b] is denoted fi ® fo, which is the function on [a, b]? defined as

(f1 ® fo)(w1,22) = fi(w1) fa(2).

Similarly, for any collection of ¢ > 2 functions fi,..., fq, we can define the tensor product fi ® fo® -+ ® f,
as a function

(1@ fo ®-~-®fq)(x1,x2,...,acq) = f1($1)f2($2)..-fq($q).

Thus given a k*" degree spline basis with r knots ¢1,...,%,, which we denote by ¢1,...,g5 for N =r+k+1,
we can take all d-way tensor products to form collection of functions on [a, b]%:

gjl ®g_]2 ®®g]d7 fOI‘ all EZ (jlana"'ajd) S [N]da

where we use the abbreviation [N] = {1,..., N}. By construction the linear span of this collection, i.e.,
functions of the form

F@)= " Bigi(z1) @ ®gj,(za),

JE[N]?

for coefficients 3;, j € [N]%, generates the space of tensor product splines
{f1 ®---® fq:each fois a k™ degree spline with knots in ti,...,t,, for £ =1,... ,d}.

Figure 6 displays a few tensor products of bivariate B-splines.

To fit a tensor product spline from data, the simplest thing to do would be the tensor product regression
spline, whose coeflicients are given by solving

n 2
minimize > (yi — > Bign(za) ®"'®9jd($id)> :

i=1 jE[N]4

Denoting by A ® B the Kronecker product of matrices A, B, and denoting by Gy € R¥*¥ the basis matrix
for dimension ¢, with entries [G¢]pq = g4(zpe), We can express the above in more compact form as

miniﬁmize Y - (Gi®--- Gd)ﬁHz.
As usual, given the solution 3, we make predictions according to flz) = 2 je[N] B g, (1) @ - @ gj, (za),

and since [ is linear in Y, the tensor product spline f is a linear smoother.

Few notes: there is no reason that the knots have to be the same along each dimension, that is only done
here for simplicity. We could have also used regularization, though for “variationally-motivated” regulariza-
tion we’d turn to thin plate splines (covered next).

4.1.1 What are these functions?

We should be clear that tensor product construction does not “really” give us a multivariate spline, if we
maintain that a spline is a k*® piecewise polynomial that is also C*~'. Why? Note that a tensor product
of univariate k' degree splines produces a function that is indeed C*~!, and indeed a piecewise polyno-

mial: it is a polynomial on each hypercube of the form

[tj17tj1+1] X X [tjd7tjd+1]'

But it is not necessarily a k*" degree polynomial on each hypercube; it is a tensor product of univariate
k' degree polynomials. Technically, out of this we can get a polynomial of degree up to k%, and at the
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Figure 6: Bivariate tensor products of cubic B-splines. Credit: Chapter 5.7 of Hastie et al. (2009).

same time, we can’t actually generate any polynomial of degree k¢. We are restricted to functions of the
form
flz) = Z Bax{tas? . agl.
aig,...,aq<k
There is important difference here, compared to (8). As a concrete example, take k = 1 and d = 2: then
the tensor product of univariate linear functions give us (what are called bilinear) functions of the form
14 ax1 + bxs + cxy29,
which is not linear, because of the cross term zixzs. At the same time, we can’t get any quadratic out of
this, because we're missing the terms x? and 3.

This seems to bothers some people (researchers, practitioners), but doesn’t bother others—it really must
depend on the problem setting or application one has in mind. Sometimes the highly anisotropic (coordinate-
aligned) nature of a tensor product spline may be desirable, and other times it may not.
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4.2 Thin plate splines

An alternative route is to try to extend the variational problem (2) that defined the univariate smoothing
spline. At the outset, let’s aim for the most general extension, which is to define an estimator by solving

mlmmlze Z flx)? + A Z [D® f(x)]? du, (9)
U la|=m
for an integer order m > 1. Here U is a subset of R? that contains the input points z;, i = 1,...,n, and

the minimization is over all functions f for the which the criterion is well-defined and finite. For example,
we can consider the minimization to be over the Sobolev space W™2(U),* which recall contains m times
weakly differentiable functions with o' derivative in L2(U), for |a| < m.

Is this a good idea? It depends. When 2m > d, problem (9) is well-defined in the sense that it admits a
solution. This solution is what we’ll eventually call the thin plate spline estimator (in a particular case).
But when 2m < d, there is a fundamental issue with this approach: problem (9) is ill-defined in the sense
that it has no solution. This is a manifestation of the Sobolev embedding theorem.

4.2.1 Return of the Sobolev embedding theorem

Let’s recall what we learned from the Sobolev embedding theorem earlier (if you skipped it, since we did
say it it was optional, then also that’s fine—the following explanation should still be pretty self-contained).
When 2m > d, which we called the supercritical regime, the Sobolev space W™2(U) embeds continuously
into a Holder space C™7(U), so in particular it embeds continuously into C°(U): this is simply the space
of continuous functions on U equipped with the L> norm. Why is this important? Well, given a sequence
such that fx — f as k — oo in || - [lyym.2() norm, the continuous embedding property implies fr, — f as
k — oo in L norm, which implies fx(x) — f(x) for all . Thus we have shown a critical fact:

For 2m > d, the point evaluation operator is continuous on W™?2(U).
This means we can do things like solve the variational problem (9).
But when 2m < d, we do not get an embedding into C°(U), and it turns out that:
For 2m < d, the point evaluation operator is not continuous on W™2(U).

This means that there can be a sequence such that fr — f as k — oo in || - [[yym.2)y norm but fi(z) #
f(x) for some x. In fact, it’s not hard to see this from first principles when 2m < d. Let f to be an in-
finitely differentiable “bump” function that is symmetric about the origin, with f(0) = 1, and zero outside
of the unit ¢y ball {x : ||z]|2 < 1} C U. Now define fi(z) = f(kz), for k = 1,2,3,..., so that f; collapses
smoothly to a spike at the origin as k — oo. Then

simply by a change of variables u = kx. If d > 2m, then as k — oo, we get that fr — 0 (the zero function)
in || - [[wm.2(ry norm. However, recall f(0) = 1 for all &, so clearly we do not get pointwise convergence at
the origin. Altogether, this means we cannot do things like solve the variational problem (9).

4.2.2 Restrictions to the rescue

To circumvent the above issue, we can just restrict 2m > d. Note that this forces us to take more deriva-
tives as d grows, which is not really desirable (more on this later). In any case, when d = 2, it is valid to
take m = 2, which yields the thin plate spline estimator, defined by solving

mlmmlze Z f(z)) +)\/ V2 f(x)||% da, (10)

4There is a subtlety here about what we actually mean here for unbounded domain like U = R%. The problem is that the
Sobolev space W™ 2(R%) doesn’t admit polynomials of degree m — 1, whereas we'd like all of these to be allowed in the mini-
mization. See the course website for a supplementary note that explains these details.
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where V2 f denotes the weak Hessian (matrix of weak second derivatives) of f, and || - || is the Frobenius
norm. This can be equivalently written as

minimize Z +A/U [(8;];(;))2+2(g;i()2>2+ (ay;(;))? dx. (11)

Like the cubic smoothing spline problem (3), the thin plate spline problem (11) (or equivalently, (10)) has
a representer theorem for its solution. Unlike the smoothing spline, the solution actually depends on the
choice of the domain U. For U = R?, one can show that it suffices to consider functions of the form

f@)=a+0Te+y Az — ), (12)

j=1

where 7 is the so-called radial basis function

1
r ——r?logr?
n(r) = 1" log
(As log 0 is undefined, we adopt a continuous extention at zero, and set 7(0) = 0.) In order for the penalty
in the problem (11) to be finite, a necessary and sufficient condition on the coefficients is that

OZZﬁj = Zﬁj.ﬁj.
i=1 j=1

Note that there are 3 linear constraints here (since each z; is in R?), and there are n + 3 parameters in (12),
which means that in total, subject the constraints, we have n free parameters.

Using this constrained parametrization, we can translate (11) into a finite-dimensional problem. One can
show that it is a constrained generalized ridge regression, thus its solution, the fitted coefficients a, b 5, are
linear in Y. As we make predictions according to f(z) = a+ bz + > i Bin(lx — x4]2), we see that the
thin plate spline is a linear smoother. The story for what happens on a bounded domain U is similar, but
a bit more complex. See Chapters 7.4-7.7 of Green and Silverman (1993) for precise details.

The function f in (12) often called a polyharmonic spline. Again, it is not “really” a multivariate spline, be-
cause it is not a piecewise polynomial. But let’s emphasize an important property: n is symmetric around
the origin. In fact, if we just look back at the criterion (10), we see that if we rotated the coordinate sys-
tem by an orthogonal transform V € R2*2 and take our new coordinates to be z = Vx, then we get

mlnlmlze Z f(z) Jr/\/“VV2 (= )VTHF dz,
—
=v2f ()%

where we used the fact that ||VAVT|r = ||A||r for any matrix A due to orthogonality of V. This means
that the thin plate spline estimator is rotationally invariant: if we rotated the coordinate system of the
input points, then the new solution would just be a rotation of the old solution. This is not true of tensor
product splines.

What about more than 2 dimensions? When d = 3, the choice m = 2 is still valid, and the corresponding
estimator is often still called the thin plate spline. The details are similar to the above. In fact, whenever
2m > d, the variational problem (9) has a representer theorem and admits a finite-dimensional solution
which is a polyharmonic spline, and the problem reduces to a generalized ridge regression. See Chapter 7.9
of Green and Silverman (1993). Instead of pursuing these details, we’ll simply move on to RKHS theory,
as this will provide us a more general perspective.

4.2.3 Can we do anything else?

Before moving on to RKHS theory, it’s worth emphasizing restrictive the condition 2m > d is. Though it’s
a very simple calculation, Table 1 lists the requirement on m for d = 1 through 5.
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Dimension | Restriction
d=1 m>1
d=2 m > 2
d=3 m > 2
d=4 m >3
d=5 m >3

Table 1: Translating the supercritical condition 2m > d, for each d <'5.

This is obviously not desirable: the choice of smoothness order m (which then dictates the degree of the
polyharmonic spline) should be up to the modeler, and not dictated by the ambient dimension.

There is another way. We can “discretize” the variational problem (9), specifically, we can substitute the
penalty with a discrete approximation based on a graph Laplacian, where the graph is built using the
input points x1,...,z,. This has the advantage of being (i) always well-defined, and (ii) more compu-
tationally efficient than solving (9) even when the latter is well-posed. In fact, beyond just being well-
defined, the graph-based approach can even be minimax rate optimal (over norm balls in Sobolev spaces)
in regimes where the variational problem (9) is ill-posed. Of course, we're skirting a lot of details, but the
takeaway you should know is this:

Consistent estimation over W™2([0,1]%)—even minimaxz rate optimal estimation—is still
possible when 2m < d. We can’t use variational methods like (9), but we can do other things.

However, to qualify the above statement, we must be in the Random-X setting, where x;, i = 1,...,n are
random. If the input points were fixed, then when 2m < d, a construction using “bump” functions (just
like the one we gave above to show that the point evaluation operator is not continuous) will show that
consistent estimation is impossible. To learn more, see Green et al. (2021a). See also Green et al. (2021b)
for a related approach that forms a nonparametric estimator by projecting onto eigenvectors of the graph
Laplacian (rather than penalizing according to the graph Laplacian) and has even stronger theory.

5 RKHS methods

Lastly, we turn to RKHS methods. This will require covering some theory first in order to properly under-
stand what’s going on, but RKHS theory is arguably easier than Sobolev theory. Two great references on
the former are Scholkopf and Smola (2002); Christmann and Steinwart (2008).

A warning before we begin: don’t confuse any of what follows with kernel smoothing (as covered in the
last lecture) or the kernel functions used therein! This is a completely separate concept.

5.1 Kernels, Hilbert spaces, RKHS
We start off by defining the ingredients needed for an RKHS.
Inner products. Let H be a vector space over R (for our purposes: think of this as a space of real-

valued functions). An inner product on H is a function (-, - ) : H X H — R satisfying three properties,
which must hold for all f,g,h € H and all a,b € R:

L. <af + bg7h>7'l = G,<f, h)H + b<g7h’>7'i7
2. {f,9)nu = (9, FHns
3. {f, Yn > 0 with equality iff f = 0.

We can always define a norm based on this inner product, denoted | - ||z, by

I£153 = (f, Fa.

Equipped with its inner product (-, ), we call H an inner product space.
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Hilbert spaces. An inner product space H is called a Hilbert space if it is complete. Recall that com-
pleteness means that Cauchy sequences converge to limits in the space.’

Kernels. There are different ways to define kernels, and in fact different ways to arrive at an RKHS.
One way is this. A kernel is function k : X x X — R for which there exists a map ¢ : X — H (for our
purposes: think of this as a feature map) such that for any z,y € X,

k(xv y) = <¢(.’IJ), ¢(y)>7-£

Note that k is always symmetric and nonnegative, because (-, - )% is an inner product. Furthermore, it is
easy to check from first principles that k satisfies the following property: for any n > 1 and z1,...,x2, € X,
if we define a matrix K € R™*™ to have entries K;; = k(x;,x;), then

a"Ka > 0, forall a € R".

A function £ that is symmetric and satisfies the above property is called positive semidefinite.

Thus, from what we have just argued, a kernel function is always positive semidefinite. Remarkably, the
converse is also true: any positive semidefinite function k£ : X x X — R is a kernel. This means that in order
to define a kernel k, we don’t have to explicitly specify the feature map ¢; we just need to satisfy positive
semidefiniteness.

Examples of kernels on X = R include the polynomial kernel:
k(w,y) _ (1 4 xTy)m’

the exponential kernel:
k(x,y) = exp(z"y),
and the Gaussian kernel:
k(z,y) = exp(—|z — yl[3/0?).

Importantly, kernels need not be restricted to X C R?; they can be defined over much more exotic spaces
X, like spaces of images or text strings, we just need a suitable (positive semidefinite) notion of similarity
between objects.

Reproducing kernel Hilbert spaces. A Hilbert space H of functions is called a reproducing kernel
Hilbert space (RKHS), with kernel k: X x X — R, provided the following two conditions are satisfied:

1. for any x € X, the function k(-,z) is an element of H;
2. for any function f € H and x € X, it holds that (f, k(-,z))y = f(x).

The functions k(-, x) in the first property are often called the “reproducers of evaluation”. Accordingly,
the second property is often called the “reproducing property”. In particular, note that the reproducing
property implies

k($7 y) = (k(-, .’[7), k('a y)>7—t>

for any x,y. This means that the map ¢(x) = k(-,z) is a valid feature map for k.

Equivalent formulation of an RKHS. Here is an equivalent formulation of an RKHS that reveals a
nice connection to Sobolev spaces. For x € X, denote by J, the corresponding evaluation operator on H,
which acts according to d,(f) = f(x). Then a Hilbert space of functions A is an RKHS if and only if all of
the evaluation operators are continuous.

Recall that the Sobolev space W™2(U), where U C R?, is a Hilbert space, for any m > 0. Recall also that
point evaluation in a Sobolev space is continuous if and only if 2m > d. Therefore, we learn the following:

5Concretely, given any sequence fn,, n = 1,2,3,... in H such that for any e > 0, we have ||fn, — fm|# < € for large enough
n,m, it must hold that ||f, — f|lx — 0 as n — oo for some f € H.
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A Sobolev space W™2(U) is an RKHS if and only if 2m > d.

This is an amazing fact. A natural follow-up question: what is the kernel k£ corresponding to the Sobolev
space, for 2m > d? Well, it’s a bit complicated. Are you ready for it? For U = R?, it’s®

exp(2mi(z —y
ba) = [ ;
1 +ZO<\0¢|§m Hj:1(27ruj) !

While this certainly looks complicated, it simplifies in a few important cases. For d =1 and m = 2, we get
the “smoothing spline kernel”:

ny):V@em)(—wﬁm_ﬂA>$n<m_y+W>. (13)

)Tu)

3 2 2 6

Meanwhile, for d = 2 and m = 2, we get the “thin plate spline kernel™

k(z,y) lz = ylI3 log [l — yl3- (14)

_ 1
T 167w

5.2 RKHS regression

After all that build up, this next part is going to be (surprisingly?) simple. Let H be an RKHS, and let
k: X x X — R be its kernel. We can now define an RKHS regression estimator by solving

n
minitmize D (i = f@)* + AIfII3 (15)
i=1
where || - || is the norm associated with H. Note: here the input points satisfy z; € X, and X can be

completely arbitrary (it doesn’t need to be a subset of R%).

Popular choices of k, as we already mentioned, include the polynomial kernel, Gaussian kernel, and expo-
nential kernel, which gives novel nonparametric regression estimators—novel in the sense that you haven’t
seem them thus far in these lectures on nonparametric regresion. We can also choose particular kernels, as
given in (13) and (14), to “reproduce” (no pun in intended) smoothing splines and thin plate splines.

5.3 Representer theorem

One of the main points of appeal of RKHS regression is the fact that we have a representer theorem for
the infinite-dimensional problem (15). This effectively generalizes the results stated thus far on splines.
The solution in (15) is unique and achieved at a function of the form

f(z) = Z Bik(x, x;).
i=1

Note that this is a linear combination of the representers of evaluation. The proof of this result is actually
not very hard. We’ll walk through it on the homework.

5.4 Finite-dimensional form

From the representer result, we can rewrite (15) as

n n 2 n
minigmize Z (yl — Zﬁﬂc(w“x])) + A Z BiBi k(- i), k(-y ). (16)
i=1 =1

ij=1

6The integral here—hence the kernel—only takes real values, because exp(2mi(z —y)Tu) = cos(27(x —y)Tu) +i(27mi(x —y) Tu)
and the integral of the imaginary part is zero since the corresponding integrand is odd.
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Using the reproducing property (k(-,z;),k(-,2;))u = k(x;,x;), and denoting by K € R™*™ the kernel
matrix with entries K;; = k(z;,x;), problem (16) simplifies even further to

minipize |V — K33+ \3TKB. (17)

This is (once again) a generalized ridge regression. The solution in (17) is
B=(KTK+\K)'K"Y = (K 4+ X)"'Y,

where we have used the fact that K is symmetric and invertible. The RKHS estimator makes predictions
according to f(z) = Z?Zl Bik(x, z;), and since § is linear in Y, it is (once again) a linear smoother.
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