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1 Introduction
Current practice in machine learning suggests that it “works” to design neural networks that are massively
overparametrized, and train them without explicit regularization until they interpolate the training data
and thus have zero training error. Surprisingly, these models can still have good prediction error.

You might say: so what? We should regularize and the models will stop interpolating and they’ll also
perform better! However, in some overparametrized settings, it can actually be that tuning over the regu-
larization strength (in an estimator like ridge regression) can suggest that a vanshing amount of regulariza-
tion is optimal.

There has been some influential and thought-provoking experimental work in support of these phenom-
ena. See Figure 1 for a few examples. How can we understand this through the lens of statistical theory?
We can start by understanding what happens in linear models. Even though linear models are “as old as
statistics itself”, we may learn something new.

1.1 What’s new here?
Statisticians have been interested in high-dimensional models for a long time. So what’s new here? Don’t
the terms “high-dimensional” (in use for several decades) and “overparametrized” (popularized recently)
refer the same thing?

In a sense, the answer is both “yes” and “no”. While traditional high-dimensional analyses (like those we
studied for the lasso) and newer overparametrized analyses are clearly very related, they are also different
in some key ways. In the study of overparametrized models:

• we focus exclusively on out-of-sample prediction error—unlike many traditional high-dimensional
regression analyses which focus on in-sample prediction error (and treat out-of-sample prediction
error as somewhat of an afterthought);

• we care about how the risk landscape behaves as we vary the regularization strength, and partic-
ularly what happens for vanishing explicit regularization—unlike many traditional analyses which
study regimes where optimal performance is given by strong explicit regularization.

There are arguably other differences, but those are two of the most salient ones for our discussion.

1.2 Ridgeless least squares
Given a response vector Y ∈ Rn and predictor matrix X ∈ Rn×d, as usual, we consider the minimum `2
norm least squares (or simply min-norm least squares) estimator,

β̂ = (XTX)+XTY, (1)

where (XTX)+ denotes the Moore-Penrose pseudoinverse of XTX. Equivalently, we can write this as

β̂ = argmin
{
‖β‖2 : β minimizes ‖Y −Xβ‖22

}
,

which explains its name.

1



Figure 1: Experiments demonstrating the motivating points raised in the introduction. Interpolating estima-
tors (with zero training error) can still have good prediction error, as shown in the top row, credit: Belkin
et al. (2019). Tuning over regularization levels can suggest that vanishing regularization is optimal even in
high dimensions, as shown in the middle row, credit: Liang and Rakhlin (2020), and bottom row, credit:
Kobak et al. (2020). The behavior of the prediction risk in the top row is dubbed “double descent”.
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An alternative name for (1) is the “ridgeless” least squares estimator. This is because it can be written as
the limit of the ridge estimator for vanishing regularization:

β̂ = lim
λ→0

(XTX + λI)−1XTY = lim
λ→0

argmin
β

‖Y −Xβ‖22 + λ‖β‖22.

When X has rank d, the min-norm least squares estimator reduces to β̂ = (XTX)−1XTY , the usual least
squares estimator. Importantly, when X has rank n, this estimator interpolates the training data: yi = xTi β̂,
for i = 1, . . . , n.

1.3 Connection to gradient descent
There is an interesting connection between gradient descent and the min-norm least squares estimator.
Initialize β(0) = 0, and consider running gradient descent on the least squares loss, yielding iterates

β(k) = β(k−1) + tXT(y −Xβ(k−1)), k = 1, 2, 3, . . . ,

where we take the step size t > 0 to be small enough. Then gradient descent converges to the min-norm
least squares solution in (1):

lim
k→∞

β(k) = β̂.

Why? It’s quite simple: the updates β(k), k = 1, 2, 3, . . . always lie in the row space of X; hence their limit
(guaranteed to exist for small enough t > 0) must also lie in the row space of X; and the min-norm least
squares solution is the unique least squares solution with this property.

The same result (and proof) carries over to stochastic gradient descent, and any other variants of gradient
descent whose updates remain in the row space of X. Since these algorithms comprise the defacto stan-
dard for training neural networks, one can argue that that minimum `2 norm solutions arise naturally as
interesting objects of study based on practical conventions (and successes) in machine learning.

2 Problem setup
We will assume the usual linear model

Y = Xβ0 + ε, (2)

where ε ∈ Rn has i.i.d. entries with mean zero and variance σ2, and ε ⊥⊥ X. The conditions we will assume
on the features X ∈ Rn×d are as follows:

(A1) X = ZΣ1/2, where the entries of Z ∈ Rn×d are i.i.d. with zero mean, unit variance, and finite 8 + η
moment, for some η > 0;

(A2) the covariance matrix Σ ∈ Rd×d has eigenvalues bounded away from 0 and ∞, and satisfies FΣ
d→ H,

as n, d→∞;

(A3) d/n→ γ ∈ (1,∞) as n, d→∞.

To emphasize, we are considering here γ > 1, called the overparametrized regime. As in the ridge lecture,
we will be interested in the out-of-sample prediction risk, conditional on X,

RiskX(β̂;β0) = E
[
(xT0 β̂ − xT0β0)2

∣∣X], (3)

where x0 = Σ1/2z0 is i.i.d. to the rows of X. We will study the risk of min-norm least squares in (1).

2.1 Summary
Here is a summary of what will happen in linear models, based roughly on the development of results in
Hastie et al. (2022). At the outset, we should note that there are a lot of other interesting results from
other recent papers that we will not be covering. This includes some work that goes beyond linear feature
models and budges closer what actually happens in neural networks. For nice surveys on the recent explo-
sion of work on overparametrization theory, see Bartlett et al. (2021); Belkin (2021); Dar et al. (2021).
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0. In the underparametrized regime (γ < 1), the risk is purely variance (there is no bias), and does not
depend on β0 or Σ. Indeed, recall that we already showed in the last lecture that

RiskX(β̂;β0)
as→ σ2 γ

1− γ
. (4)

This blows up as γ → 1 from below.

1. In the overparametrized regime (γ > 1), the risk is composed of both bias and variance, and gener-
ally depends on Σ or β0. The asymptotic risk descends from its asymptote at γ = 1, but there is no
longer a simple explicit formula that describes its behavior with γ in full generality.

2. In the isotropic case Σ = I, we can derive a simple formula for the limiting risk for fixed β0. This
case already exhibits some interesting and informative properties. For example, in a misspecified
model (where the mean E[yi|xi] is no longer linear in xi in (2)), the risk can attain its global mini-
mum at γ ∈ (1,∞).

However, this case fails to shed light on other important aspects that we seek to understand; in par-
ticular, optimal regularization strength in ridge regression in this isotropic case is always be positive.

3. In the case of general Σ, we can derive an explicit formula for the asymptotic variance. As in the
ridge analysis, this is no longer closed-form, but still we can learn various things. For example, in
specific covariance structures, we can study the variance term as a function of correlation strength.

The behavior of the bias is much more complex. With a prior on β0, we can get back an explicit
asymptotic formula (as in the ridge lecture), but this again fails to shed light on important aspects
we would like to study, as optimal regularization strength in ridge regression is again always positive.

4. Thus to expose when and how ridgeless regularization (λ → 0) can be optimal, we must study the
bias for general Σ, and fixed β0. This is a lot more challenging, but it can be done. The optimal-
ity of ridgeless regularization can rigorously confirmed in a latent space model (which is a kind of
misspecified model).

5. Finally, though still much more challenging, concrete progress can be made outside of the linear
feature model. In certain nonlinear settings, some aspects of the lessons from linear feature models
are preserved. You’ll explore this (numerically) on the homework.

2.2 Plan-of-attack?
In general, there are two ways to proceed to derive the risk of the ridgeless regression estimator (1). The
first is to take asymptotic results for ridge regression (like those we derived in the previous lecture) and
then let λ→ 0, which requires being careful about why we can exchange limits (as λ→ 0 and n, d→∞).

The second is to start with the bias and variance expressions for min-norm least squares, and then carry
out asymptotic calculations directly. Often, these calculations require us to “ridge-ify” some of the matrix
functionals that involve pseudoinverses, and then let the auxiliary ridge parameter tend to zero. So they
will typically bear strong similarites to the ridge calculations anyway. Curiously, the “ridge-ified” function-
als in the second approach need not be exactly the same as those in the asymptotic calculations for ridge
regression (though of course we must end up with the same answers with either approach).

We will follow the second approach to analyze the ridgeless estimator in the isotropic case, Σ = I, if only
to give you more exposure to the elegant and powerful nature of random matrix theory. For general Σ we
do not give as many proof details, but will tend to follow the first approach, deriving ridgeless limits from
ridge limits. In preparation for calculations to come, it is helpful to rewrite the ridgeless estimator (1) as
β̂ = (XTX/n)+XTY/n, and helpful to record the bias and variance components of its risk:

BX(β̂;β0) = βT
0 (I − Σ̂+Σ̂)Σ(I − Σ̂+Σ̂)β0 (5)

VX(β̂) =
σ2

n
tr(Σ̂+Σ), (6)

where Σ̂ = XTX/n, which follows from calculations similar to those in the underparametrized case.
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3 Isotropic Σ, fixed β0

We consider the isotropic case, Σ = I. We will assume that ‖β0‖2 = r (which is a constant that does not
vary with n, d), for the true signal vector in (2). Below we analyze the bias and variance separately.

Bias analysis. When Σ = I, the bias (5) becomes

BX(β̂;β0) = βT
0 (I − Σ̂+Σ̂)β0

= lim
ρ→0

βT
0

[
I − (Σ̂ + ρI)−1Σ̂

]
β0

= lim
ρ→0

ρβT
0 (Σ̂ + ρI)−1β0, (7)

where in the second line we used the general fact (ATA)+AT = limρ→0 (ATA+ ρI)−1AT, to A = X/
√
n,

and in the third line we added and subtracted ρI to trailing Σ̂ in the matrix product. (All limits ρ → 0
here and henceforth are to be interpreted as from above.)

By the generalized MP theorem from Rubio and Mestre (2011) (transcribed in Theorem 2 in the ridge
lecture notes using the language of deterministic equivalents), we know that

βT
0 (Σ̂ + ρI)−1β0 and βT

0 (anI + ρI)−1β0 =
r2

an + ρ
have the same asymptotic limit,

where an satisfies a certain fixed-point equation. To compute the limit of an, we note that also

1

d
tr
[
(Σ̂ + ρI)−1

]
and

1

d
tr
[
(anI + ρI)−1

]
=

1

an + ρ
have the same asymptotic limit,

and by the standard MP asymptotics, the left-hand side converges almost surely to mF (−ρ), the Stieltjes
transform of the MP law, evaluated at −ρ. Thus we have 1/(an + ρ)→ mF (−ρ), and

βT
0 (Σ̂ + ρI)−1β0

as→ r2mF (−ρ).

Returning to (7), some calculations involving the Moore-Osgood theorem (whose details we omit) allow us
to switch the order of the limits as n, d→∞ and ρ→ 0, yielding

BX(β̂;β0)
as→ r2 lim

ρ→0
ρmF (−ρ)

= r2 lim
ρ→0

−(1− γ + ρ) +
√

(1− γ + ρ)2 + 4γρ

2γ

= r2−(1− γ) + (γ − 1)

2γ

= r2
(

1− 1

γ

)
, (8)

where to compute the limit we have used the explicit form of the Stieltjes transform of the MP law (as
covered in the ridge lecture notes).

Variance analysis. When Σ = I, the variance analysis is actually quite easy (relatively speaking). From
(6), we have

VX(β̂;β0) = σ2
n∑
i=1

1

si(XTX)
,

where si(XTX/n), i = 1, . . . , n denote the nonzero eigenvalues of XTX/n. Then because XTX and XXT

always have the same nonzero eigenvalues, we may write this as

VX(β̂;β0) = σ2
n∑
i=1

1

si(XTX)
=
σ2n

d

1

n
tr
[
(XXT/d)−1

]
.
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The rightmost term above is precisely the form of the variance in the underparametrized case, but with
XT in place of X. Thus, denoting τ = n/d < 1, we conclude from our previous analysis that

VX(β̂;β)
as→ σ2 τ

1− τ
= σ2 1

γ − 1
, (9)

Putting it together. Adding the bias (8) and variance results (9) together, we get

RiskX(β̂;β0)
as→ r2

(
1− 1

γ

)
+ σ2 1

γ − 1
. (10)

This has quite a striking profile:

The out-of-sample risk of least squares descends from its asymptote at the interpolation
threshold γ = 1. The bias grows with γ, but the variance decreases with γ.

The calculation above explains why the variance decreases with γ: we found that the variance of min-norm
least squares on n samples and d features is precisely the variance of ordinary least squares on d samples
and n features. See Figure 2 for visualization of the risk profile over γ.

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
2

4
6

8
10

Isotropic features

γ

R
is

k

SNR = 1
SNR = 2.33
SNR = 3.66
SNR = 5

Figure 2: The asymptotic risk of least squares (4) for γ < 1 and min-norm least squares (10) for γ > 1,
where the latter assumes Σ = I, the isotropic case. Different colors represent different values of SNR =
r2/σ2. The points denote finite-sample risks, computed from i.i.d. standard Gaussian features with n = 200
and d = [γn] for varying γ. Credit: Hastie et al. (2022).

4 Misspecified setting
The latter analysis portrays an interesting feature of ridgeless regression in the overparametrized regime:
its variance is well-controlled past the interpolation threshold γ = 1. However, it fails to exhibit any real
benefit to doing ridgeless regression in the overparametrized regime, because the global minimum of the
risk is always at γ = 0. We also do not see double descent in Figure 2, as the first descent over γ ∈ (0, 1)
never happens. This is due to the fact that we are assuming, for any n, d, a true linear model in d features,
which makes it hard to reason about what happens across different dimensions d.
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We therefore pursue a small but important change to the model in (2): we instead assume that

Y = Xβ0 +Wθ0 + ε, (11)

Everything is the same as before, with respect to the distributions of X and ε. But now we have an addi-
tional part of the mean function that is driven by W , which we treat as a matrix of unobserved features
(that we do not have in hand). Thus we still just carry out regression of Y on X, as in (1). In this context,
we call (11) a misspecified model, and analogous to (3), we are now interested in risk defined as:

RiskX(β̂;β0, θ0) = E
[(
xT0 β̂ − E[y0|x0, w0]

)2 ∣∣X], (12)

where (x0, w0, y0) is an i.i.d. draw from the same joint distribution as in (11).

4.1 Risk decomposition
We can always write

RiskX(β̂;β0, θ0) = E
[(
xT0 β̂ − E[y0|x0]

)2 |X]︸ ︷︷ ︸
LX(β̂;β0,θ0)

+E
[(
E[y0|x0]− E[y0|x0, w0]

)2]︸ ︷︷ ︸
M(β0,θ0)

, (13)

which is verified by simply verified by first conditioning on x0, then adding an subtracting E[y0|x0] inside
the square in the definition of RX(β̂;β0, θ0) in (12), and expanding, and noting that the cross term is zero:

E
[(
xT0 β̂ − E[y0|x0]

)
|X,x0

]
E
[(
E[y0|x0]− E[y0|x0, w0]

)
|x0

]
= 0.

In other words, from (13), we learn that the risk in the misspecified setting decomposes into two terms:
LX(β̂;β0, θ0), measuring how well we can predict the conditional mean of E[y0|x0], and MX(β̂;β0, θ0),
measuring how far apart E[y0|x0] and E[y0|x0, w0] are. We call the latter term the misspecification bias
(note that it does not depend at all on X or β̂).

4.2 Simplest analysis
In the simplest case, we can take the distribution of the unobserved features W to be independent of X
(and ε), with the covariances of X,W each being the identity—in keeping with the isotropic setting just
studied. This allows to rewrite (12) as

Y = Xβ0 + δ,

where the entries of δ = Wθ0 + ε are still i.i.d. with mean zero, and their variance is ‖θ0‖22 + σ2. Denote

r2 = ‖β0‖22 + ‖θ0‖22 and κ = ‖β0‖22/r2,

which represents the total signal energy and the the fraction of the signal energy captured by the observed
features, respectively. Then LX(β̂;β0, θ0) behaves exactly as we computed previously, in (4) for γ < 1 and
(10) for γ > 1, after we make the substitutions:

r2 7→ r2κ and σ2 7→ σ2 + r2(1− κ).

Furthermore, we can easily calculate the misspecification bias as:

M(β0, θ0) = E[(wT
0 θ0)2] = r2(1− κ).

Putting these results together leads to the following conclusion:

RiskX(β̂;β0; θ0)
as→

{
r2(1− κ) +

(
r2(1− κ) + σ2

)
γ

1−γ for γ < 1,

r2(1− κ) + r2κ
(
1− 1

γ

)
+
(
r2(1− κ) + σ2

)
1

γ−1 for γ > 1.
(14)
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4.3 Interpretation
To interpret the risk profiles (14) in the misspecified setting, we will need to specify a relationship between
κ and γ. Since adding features should generally improve our approximation capacity, it is reasonable to
model κ = κ(γ) as an increasing function of γ. Figure 3 gives an example with a polynomial decay, 1 −
κ(γ) = (1 + γ)−a. Notably, we can see a clear double descent in the risk curve, and for certain values of a
(such as that plotted in green), we find that the global min of the risk occurs at γ > 1.
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Figure 3: The asymptotic risk of min-norm least squares in the misspecified setting (14), with isotropic
observed and unobserved feature covariances, and 1− κ(γ) = (1 + γ)−a. We set SNR = r2/σ2 = 5. Different
colors represent different values of a. As in Figure 2, the points denote finite-sample risks, computed from
n = 200 and d = [γn] for varying γ. Credit: Hastie et al. (2022).

As a concluding remark in this misspecified setting, we note that the dimension of the unobserved features
(the number of columns of W ) enters nowhere in these calculations, so we can effectively think of it as
infinite. This provides us with a nice interpretation: we have an infinitely wide matrix [X;W ] that governs
the behavior of Y in the model (2). As d grows, we observe more and more columns of this matrix, which
improves our approximation capacity. This is an analogy to what a feature generator can do for us.

5 General Σ, random β0

In the general Σ case, just as in the ridge analysis, the bias in (5) is especially difficult to calculate. We
can make progress by placing a spherical prior on β0, such that

E[β0β
T
0 ] =

r2

d
I. (15)

Bias analysis. By taking a limit as λ→ 0 in the Bayes bias result from the ridge lecture (or by starting
from (5), integrating over β0, and following similar arguments to the isotropic case above), one can show

BX(β̂)
as→ r2

γ

1

vF (0)
, (16)
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where vF is the companion Stieltjes transform of the limiting spectral distribution F = F (H, γ) from the
Marchenko-Pastur theorem (and vF (0) = limρ→0 vF (−ρ) exists under our assumptions).

Variance analysis. Again by taking a limit as λ → 0 in the variance calculation from the ridge lecture
(or by starting from (6), and following similar arguments to the isotropic case above), one can show

VX(β̂)
as→ σ2

(
v′F (0)

vF (0)2
− 1

)
, (17)

where again vF is the companion Stieltjes transform of the limiting spectral distribution F = F (H, γ)
from the MP theorem (and v′F (0)/vF (0)2 = limρ→0 v

′
F (−ρ)/vF (−ρ)2 exists under our assumptions). We

emphasize that the variance calculation in (17) does not depend on the prior (15) and is fully general.

Inspecting the asymptotics. We note that the some of the key dependence of (16), (17) on γ is hid-
den in the Stieltjes transform terms vF (0), v′F (0), which themselves depends on γ (since F does). While
these asymptotic limit cannot be computed in closed-form for general covariance models (general H), they
can be computed numerically by solving the Silverstein equation. This is done in Hastie et al. (2022), in
order to probe the asymptotic limits, and better understand how they behave. This reveals some inter-
esting phenomena, such as the fact that stronger correlations can increase the variance, but decrease the
Bayes bias. See Figure 4.

Where this fall short. The Bayes model studied here falls short in one key way. It does not explain
why ridgeless regression is statistically interesting above and beyond ridge regression. In the Bayes model
studied here, recall (from the last lecture), we know that the asymptotically optimal ridge tuning param-
eter is λ∗ = σ2γ/r2, regardless of the feature covariance model. This is always positive, and depends only
on the SNR. Thus in order to really understand the phenomena in Figure 1, i.e., to understand when and
how the ridge risk landscape can be minimized at λ = 0, we must tackle the beast: calculate the ridge bias
for general Σ and fixed β0.

6 General Σ, fixed β0

For general Σ, and a fixed β0, the ridge bias where (recall) β̂λ = (XTX + nλI)−1XTY for λ > 0, and

BX(β̂λ;β0) = λ2βT
0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0, (18)

and especially the ridgeless bias (5), are formidable calculations.

The variance calculations in the ridge or ridgeless risk expansions that we computed in the previous gen-
eral Σ analyses (in the ridge lecture, and in the last section) were done under the guise of a prior assump-
tion on β0, but this assumption did not actually matter for the variance terms, so they were already car-
ried out in full generality anyway.

For the ridge bias, the main challenge is that the functional (Σ̂ + λI)−1Σ(Σ̂ + λI)−1 does not has a trans-
parent deterministic equivalent; and similarly for the ridgeless bias. Only recently have results started to
appear on the asymptotics of the ridge and ridgeless bias terms for general Σ and β0, see, e.g., Wu and Xu
(2020); Richards et al. (2021); Hastie et al. (2022). We mainly follow the calculations in the latter paper
(as they are, in a sense, the most general anyway), but in keeping with our style in these lectures thus far,
we translate them to the language of deterministic equivalents. We only give some part of the details; for
the remainder, a supplementary note can be found on the course website.

Ridge bias analysis. We start with the ridge bias calculation. We seek to use the generalized Marchenko-
Pastur theorem from Rubio and Mestre (2011) (Theorem 2 in the ridge lecture notes), but it is not as of
yet clearly applicable. There is one key trick: we rewrite (18) as

λ2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1 = − d

dρ

{
λ(Σ̂ + λI + ρλΣ)−1

}∣∣∣∣
ρ=0

. (19)
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Figure 4: Asymptotic Bayes bias and variance of min-norm least squares for different feature covariance
models. The top row shows an equicorrelated feature model, where Σij = 1 if i = j and ρ otherwise. In this
model the asymptotics can be done in closed-form: we find the bias decreases with ρ, whereas the variance
does not actually depend on ρ. The bottom row shows an autocorrelated feature model, where Σij = ρ|i−j|.
Here the asymptotics cannot be done in closed-form but they can be efficiently computed numerically: we
find that the bias decreases with ρ, and the variance increases with ρ. Credit: Hastie et al. (2022).
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Note that this is similar in spirit to the way we have “ridge-ified” various functionals above that involve
pseudoinverses, but it is technically different: the auxiliary parameter ρ now multiplies λΣ (instead of
simply multiplying the identity matrix, as above). Checking (19) can be done using the following general
fact from matrix calculus:

dA−1

dρ
= −A−1 dA

dρ
A−1, (20)

for an invertible matrix A (where dA/dρ is to be understood elementwise). We can thus seek to compute a
deterministic equivalent for the functional inside the derivative on the right-hand side in (19), then differ-
entiate with respect to ρ and setting ρ = 0.

Towards this end, we rewrite it once more

λ(Σ̂ + λI + ρλΣ)−1 = λ

(
Σ1/2Z

TZ

n
Σ1/2 + λ(I + ρΣ)

)−1

= (I + ρΣ)−1/2λ(Σ̂ρ + λI)−1(I + ρΣ)−1/2, (21)

where we define

Σ̂ρ = Σ1/2
ρ

ZTZ

n
Σ1/2
ρ and Σρ = (I + ρΣ)−1/2Σ(I + ρΣ)−1/2.

Now the middle term in (21) has a deterministic equivalent by the generalized MP theorem,

λ(Σ̂ρ + λI)−1 � (cnΣρ + I)−1, (22)

where cn solves a particular fixed-point equation. Some calculations (detailed in the supplementary notes)
show that, after differentiating (22) with respect to ρ and taking ρ = 0, we get the following conclusion:
assuming ‖β0‖2 remains bounded, the ridge bias in (18) satisfies∣∣BX(β̂λ;β0)− (1 + cn)βT

0 Σ(bnΣ + I)−2β0

∣∣ as→ 0, (23)

where bn, cn solve (recalling γn = d/n):

1

bn
= λ+

γn
d

tr
[
Σ(bnΣ + I)−1

]
(24)

cn =
γntr[Σ2(bnΣ + I)−2]/d

b−2
n − γntr[Σ2(bnΣ + I)−2]/d

. (25)

There are different parametrizations available for these fixed-point equations (more later) but we choose to
use the one above because it allows to send λ→ 0 in a graceful way, which we do next.

Ridgeless bias analysis. To derive ridgeless asymptotics, we let λ → 0 in (23), (24), (25). The supple-
ment gives details on why this is valid. This yields for the ridgeless estimator β̂ = (XTX)+XTY ,∣∣BX(β̂;β0)− (1 + c̃n)βT

0 Σ(b̃nΣ + I)−2β0

∣∣ as→ 0, (26)

where b̃n, c̃n solve

1

b̃n
=
γn
d

tr
[
Σ(b̃nΣ + I)−1

]
(27)

c̃n =
γntr[Σ2(b̃nΣ + I)−2]/d

b̃−2
n − γntr[Σ2(b̃nΣ + I)−2]/d

. (28)

“Semi-asymptotic” formulations. The fixed-point equations above can understood from an asymp-
totic point of view, as follows. Recall the Silverstein equation, which the uniquely defines the companion
Stieltjes transform vF of the limiting spectral measure F in the Marchenko-Pastur theorem,

1

vF (−λ)
= λ+ γ

∫
s

svF (−λ) + 1
dH(s). (29)
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Writing b for the limit of bn, we can see that as n, d → ∞, the the fixed-point equation (24) converges to
the Silverstein equation, with the relationship b = vF (−λ). (Note that we used a similar argument in ridge
calculations in the last lecture, where we encountered a reparametrization of the fixed-point equation (24)
with an = λbn.) In other words, to be clear, we have learned that bn → vF (−λ).

What of the limit of cn? First write

1 + cn =
b−2
n

b−2
n − γntr[Σ2(bnΣ + I)−2]/d

. (30)

Now go back and differentiate (29) with respect to λ; this gives, using the matrix calculus fact (20) once
again for the right-hand side,

v′F (−λ)

vF (−λ)2
= 1 + γv′F (−λ)

∫
s2

(svF (−λ) + 1)2
dH(s).

Simply solving for v′F (−λ), we get

v′F (−λ) =
1

1
vF (−λ)2 − γ

∫
s2

(svF (−λ)+1)2 dH(s)
.

Therefore we can see from (30) (and the fact that bn → vF (−λ)) that 1 + cn → v′F (−λ)/vF (−λ)2.

Putting this together, instead of (23), we can write the ridge bias in “semi-asymptotic” form (where we
reduce bn, cn to their asymptotic limits) as:∣∣∣∣BX(β̂λ;β0)− v′F (−λ)

vF (−λ)2
βT

0 Σ
(
vF (−λ)Σ + I

)−2
β0

∣∣∣∣ as→ 0. (31)

By analogous reasoning, instead of (26), we can write the ridgeless bias in “semi-asymptotic” form as:∣∣∣∣BX(β̂λ;β0)− v′F (0)

vF (0)2
βT

0 Σ
(
vF (0)Σ + I

)−2
β0

∣∣∣∣ as→ 0. (32)

Inspecting the asymptotics. The formulae in (31) (or (23), (24), (25) for the finite-sample versions)
and (32) (or (26), (27), (28)) are the most general ones that we have seen thus far for the ridge and ridge-
less bias terms, respectively. Combined with our previous general variance calculations, this completes the
picture for the asymptotic risk of ridge and ridgeless regression. For concreteness, the results (writing the
bias terms in “semi-asymptotic” form) are as follows:∣∣∣∣RiskX(β̂λ;β0)−

[
v′F (−λ)

vF (−λ)2
βT

0 Σ
(
vF (−λ)Σ + I

)−2
β0 + σ2

(
v′F (−λ)

vF (−λ)2
− 1

)∣∣∣∣ as→ 0, (33)∣∣∣∣RiskX(β̂;β0)−
[
v′F (0)

vF (0)2
βT

0 Σ
(
vF (0)Σ + I

)−2
β0 + σ2

(
v′F (0)

vF (0)2
− 1

)]∣∣∣∣ as→ 0. (34)

To be clear, the result in (33) holds for any γ and that in (34) holds for γ > 1.

Unfortunately, these are not really closed-form, since they rely not only on the companion Stieltjes trans-
form vF of the limiting spectral distribution F from the MP theorem (which is not closed-form for general
H), but moreover, the bias terms depend on the alignment of true signal vector β0 with the population
covariance matrix Σ, in a complex way.

Nonetheless, we can inspect what happens for particular feature models. For example, an interesting find-
ing, as studied empirically in Kobak et al. (2020), occurs in an equicorrelated feature model, where Σij = 1
if i = j and ρ otherwise. When β0 is aligned with the top eigenvector of Σ, then one will find that for a
large enough aspect ratio γn = d/n (and large enough SNR), the optimal ridge tuning parameter will be
zero. This phenomenon should be mathematically verifiable from (33), (34), and I will add the details to
these notes at a later point. Todo.

This relates to, but is simpler than, an asymptotic calculation from Hastie et al. (2022) for a latent feature
model. Todo: details here or in its own “paragraph”?
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Degrees of freedom perspective. Very recently, Bach (2023) provided a nice re-interpretation of (31),
(32) and the corresponding variance results from the perspective of (effective) degrees of freedom. I will
also add the details to these notes at a later point. Todo.
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