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Note: The content of this supplement is pretty much taken shamelessly from Appendix C of Patil (2022)
(continuing the trend from Ryan’s supplementary notes on B-splines).

1 Calculus of asymptotic equivalents
We will use the language of asymptotic equivalents to express the limiting bias and variance resolvents of
ridge regression. In this section, we provide a basic review of the definition of asymptotic equivalents and
list several useful calculus rules that such equivalence obeys. For more details, see Dobriban and Sheng
(2021); Patil (2022). The treatment below borrows heavily from the latter reference.

Definition 1 (Asymptotic equivalence). Consider sequences tApupě1 and tBpupě1 of (random or deter-
ministic) matrices of growing dimension. We say that Ap and Bp are asymptotically equivalent and write
Ap » Bp if limpÑ8 | trrCppAp ´ Bpqs| “ 0 almost surely for any sequence Cp matrices with bounded trace
norm such that lim sup }Cp}tr ă 8 as pÑ8.

An observant reader will notice that Dobriban and Sheng (2021) use the notation Ap — Bp to denote
asymptotic equivalence. We instead prefer to use the notation Ap » Bp for such equivalence to stress the
fact that this equivalence is exact in the limit rather than up to constants as the “standard” use of the
asymptotic notation — would hint at.

Lemma 1 (Calculus of asymptotic equivalents, Dobriban and Wager (2018), Dobriban and Sheng (2021)).
Let Ap, Bp, and Cp be sequences of (random or deterministic) matrices. The calculus of deterministic
equivalents satisfy the following properties:

1. Equivalence: The relation » is an equivalence relation.

2. Sum: If Ap » Bp and Cp » Dp, then Ap ` Cp » Bp `Dp.

3. Product: If Ap a sequence of matrices with bounded operator norms, i.e., }Ap}op ă 8, and Bp » Cp,
then ApBp » ApCp.

4. Trace: If Ap » Bp, then trrAps{p´ trrBps{pÑ 0 almost surely.

5. Differentiation: Suppose fpz,Apq » gpz,Bpq where the entries of f and g are analytic functions in
z P S and S is an open connected subset of C. Suppose for any sequence Cp of deterministic matrices
with bounded trace norm we have | trrCppfpz,Apq ´ gpz,Bpqqs| ďM for every p and z P S. Then, we
have f 1pz,Apq » g1pz,Bpq for every z P S, where the derivatives are taken entry-wise with respect to
z.

The notion of deterministic equivalence is a special case of asymptotic equivalence where one of the se-
quences is a deterministic sequence. In the sequel, we will first record deterministic equivalent for the
standard ridge resolvent in terms of the population covariance matrix Σ, and then derive deterministic
equivalents for the bias and variance resolvents arising in the squared prediction risk of ridge regression.

A side comment: Some of you may be wondering what the term “resolvent” means. Resolvent formalism
is a technique that uses complex-analytic machinery in the study of the spectrum of operators on Hilbert,
Banach spaces, and more general spaces. You can quench your curiosity to know more about this topic at:
https://en.wikipedia.org/wiki/Resolvent_formalism.

∗Any connection to the eponymous 2022 movie (https://en.wikipedia.org/wiki/RRR_(film)) is purely coincidental!
There is neither Rise nor Roar nor Revolt here!
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Lemma 2 (Deterministic equivalent for basic ridge resolvent, adapted from Theorem 1 of Rubio and
Mestre (2011); see also Theorem 3.1 of Dobriban and Sheng (2021)). Suppose xi P Rp, 1 ď i ď n, are i.i.d.
random vectors where each xi “ ziΣ1{2, where zi contains i.i.d. entries zij, 1 ď j ď p, with Erzijs “ 0,
Erz2

ijs “ 1, and Er|zij |8`αs ď Mα for some α ą 0 and Mα ă 8, and Σ P Rpˆp is a positive semidefinite
matrix such that 0 ĺ Σ ĺ rmaxIp for some constant (independent of p) rmax ă 8. Let X P Rnˆp the
matrix with xi, 1 ď i ď n as rows and pΣ P Rpˆp denote the random matrix XJX{n. Define γn “ p{n.
Then, for z P Cą0, as n, pÑ8 such that 0 ă lim inf γn ď lim sup γn ă 8, we have

ppΣ´ zIpq´1 » pcpepz; γnqqΣ´ zIpq´1, (1)

where cpepz; γnqq is defined as
cpepz; γnqq “

1
1` γnepz; γnq

, (2)

and epz; γnq is the unique solution in Cą0 to the fixed-point equation

epz; γnq “ trrΣpcpepz; γnqqΣ´ zIpq´1s{p. (3)

We note that in defining epλ; γnq, it is also implicitly a parameterized by Σ. We suppress this dependence
for notational simplicity, and only explicitly indicate dependence on z and γn that will be useful for our
purposes.

A helpful corollary of Lemma 2 is the following result that considers the “scaled” ridge resolvent. The
reason why such scaling helps is because in the limit as λ Ñ 0`, the ridge resolvent itself may blow up,
but the scaled resolvent is well-behaved.

Corollary 1 (Deterministic equivalent for scaled ridge resolvent). Assume the setting of Lemma 2. Then,
for λ ą 0, as n, pÑ8 such that 0 ă lim inf γn ď lim sup γn ă 8, we have

λppΣ` λIpq´1 » pvp´λ; γnqΣ` Ipq´1,

where vp´λ; γnq is the unique solution to the fixed-point equation

1
vp´λ; γnq

“ λ` γn trrΣpvp´λ; γnqΣ` Ipq´1s{p.

We remark that in moving from Lemma 2 to Corollary 1, we have switched from a complex z to a real
λ. For more details of how this is done, see the proof of Corollary 1 in Appendix C of Patil (2022) or the
proof of Theorem 5 in Hastie et al. (2022) (that uses Lemma 2.2 of Knowles and Yin (2017)).

2 Deterministic equivalents for ridge
Lemma 3 (Deterministic equivalents for bias and variance ridge resolvents). Assume the setting of
Lemma 2. Then, for λ ą 0, as n, p Ñ 8 with 0 ă lim inf γn ď lim sup γn ă 8, the following asymp-
totic deterministic equivalences hold:

1. Variance resolvent of ridge regression:

ppΣ` λIpq´2
pΣΣ » rvp´λ; γnqpvp´λ; γnqΣ` Ipq´2Σ2, (4)

where vp´λ; γnq ě 0 is the unique solution to the fixed-point equation

vp´λ; γnq´1 “ λ` γn trrΣpvp´λ; γnqΣ` Ipq´1s{p, (5)

and rvp´λ; γnq is defined via vp´λ; γnq by the equation

rvp´λ; γnq´1 “ vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p. (6)
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2. Bias resolvent of ridge regression:

λ2ppΣ` λIpq´1ΣppΣ` λIpq´1 » p1` rvbp´λ; γnqqpvp´λ; γnqΣ` Ipq´1Σpvp´λ; γnqΣ` Ipq´1, (7)

where vp´λ; γnq as defined in (10), and rvbp´λ; γnq is defined via vp´λ; γnq by the equation

rvbp´λ; γnq “
γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p

vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p
. (8)

Proof. The plan of attack for both the first and second parts is to use Corollary 1 as the starting point,
and apply the calculus rules for asymptotic deterministic equivalents listed in Section 1 to manipulate into
the desired equivalents.

Part 1. For the first part, observe that we can express the resolvent of interest (associated with the
variance of ridge regression) as a derivative (with respect to λ) of a certain resolvent:

ppΣ` λIpq´2
pΣΣ “ ppΣ` λIpq´1Σ´ λppΣ` λIpq´2Σ “ B

Bλ
rλppΣ` λIpq´1Σqs. (9)

To find a deterministic equivalent for ppΣ` λIpq´2
pΣΣ, it thus suffices to obtain a deterministic equivalent for

the resolvent λppΣ` λIpq´1Σ and take its derivative, thanks to the differentiation rule from Lemma 1 (5).

Starting with Corollary 1, we have

λppΣ` λIpq´1 » pvp´λ; γnqΣ` Ipq´1,

where vp´λ; γnq is the unique solution to the fixed point equation

vp´λ; γnq´1 “ λ` γn trrΣpvp´λ; γnqΣ` Ipq´1s{p. (10)

Since Σ has bounded operator norm (uniformly in p), from Lemma 1 (3), we have

λppΣ` λIpq´1Σ » pvp´λ; γnqΣ` Ipq´1Σ, (11)

where vp´λ; γnq is as defined by (10). It now remains to take the derivative of the right hand side of (11)
with respect to λ. One can verify that the differentiation rule indeed applies in this case. (You should
check this!) Taking derivative, we have

B

Bλ
rpvp´λ; γnqΣ` Ipq´1Σs “ ´ B

Bλ
rvp´λ; γnqspvp´λ; γnqΣ` Ipq´2Σ2. (12)

We can write - B{Bλrvp´λ; γnqs in terms of vp´λ; γnq by taking derivative of (10) with respect to λ and
solving for - B{Bλrvp´λ; γnqs. Taking the derivative of (10) yields the following equation:

´
B

Bλ
rvp´λ; γnqsvp´λ; γnq´2 “ 1` γn ´

B

Bλ
rvp´λ; γnqs trrΣ2pvp´λ; γnqΣ` Ipq´2s{p. (13)

Denoting - B{Bλrvp´λ; γnqs by rvp´λ; γnq and solving for rvp´λ; γnq in (13), we get

rvp´λ; γnq´1 “ vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p. (14)

Combining (9), (12), and (14), the statement follows. This completes the proof of the first part.

Part 2. For the second part, observe that we can express the resolvent of interest (appearing in the bias
of ridge regression) as a derivative of a certain parameterized resolvent at a fixed value of the parameter:

λ2ppΣ` λIpq´1ΣppΣ` λIpq´1 “ λ2ppΣ` λIp ` λρΣq´1ΣppΣ` λIp ` λρΣq´1|ρ“0

“ ´
B

Bρ
rλppΣ` λIp ` λρΣq´1s

ˇ

ˇ

ˇ

ρ“0
.

(15)
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It is worth remarking that in contrast to Part 1, we needed to introduce another parameter ρ for this part
to appropriately pull out the matrix Σ in the middle. This trick has been used in the proof of Theorem 5
in Hastie et al. (2022) in the context of bias calculation for ridge regression. Our strategy henceforth will
be to obtain a deterministic equivalent for the resolvent λppΣ` λIp ` λρΣq´1, take its derivative with respect
to ρ, and set ρ “ 0. Towards that end, we first massage it to make it amenable for application of Lemma 2
as follows:

λ
`

pΣ` λIp ` λρΣ
˘´1

“ λ
`

pΣ` λpIp ` ρΣq
˘´1

“ pIp ` ρΣq´1{2λ
`

pIp ` ρΣq´1{2
pΣpIp ` ρΣq´1{2 ` λIp

˘´1
pIp ` ρΣq´1{2

“ pIp ` ρΣq´1{2λ
`

pΣρ,Σ ` λIp
˘´1
pIp ` ρΣq´1{2, (16)

where pΣρ,Σ :“ Σ1{2
ρ,ΣpZ

JZ{nqΣ1{2
ρ,Σ and Σρ,Σ :“ pIp ` ρΣq´1{2ΣpIp ` ρΣq´1{2. We will now obtain a determin-

istic equivalent for λppΣρ,Σ ` λIpq´1, and use the product rule to arrive at the deterministic equivalent for
λppΣ` λIp ` λρΣq´1.

Using Corollary 1, we have

λppΣρ,Σ ` λIpq´1 » pvbp´λ, ρ; γnqΣρ,Σ ` Ipq´1, (17)

where vbp´λ, ρ; γnq is the unique solution to the fixed-point equation

vbp´λ, ρ; γnq´1 “ λ` γn trrΣρ,Σpvbp´λ, ρ; γnqΣρ,Σ ` Ipq´1s{p. (18)

Combining (16) with (17), and using the product rule from Lemma 1 (3) (which is applicable since pIp `
ρΣq´1{2 is a deterministic matrix), we get

λppΣ` λIp ` λρΣq´1 “ pIp ` ρΣq´1{2λppΣρ,Σ ` λIpq´1pIp ` ρΣq´1{2

» pIp ` ρΣq´1{2pvbp´λ, ρ; γnqΣρ,Σ ` Ipq´1pIp ` ρΣq´1{2

“ pIp ` ρΣq´1{2pvbp´λ, ρ; γnqpIp ` ρΣq´1{2ΣpIp ` ρΣq´1{2 ` Ipq
´1pIp ` ρΣq´1{2

“ pvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1.

Similarly, the right hand side of the fixed-point equation (18) can be simplified by substituting back for
Σρ,Σ to yield

vbp´λ, ρ; γnq´1 “ λ` γn trrpIp ` ρΣq´1{2ΣpIp ` ρΣq´1{2pvbp´λ, ρ; γnqΣρ,Σ ` Ipq´1s{p

“ λ` γn trrΣpvbp´λ, ρ; γnqpIp ` ρΣq1{2Σρ,ΣpIp ` ρΣq1{2 ` pIp ` ρΣqq´1s{p

“ λ` γn trrΣpvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1s{p. (19)

Finally, we will now use the differentiation rule from Lemma 1 (5) (with respect to ρ this time). It is easy
verify that the differentiation rule applies in the neighborhood of ρ “ 0. (Again, check this!) Taking
derivative with respect to ρ, we get

´
B

Bρ
rpvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1s

“ pvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1
ˆ

B

Bρ
rvbp´λ, ρ; γnqsΣ` Σ

˙

pvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1.

(20)

Setting ρ “ 0 and observing that vbp´λ, 0; γnq “ vp´λ; γnq, where vp´λ; γnq is as defined in (10), we have

B

Bρ
rpvbp´λ, ρ; γnqΣ` Ip ` ρΣq´1s

ˇ

ˇ

ˇ

ρ“0

“ pvp´λ; γnqΣ` Ipq´1
ˆ

B

Bρ
rvbp´λ, ρ; γnqs

ˇ

ˇ

ˇ

ρ“0
Σ` Σ

˙

pvp´λ; γnqΣ` Ipq´1.

(21)
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To obtain an equation for B{Bρrvbp´λ, ρ; γnqs|ρ“0, we can differentiate the fixed-point equation (19) with
respect to ρ to yield

´
B

Bρ
rvbp´λ, ρ; γnqsvbp´λ, ρ; γnq´2

“ ´γn
B

Bρ
rvbp´λ, ρ; γnqs trrΣ2pvbp´λ, ρ; γnqΣ` Ip ` ρΣq´2s{p

´ γn trrΣ2pvbp´λ, ρ; γnqΣ` Ip ` ρΣq´2s{p.

Setting ρ “ 0 in the equation above, and using the fact that vbp´λ, 0; γnq “ vp´λ; γnq, and denoting
B{Bρrvbp´λ, ρ; γnqs|ρ“0 by rvbp´λ; γnq, we get that

rvbp´λ; γnq “
γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p

vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ` Ipq´2s{p
. (22)

Therefore, from (15) and (21), we finally have

λ2ppΣ` λIpq´1ΣppΣ` λIpq´1 » pvp´λ; γnqΣ` Ipq´1prvbp´λ; γnqΣ` Σqpvp´λ; γnqΣ` Ipq´1

“ p1` rvbp´λ; γnqqpvp´λ; γnqΣ` Ipq´1Σpvp´λ; γnqΣ` Ipq´1,

where vp´λ; γnq is as defined in (10), and rvbp´λ; γnq is as defined in (22). This completes the proof of the
second part.

3 Deterministic equivalents for ridgeless
Lemma 4 (Deterministic equivalents for bias and variance ridgeless resolvents). Assume the setting of
Lemma 3 with γn P p1,8q. Then, the following deterministic equivalences hold:

1. Variance resolvent of ridgeless regression:

pΣ`Σ » rvp0; γnqpvp0; γnqΣ` Ipq´2Σ2, (23)

where vp0; γnq is the unique solution to the fixed-point equation

γ´1
n “ trrvp0; γnqΣpvp0; γnqΣ` Ipq´1s{p, (24)

and rvp0; γnq is defined through vp0; γnq via

rvp0; γnq “
`

vp0; γnq´2 ´ γn trrΣ2pvp0; γnqΣ` Ipq´2s{p
˘´1

. (25)

2. Bias resolvent of ridgeless regression:

pIp ´ pΣ`pΣqΣpIp ´ pΣ`pΣq » p1` rvbp0; γnqqpvp0; γnqΣ` Ipq´1Σpvp0; γnqΣ` Ipq´1, (26)

where vp0; γnq is as defined in (24), and rvbp0; γnq is defined via vp0; γnq by

rvbp0; γnq “ γn trrΣ2pvp0; γnqΣ` Ipq´2s{p ¨
`

vp0; γnq´2 ´ γn trrΣ2pvp0; γnqΣ` Ipq´2s{p
˘´1

. (27)

Proof. The plan of attack for both the parts is to use the results of Lemma 3 and limiting arguments as
λ Ñ 0`. The results of Lemma 3 are pointwise in λ, but can be strengthened to be uniform in λ over
a range that includes λ “ 0 allowing one to take the limits of the deterministic equivalents obtained in
Lemma 3 as λÑ 0`.
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Part 1. We will use the result in Part 1 of Lemma 3 as our starting point. Let Λ :“ r0, λmaxs where
λmax ă 8, and let T be a matrix with bounded trace norm. Note that

| trrppΣ` λIpq´2
pΣΣT s| ď }ppΣ` λIpq´2

pΣΣ}op trrT s ď C}ppΣ` λIpq´2
pΣ}op}Σ}op ď C (28)

for some constant C ă 8. Here, the last inequality follows because s2
i {ps

2
i ` λq

2 ď 1 where s2
i , 1 ď i ď p, are

the eigenvalues of pΣ, and the operator norm Σ is assumed to be bounded. Consider the magnitude of the
derivative (in λ) of the map λ ÞÑ trrppΣ` λIpq´2

pΣΣT s given by
ˇ

ˇ

ˇ

ˇ

B

Bλ
trrppΣ` λIpq´2

pΣΣT s
ˇ

ˇ

ˇ

ˇ

“ 2| trrppΣ` λIpq´3
pΣΣT s|.

Following the argument in (28), for λ P Λ, observe that

| trrppΣ` λIpq´3
pΣΣT s| ď }ppΣ` λIpq´3

pΣ}op}Σ}op trrT s ď C

for some constant C ă 8. Similarly, in the same interval trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq
´2Σ2T s ď C. In

addition, it is easy to show that the map λ ÞÑ trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq
´2ΣT s is differentiable in λ

and that the derivative for λ P Λ is bounded. Therefore, the family of functions trrppΣ ` λIpq
´2

pΣΣT s ´
trrrvp´λ; γnqpvp´λ; γnqΣ`Ipq´2Σ2T s forms an equicontinuous family in λ over λ P Λ. Thus, the convergence
in Part 1 of Lemma 3 is uniform in λ. We can now use the Moore-Osgood theorem to interchange the
limits to obtain

lim
pÑ8

!

trrpΣ`ΣT s ´ trrrvp0; γnqpvp0; γnqΣ` Ipq´2Σ2T s
)

“ lim
pÑ8

lim
λÑ0`

!

trrppΣ` λIpq´2
pΣΣT s ´ trrrvp´λ; γnqpvp´λ; γnqΣ` Ipq´2Σ2T qs

)

“ lim
λÑ0`

lim
pÑ8

!

trrppΣ` λIpq´2
pΣΣT s ´ trrrvp´λ; γnqpvp´λ; γnqΣ` Ipq´2Σ2T qs

)

“ 0.

In the first equality above, we used the fact that pΣ` “ pΣ`pΣpΣ` “ limλÑ0`ppΣ ` λIpq
´1

pΣppΣ ` λIpq
´1,

and that the functions vp¨; γnq and rvp¨; γnq are continuous (which is easy to verify). This provides the right
hand side of (23). Similarly, the fixed-point equation (10) as λÑ 0` becomes

vp0; γnq´1 “ γn trrΣpvp0; γnqΣ` Ipq´1s{p.

Moving vp0; γnq to the other side (it follows easily that vp0; γnq ą 0 for γn P p1,8q, so we are safe in doing
this), we arrive at the desired result.

Part 2. As done in Part 1, it is not difficult to show that over λ P Λ the family of functions trrλ2ppΣ `
λIpq

´1ΣppΣ`λIpq´1T s´trrp1`rvbp´λ; γnqqpvp´λ; γnqΣ`Ipq´1Σpvp´λ; γnqΣ`Ipq´1T s form an equicontinuous
family. Therefore, the convergence in Part 2 of Lemma 3 is uniform in λ over Λ (that includes 0). Using
the Moore-Osgood theorem to the interchange the limits, one has

lim
pÑ8

!

trrpIp ´ pΣ`pΣqΣpIp ´ pΣ`pΣqT s

´ trrp1` rvbp0; γnqqpvp0; γnqΣ` Ipq´1Σpvp0; γnqΣ` Ipq´1T s
)

“ lim
pÑ8

lim
λÑ0`

!

trrλ2ppΣ` λIpq´1ΣppΣ` λIpq´1T s

´ trrp1` rvbp´λ; γnqqpvp´λ; γnqΣ` Ipq´1Σpvp´λ; γnqΣ` Ipq´1T s
)

“ lim
λÑ0`

lim
pÑ8

!

trrλ2ppΣ` λIpq´1ΣppΣ` λIpq´1T s

´ trrp1` rvbp´λ; γnqqpvp´λ; γnqΣ` Ipq´1Σpvp´λ; γnqΣ` Ipq´1T s
)

“ 0.

Now, both (25) and (27) follow by taking λÑ 0` in (7) and (8), respectively.
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