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1 Introduction
Given a random pair (X,Y ) ∈ Rd × R, recall that the function

f0(x) = E(Y |X = x)

is called the regression function (of Y on X). The basic goal in nonparametric regression is to construct
an estimator f̂ of f0 without assuming a specific parametric form for f0, and instead only assuming that
f0 is smooth in some way.

We typically estimate f̂ from i.i.d. samples (xi, yi) ∈ Rd × R, i = 1, . . . , n that have the same joint distribu-
tion as (X,Y ). We often call X the input, predictor, feature, etc., and Y the output, outcome, response, etc.
Remember that we called this the XY-Pairs model, which is equivalent to the Random-X signal plus noise
model:

(xi, yi), i = 1, . . . , n are i.i.d.,
where each yi = f0(xi) + εi, and E[εi] = 0.

If we additionally assume that each xi ⊥⊥ ε, then recall we can condition on xi, i = 1, . . . , n, and we get the
Fixed-X signal plus noise model:

xi, i = 1, . . . , n are fixed,
δi, i = 1, . . . , n are i.i.d.,

where each yi = f0(xi) + δi, and E[δi] = 0.

For the theory we will present in what follows, we will assume that each xi ⊥⊥ ε (recall from the review
lecture that this is not a completely innocuous assumption). Hence we will take the liberty of viewing xi,
i = 1, . . . , n as random or fixed—simply adopting whichever perspective is convenient at any given point.
For example, we may treat them as fixed in some key parts of an analysis, and then integrate over them at
the end.

This is done for simplicity and we should note that most of the classic theory in nonparametric regression
can be done without the assumption that xi ⊥⊥ ε; e.g., see Gyorfi et al. (2002) (however, in exchange for
removing this assumption, they typically make an assumption about boundedness of the features).

1.1 Notation
For nonrandom sequences an, bn, we will write an . bn to mean an = O(bn), and for a random sequence
An, we say “An . bn in probability” to mean An = Op(bn). This just simplifies our notation a bit when bn
is a power of n with a fractional exponent. We also use an � bn to mean an = O(bn) and b = O(an).

Given x1 . . . , xn, recall that the L2(Pn) norm, where Pn is the empirical distribution of x1 . . . , xn, is de-
fined by

‖f‖2n =
1

n

n∑

i=1

f2(xi).
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You’ll often see this written as ‖ · ‖L2(Pn), but in this document we’ll abbreviate this by ‖ · ‖n, and we’ll call
this the empirical L2 norm (and often drop “L2” when it is clear from the context).

For x0 ∼ P , recall that the L2(P ) norm is defined by

‖f‖22 = E[f2(x0)] =

∫
f2(x) dP (x).

Again, you’ll often see this written as ‖ · ‖L2(P ), but in we’ll abbreviate this by ‖ · ‖2, and we’ll call this the
population L2 norm (often drop “L2” when it is clear from the context).

Key quantities of interests will be the in-sample and out-of-sample error incurred by an estimator f̂ of f0,
which are, respectively,

‖f̂ − f0‖2n and ‖f̂ − f0‖22.
In either case, this is a random quantity (since f̂ is itself random). In general, in nonparametric regression,
we study error1 bounds in probability or in expectation, depending on what is more convenient in the
given analysis. Upper bounds on the risk (as we will see in this lecture and the next) are usually easier to
derive in probability, and lower bounds (as we will see in the minimax theory lecture) are typically easier
to derive in expectation. We tend not to fuss about this discrepancy, particularly because upper bounds in
probability can be translated into upper bounds in expectation whenever the probability control is sharp
enough (as you saw on the homework).

1.2 What does “nonparametric” mean?
Importantly, in nonparametric regression we don’t assume a particular parametric model for f0. Still, in
many approaches, we estimate f0 using a linear combination of basis functions, written as

f̂(x) =

m∑

j=1

β̂jgj(x).

A common question that comes to mind when learning this material: aren’t the coefficients on the basis
functions parameters? And so ... how is this nonparametric?

To be clear, the point is that we don’t assume a parametric form for f0, i.e., we don’t assume f0 is itself a
linear combination of g1, . . . , gm. In this sense, the estimated coefficients β̂1, . . . , β̂m are not really viewed
as parameter estimates; and we are not concerned with how close they are to some “true” parameters. We
only care about how close f̂ is to f0.

Of course, in order for this to “work”, we need our representation to be sufficiently flexible—otherwise we
can’t guarantee f̂ will be close f0. The gap between our representation and f0 is known as the approxi-
mation error. For traditional nonparametric theory (e.g., theory for k-nearest neighbors and kernel regres-
sion), this won’t be an explicit part of the analysis; but for some advanced results, it will (we’ll touch on
this in a later lecture). Here is a concrete example of an approximation guarantee: for any f0 : [0, 1]→ R
whose second derivative is integrable, and evenly-spaced points t1, . . . , tN ∈ [0, 1], there is a cubic spline f̄
with knots at t1, . . . , tN (to be defined precisely in the splines lecture) such that

‖f̄ − f0‖∞ ≤
c

N

[ ∫ 1

0

[f ′′0 (x)]2 dx

]1/2
,

where c > 0 is a constant and ‖f‖∞ = supx∈[0,1] |f(x)| is the L∞ norm on [0, 1]. Note that
∫ 1

0
[f ′′0 (x)]2 dx

is a measure of the smoothness of f0. If this remains constant, and we choose N =
√
n, then the squared

L2 approximation error—either in empirical or population norm (‖f̄ − f0‖2n or ‖f̄ − f0‖22)—will be on the
order of 1/n, which will be negligible relative to the overall estimation error that we will encounter.

1In the review lecture, we were more precise about using “error” and “risk” to mean separate things; and defined the risk
via the expectations E‖f̂ − f0‖2n and E‖f̂ − f0‖22, with respect to appropriate randomness in the training set that is used to
define f̂ . In this and future lectures, we’ll often take the liberty of being more flexible with our nomenclature.
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1.3 What we cover here
The goal is to expose you to a variety of methods over this and our next lecture on nonparametric regres-
sion, and give you a flavor of some interesting results, under different assumptions. A few topics we will
cover into more depth than others. Of the many texts you can consult for more details, proofs, etc., we
highlight Gyorfi et al. (2002); Wasserman (2006); Tsybakov (2009) as general references on theory; Hastie
et al. (2009) as a general reference on methods.

With nearest neighbor and kernel methods, we will be able to starting working directly in the multivari-
ate case (d > 1) without much setup or forewarning; but with splines, we will need to spend a good deal
of time in the univariate case (d = 1) first, and even then moving to the multivariate setting will be far
from trivial. In general, some methods in nonparametric regression have obvious (natural) multivariate
extensions, and others don’t. Nonetheless, we can always use low-dimensional (even just univariate) non-
parametric regression methods as building blocks for high-dimensional nonparametric regression—we may
study this later in the course, if and when we end up talking about additive models.

Lastly, a lot of what we cover for nonparametric regression also carries over to nonparametric classification,
which we may also cover later in the course.

2 Nearest neighbors methods
Here’s a basic nonparametric method to start us off, arguably the most basic of them all: k-nearest neigh-
bors (kNN) regression. We fix an integer k ≥ 1 and define

f̂(x) =
1

k

∑

i∈Nk(x)

yi, (1)

where Nk(x) contains the indices of the k closest (in `2 distance) of x1, . . . , xn to x.

This is not at all a bad estimator, and you will find it used in lots of applications, in many cases probably
because of its simplicity. By varying the number of neighbors k, we can achieve a wide range of flexibility
in the estimated function f̂ , with small k corresponding to a more flexible fit, and large k less flexible. For
k = n, the estimator f̂ is a constant function, simply predicting the grand mean ȳ = 1

n

∑n
i=1 yi at all x.

But it does have its limitations, one apparent one being that the fitted function f̂ essentially always looks
jagged, especially for small or moderate k. Why is this? It helps to write

f̂(x) =

n∑

i=1

wi(x)yi, (2)

where the weights functions are defined as

wi(x) =

{
1/k if i ∈ Nk(x)

0 otherwise
, i = 1, . . . , n.

Note that each wi is discontinuous as a function of x, and therefore so is f̂ .

2.1 Linear smoothers
The representation (2) also reveals that the k-nearest neighbors estimator is in a class of estimators we call
linear smoothers: these are methods for which (2) holds for some weight functions w1, . . . , wn. To be clear,
this means that for fixed x and inputs x1, . . . , xn, the prediction f̂(x) is a linear function of y1, . . . , yn; and
it does not mean f̂ need behave linearly as a function of x!

We note that in a linear smoother, each weight wi(x) can actually also depend on the inputs x1, . . . , xn
in addition to x (as it does in kNN regression), but critically, it cannot depend on y1, . . . , yn. Moreover,
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writing Y = (y1, . . . , yn) ∈ Rn for the response vector, and Ŷ = (f̂(x1), . . . , f̂(xn)) ∈ Rn for the vector of
fitted values, for a linear smoother we have

Ŷ = SY,

for a matrix S ∈ Rn×n. Again, the matrix S can depend on the inputs x1, . . . , xn, but not on y1, . . . , wn.

The class of linear smoothers is quite large, in the sense that it contains many popular estimators, as we’ll
see in the coming sections.

2.2 Universal consistency
The k-nearest neighbors estimator is universally consistent, which means that E‖f̂ − f0‖22 → 0 as n→∞,
provided that we take k = kn such that kn → ∞ and kn/n → 0 (e.g., k =

√
n will do). What makes this

“universal” is that it places essentially no assumptions on the problem (in particular no assumptions on f0).
See Chapter 6.2 of Gyorfi et al. (2002).

2.3 Rate of convergence
Furthermore, assuming the underlying regression function f0 is Lipschitz continuous, which means that for
a constant L > 0,

|f0(x)− f0(z)| ≤ L‖x− z‖2, for all x, z,

and the input point distribution is supported on [0, 1]d and meets mild conditions, the k-nearest neighbors
estimator with k � n2/(2+d) satisfies

E
[
‖f̂ − f0‖22

∣∣x1:n
]
. n−2/(2+d) in probability, (3)

with respect to the randomness over draws of the input points x1:n = {x1, . . . , xn}.
Proof sketch: denote σ2 = Var[ε0], and fix the input points (technically, we condition on them, but for
simplicity we hide this notationally). Conditioning on x0, and using the bias-variance decomposition,

E
[
(f̂(x0)− f0(x0))2

∣∣x0
]

=
(
E[f̂(x0)|x0]− f0(x0)

)2
︸ ︷︷ ︸

Bias2(f̂(x0)|x0)

+E
[(
f̂(x0)− E[f̂(x0)|x0]

)2 ∣∣x0
]

︸ ︷︷ ︸
Var(f̂(x0)|x0)

=

[
1

k

∑

i∈Nk(x0)

(
f0(xi)− f0(x0)

)]2
+
σ2

k

≤
[
L

k

∑

i∈Nk(x0)

‖xi − x0‖2
]2

+
σ2

k
.

In the last line we used the Lipschitz property. Now with high probability (over the distribution of x1, . . . , xn)
we’ll have ‖xi − x0‖2 ≤ c(k/n)1/d, for all i ∈ Nk(x0), and a constant c > 0. (Think of what happens when
x1, . . . , xn are regularly-spaced on a lattice in [0, 1]d.) Then our bias-variance upper bound becomes

(cL)2
(
k

n

)2/d

+
σ2

k
.

Balancing the two terms so that they are equal gives k1+2/d � n2/d, i.e., k � n2/(2+d). And plugging this
in gives the error rate of n−2/(2+d), as claimed.

2.4 Curse of dimensionality
The above error rate n−2/(2+d) exhibits a very poor dependence on the dimension d. To see it differently:
given a small ε > 0, think about how large we need to make n to ensure that n−2/(2+d) ≤ ε. Rearranged,
this says

n ≥ ε−(2+d)/2.
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Figure 1: The curse of dimensionality, with ε = 0.1.

That is, as we increase d, we require exponentially more samples n in order to achieve an error bound of ε.
See Figure 1 for an illustration.

In fact, this phenomenon is not specific to k-nearest neighbors—it is a reflection of the curse of dimension-
ality, the principle that estimation becomes exponentially harder as the number of dimensions increases.

This is made precise by minimax theory: we cannot hope to do better than the rate in (3) over C1(L; [0, 1]d),
which we write for the space of L-Lipschitz functions on [0, 1]d. It can be shown that

inf
f̂

sup
f0∈C1(L;[0,1]d)

E‖f̂ − f0‖22 & n−2/(2+d), (4)

where the infimum is over all estimators f̂ . This is true for a uniform input distribution, or for fixed in-
puts points on a lattice. We will revisit (and prove) this in the minimax theory lecture.

So to circumvent this curse, we’ll need to make more assumptions about what it is that we’re looking for
in high dimensions. One such example is the additive model, covered near the end.

3 Kernel smoothing
One level up in sophistication is kernel smoothing or kernel regression. We begin with a kernel function
K : R→ R+, satisfying

∫
K(t) dt = 1,

∫
tK(t) dt = 0, 0 <

∫
t2K(t) dt <∞.

Note carefully that—for now—we are assuming the kernel can only take nonnegative values, K ≥ 0. Three
common examples are the spherical (also called rectangular or boxcar) kernel:

K(t) = 1{|t| ≤ 1},

the Gaussian kernel:
K(t) =

1√
2π

exp(−t2/2),
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Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 2: Comparing kNN and Epanechnikov kernels. Credit: Chapter 6.1 of Hastie et al. (2009).

and the Epanechnikov kernel:
K(t) = 3/4(1− t2)1{|x| ≤ 1}.

Given a choice of kernel K, and a choice of bandwidth h > 0, the (Nadaraya-Watson) kernel regression
estimate is then defined as

f̂(x) =

n∑

i=1

K

(‖x− xi‖2
h

)
yi

n∑

i=1

K

(‖x− xi‖2
h

) , (5)

Note that kernel smoothing is also a linear smoother (2), with choice of weights

wi(x) =

K

(‖x− xi‖2
h

)

n∑

j=1

K

(‖x− xj‖2
h

) , i = 1, . . . , n.

When K is continuous (Gaussian or Epanechnikov), the kernel smoothing estimator is a continuous mov-
ing average of the responses. Compared to the kNN regression estimator (1), which can be thought of as
a raw (discontinuous) moving average of nearby responses, the kernel estimator in (5) is a smooth moving.
See Figure 2 for an example.

Of course, with a spherical kernel, there is a strong similarity between kernel smoothing and kNN regres-
sion. The difference is that the former performs averages over fixed neighborhoods, whereas the latter uses
adaptive neighborhoods—whose radius at x is defined by the distance to the kth-nearest neighbor.

In fact, under suitable conditions, it can be shown that kNN regression acts like spherical kernel smooth-
ing with a density-dependent local bandwidth; that is, if w(x) = (w1(x), . . . , wn(x)) ∈ Rn denotes the kNN
weight function, and we write wi(x) = w(x, xi) to emphasize that this weight gets attributed to (xi, yi) in
the weighted sum w(x)TY =

∑n
i=1 w(x, xi)yi which gives us the kNN prediction at x, then for large n,

w(x, z) ≈ 1

k
· 1{‖x− z‖2 ≤ h(x)}
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N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 3: Comparing kernel smoothing to local linear regression; the former is biased at the boundary, and
the latter is unbiased (to first-order). Credit: Chapter 6.1 of Hastie et al. (2009).

where

h(x) =

[
k

np(x)

]1/d
,

where p(x) is the density of the input distribution at x. This is often referred to as the equivalent kernel
for kNN regression.

3.1 Local linear regression
A shortcoming of kernel regression is that it suffers from poor bias at the boundary of the domain of the
input points x1, . . . , xn. This essentially happens because of the asymmetry of the kernel weights in such
regions. See Figure 3 for an illustration.

We can alleviate this boundary bias issue by moving from a local constant fit to a local linear fit. To build
intuition, another way to view the kernel smoothing estimator in (5) is as follows: at each input point x, it
employs the estimate f̂(x) = θ̂x, which solves

minimize
θ

n∑

i=1

K

(‖x− xi‖2
h

)
(yi − θ)2,

Instead we could consider forming the local estimate f̂(x) = α̂x + β̂T
xx, where α̂x, β̂x solves

minimize
α,β

n∑

i=1

K

(‖x− xi‖2
h

)
(yi − α− βTxi)

2. (6)

This is called local linear regression.

We can rewrite the local linear regression prediction f̂(x) in a more evocative way. This is just given by a
weighted least squares, so we can write

f̂(x) = b(x)T(BTΩB)−1BTΩY,

where b(x) = (1, x) ∈ Rd+1, B ∈ Rn×(d+1) is the matrix whose ith row is b(xi), and Ω ∈ Rn×n is a diagonal
matrix whose ith element is K(‖x− xi‖2/h).
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We can write the local linear regression more concisely as a linear smoother (2): f̂(x) = w(x)TY , where

w(x) = ΩB(BTΩB)−1b(x).

The vector of fitted values Ŷ = (f̂(x1), . . . , f̂(xn)) can be expressed as

Ŷ = B(BTΩB)−1BTΩY,

which should look familiar to you from weighted least squares.

3.2 Boundary bias calculation
Now we’ll sketch how the local linear fit reduces the bias, fixing (conditioning on) the training points.
Compute at any fixed point x,

E[f̂(x)] =

n∑

i=1

wi(x)f0(xi).

At each xi, using a Taylor expansion of f0 about x,

E[f̂(x)] = f0(x)

n∑

i=1

wi(x) +∇f0(x)T
[ n∑

i=1

(xi − x)wi(x)

]
+R,

where the remainder term R contains quadratic and higher-order terms, and under regularity conditions, is
small. One can check (via direct algebra) that

n∑

i=1

wi(x) = 1 for both kernel smoothing and local linear regression.

On the other hand
n∑

i=1

(xi − x)wi(x) 6= 0 for kernel smoothing, and

n∑

i=1

(xi − x)wi(x) = 0 for local linear regression.

Indeed the first-order bias term ∇f0(x)T(
∑n
i=1(xi − x)wi(x)) will be generally large for kernel smoothing

for x near the boundary. Meanwhile, for local linear regression, E[f̂(x)] = f0(x) +R, which means that it
is unbiased to first-order (at any x, including x near the boundary).

3.3 Universal consistency
Like kNN regression, the kernel smoothing estimator is universally consistent, which means E‖f̂ − f0‖22 → 0
as n→∞, under essentially no assumptions, provided that we use a compactly supported kernel K and a
bandwidth h = hn such that hn → 0 and nhdn →∞ as n→∞. See Chapter 5.2 of Gyorfi et al. (2002).

Unfortunately, local linear regression does not share this property, and fails to be universally consistent. In
theory, this can be rectified using a suitable truncation trick (restricting the domain in (6) to an `∞ ball
whose radius diverges with n); see Chapter 5.3 of Gyorfi et al. (2002). However, this doesn’t seem to be in
common use in practice.

3.4 Rate of convergence
Assuming that f0 ∈ C1(L; [0, 1]d), the underlying regression function f0 is Lipschitz continuous on [0, 1]d

with some Lipschitz constant L > 0, and we place mild conditions on the input distribution, the kernel
smoothing estimator with a spherical kernel and bandwidth h � n−1/(2+d) satisfies

E
[
‖f̂ − f0‖22

∣∣x1:n
]
. n−2/(2+d) in probability, (7)
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just like kNN regression. Similar results hold for more general compactly supported kernels.

Proof sketch: as usual, denote σ2 = Var[ε0], fix the input points (condition on them), and condition on
x0. We’ll compute the bias and variance separately. In fact we already did the bias calculation, using a
first-order Taylor expansion of f0:

E[f̂(x0)] = f0(x0) +∇f0(x0)T
[ n∑

i=1

(xi − x0)wi(x0)

]
+R,

where R is a small remainder term that we’ll ignore. The Lipschitz condition actually implies that f0 is
differentiable almost everywhere with ‖∇f0(x)‖2 ≤ L for almost every x (by Rademacher’s theorem).
Hence for the squared bias,

Bias2(f̂(x0)|x0) ≤ L2

∥∥∥∥
n∑

i=1

(xi − x0)wi(x0)

∥∥∥∥
2

2

≤ L2

[ n∑

i=1

‖xi − x0‖2wi(x0)

]2
.

Now we use the fact that that K(t) = 0 for |t| > 1. Then we can further bound the sum above:

Bias2(f̂(x0)|x0) ≤ L2h2
[ n∑

i=1

wi(x0)

]2

2

= L2h2.

Now for the variance, using the fact that yi, i = 1, . . . , n are independent with variance σ2 > 0,

Var(f̂(x0)|x0) = σ2
n∑

i=1

wi(x0)2 ≤ σ2

[
max

i=1,...,n
wi(x0)

][ n∑

i=1

wi(x0)

]
≤ σ2

[
max

i=1,...,n
wi(x0)

]
.

For the spherical kernel, using Pn for the empirical distribution of x1, . . . , xn, we have

wi(x0) =
1{‖x0 − xi‖2 ≤ h}
nPn(B(x0, h))

≤ 1

cnhd
,

where B(x0, h) is the `2 ball centered at x0 with radius h, and we used the fact that it can be shown that
with high probability (over the distribution of x1, . . . , xn) that Pn(S) ≥ c · vol(S) for any set S that is not
too small, where c > 0 is a constant. Our bias-variance upper bound on the risk is hence:

L2h2 +
σ2

cnhd
.

Balancing the two terms so that they are equal gives h2+d � n−1, i.e., h � n−1/(2+d). And plugging this in
gives the error rate of n−2/(2+d), as claimed.

3.5 Higher-order smoothness
To define and study higher-order smoothness classes, we’ll need some more notation: given a multi-index
α = (α1, . . . , αd) ∈ Zd+, we write |α| = α1 + · · ·+ αd and

Dαf =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

.

For an integer r ≥ 0, exponent 0 < γ ≤ 1, radius L > 0, and domain U ⊆ Rd, we now define the Hölder
class

Cr+γ(L;U) =
{
f : U → R : |Dαf(x)−Dαf(y)| ≤ L‖x− y‖γ2 for all |α| = r, and x, y ∈ U

}
.

Note that C1(L;U) is simply the space of all L-Lipschitz functions on U . Likewise, for an integer k ≥ 1,
Ck(L;U) is the space of all functions on U whose order αth derivative is L-Lipschitz, for all α = k − 1.
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It can be shown that a minimax lower bound over Cs(L; [0, 1]d), for a constant L > 0, is

inf
f̂

sup
f0∈Cs(L;[0,1]d)

E‖f̂ − f0‖22 & n−2s/(2s+d), (8)

which generalizes the result we cited earlier for Lipschitz functions in (4). We’ll study this on the home-
work.

So now let’s think about rate optimal estimators. We saw from (3) and (9) that both kNN regression and
kernel smoothing are minimax rate optimal over C1(L; [0, 1]d). But what about Cs(L; [0, 1]d), for s > 1?
Can these estimators “track” the smoothness of f0?

The answer is kind of both “yes” and “no”. For the “yes” part, it turns out that kernel smoothing can still
achieve the optimal convergence rate over C1.5(L; [0, 1]d), and the same is conjectured to be true of kNN.
See Chapters 5.3 and 6.3 of Gyorfi et al. (2002).

For the “no” part: neither achieves the optimal rate over C2(L; [0, 1]d). See again Chapters 5.3 and 6.3 of
Gyorfi et al. (2002). An important remark: here we see a big discrepancy between a pointwise analysis and
L2 theory. It can be shown that both kernel smoothing and kNN regression satisfy

E
[
(f̂(x0)− f0(x0))2

]
. n−4/(4+d) for any fixed x0 ∈ (0, 1)d.

when f0 ∈ C2(L; [0, 1]d). But the same is not true when we integrate over x0, because the boundary bias
inflates the error rate, for both methods.

Lastly, if you recall, we already talked about how to fix boundary bias ... local linear regression to the res-
cue! As one would hope, this is indeed rate optimal over C2(L; [0, 1]d), i.e., assuming that f0 ∈ C2(L; [0, 1]d),
and we place mild conditions on the input distribution as usual, the local linear regression estimator with
bandwidth h � n−1/(4+d) satisfies

E
[
‖f̂ − f0‖22

∣∣x1:n
]
. n−4/(4+d) in probability, (9)

for general compactly supported kernels. We can see this matches the rate in (8) for s = 2.

3.6 Local polynomials and higher-order kernels
How can we get optimal error rates for even smoother functions, in Cs(L; [0, 1]d) for s > 2? With kernels
there are basically two options: use local polynomials, or use higher-order kernels.

Local polynomials build on the idea behind local linear regression (as an extension of kernel smoothing).
Consider d = 1, for concreteness. Define f̂(x) = α̂x +

∑k
j=1 β̂x,jx

j , where the parameters α̂x, β̂x,1, . . . , β̂x,k
now solve (cf. problem (6)):

minimize
α,β1,...,βk

n∑

i=1

K

(‖x− xi‖2
h

)(
yi − α−

k∑

j=1

βjx
j
i

)2

. (10)

This is called (kth order) local polynomial regression. As before, we can express the prediction at x as

f̂(x) = b(x)(BTΩB)−1BTΩY = w(x)TY,

where now b(x) = (1, x, . . . , xk), B is an n × (k + 1), B ∈ Rn×(k+1) is the matrix whose ith row is b(xi),
and Ω ∈ Rn×n is the same diagonal matrix with kernel weights as before. Hence again, local polynomial
regression is a linear smoother.

In multiple dimensions, d > 1, local polynomials become kind of tricky to fit, because of the explosion in
the number of parameters we need to represent a kth order polynomial in d variables. Hence, an interest-
ing alternative is to return back kernel smoothing but to use a higher-order kernel. A function K : R→ R
is said to be a kernel of order k provided that

∫
K(t) dt = 1,

∫
tK(t) dt = 0, j = 1, . . . , k − 1, 0 <

∫
tkK(t) dt <∞.
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Figure 4: A higher-order kernel function—specifically, a kernel of order 4.

This means that the kernels we were looking at so far were of order 2. An example of a 4th order kernel is

K(t) =
3

8
(3− 5t2)1{|t| ≤ 1},

plotted in Figure 4. Notice that it takes negative values! (Higher-order kernels, in fact, have an interesting
connection to smoothing splines, which we’ll learn a bit later on.)

Both local polynomials and higher-order kernels can achieve optimal rates over higher-order Hölder classes,
where the order of the polynomial or kernel is adjusted with the order of smoothness. We do not give the
details here (but see, e.g., Chapter 1.6.1 of Tsybakov (2009) for an analysis of local polynomials).
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