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1 Introduction
In this lecture, we’ll move on from low-dimensional nonparametric to high-dimensional parametric regres-
sion. Though this might seems like very different problems, as we’ll see, they do share some similarities.

Below, we provide a quick recap of what we know about least squares and motivations for regularization
(as also covered in the review lecture), laying the groundwork for the main estimators we’ll study in this
and the next lecture on high-dimensional regression: lasso and ridge.

1.1 Recap: least squares regression
Suppose we are given n observations of the form (xi, yi), i = 1, . . . , n where each xi ∈ Rd denotes a feature
vector and yi ∈ R an associated response value. Let X ∈ Rn×d denote the predictor matrix (whose ith row
is xi) and Y ∈ Rn denote the response vector. Recall that the least squares regression coefficients of Y on
X are given by solving

minimize
β

‖Y −Xβ‖22. (1)

When d ≤ n and rank(X) = d, this produces the unique solution

β̂ = (XTX)−1XTY.

The fitted values (i.e., in-sample predictions) are

Xβ̂ = X(XTX)−1XTY = PXY,

where PX = X(XTX)−1XT denotes the projection onto the column space of X.

Risk properties. Now let’s recall the risk properties of least squares. Assume (xi, yi), i = 1, . . . , n are
i.i.d. such that XTX is almost surely invertible, and

yi = xTi β0 + εi, i = 1, . . . , n,

where εi has mean zero and variance σ2, and εi ⊥⊥ xi. Of course, we can equivalently write this as

Y = Xβ0 + ε. (2)

The in-sample prediction risk of least squares is

1

n
E
[
‖Xβ̂ −Xβ0‖22 |X

]
= σ2 d

n
. (3)

Meanwhile, the out-of-sample prediction risk is

E
[
(xT0 β̂ − xT0β0)2

]
= σ2tr

(
E[x0x

T
0 ]E[(XTX)−1]

)
≈ σ2 d

n− d , (4)

where the expectation is taken over the training data (xi, yi), i = 1, . . . , n and an independent draw x0

from the predictor distribution. The middle expression above is an equality in general. The rightmost
expression is an approximation that holds as n, d grow large in a random matrix theory model, which
we’ll learn the details of when we study ridge regression. (Further, the rightmost expression is exact for
Gaussian features.)
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1.2 Recap: trouble in high dimensions
As we just saw in (3), (4), the risk of least squares regression degrades as d grows close to n—and looking
at the rightmost expression in (4), the out-of-sample risk actually diverges at d = n.

Meanwhile, the least squares estimator itself is not even well-defined when d > n, in that the optimization
problem (1) does not have a unique solution. In this case, any vector of the form

β̂ = (XTX)+XTY + η, where η ∈ null(X), (5)

solves (1), where we write A+ to denote the generalized inverse of a matrix A, and null(A) to denote its
null space.

If all we care about is out-of-sample prediction, then this is not the end of the story for least squares—it
turns out that taking η = 0 in (5), which yields the minimum `2 norm least squares solution, can still have
interesting predictive properties when d > n. We’ll study this later, in the overparametrization lecture.

But if we additionally care about the estimated coefficients themselves, then it really is the end of the road
for least squares. This is because, for any β̂ of the form (5) with β̂j > 0 for some component j, we can
always find1 another β̃ of the form (5) with β̃j < 0. So we cannot even consistently interpret the sign of
any estimated coefficient (let alone its magnitude).

1.3 Recap: regularization to the rescue
Regularization will finesse the problems described above. At a high level, it gives us a way to produce
nontrivial coefficient estimates, and it may well give us better predictions as well. (It typically does, and
most people would have traditionally said that it pretty much always does. However, recent developments
in overparametrization have shown us that there is more nuance to the prediction story, and whether or
not explicit regularization helps depends very strongly on the operating characteristics of the prediction
problem.)

In the least squares setting, traditional approaches for regularization take two forms:

Constrained form : minimize
β

‖Y −Xβ‖22 subject to β ∈ C

Penalized form : minimize
β

‖Y −Xβ‖22 + h(β).

Here C is some (typically convex) set, and h is some (typically convex) penalty function. Typically C =
{β : ‖β‖ ≤ t} is the sublevel set of a norm ‖ · ‖, and h(β) = λ‖β‖ is a nonnegative multiple of a norm. In
this case, the constrained and penalized forms can be seen to equivalent, via convex duality: that is, for
any t ≥ 0 and solution β̂ in the constrained problem, there is a value of λ ≥ 0 such that β̂ also solves the
penalized problem, and vice versa.

We’ll mostly focus on the penalized form in this lecture, since it is generally more commonly studied, but
we’ll also cover the constrained form when we work out prediction and estimation theory.

Canonical regularizers: `0, `1, and `2. In regression, arguably the three canonical choices for regular-
izers are the `0, `1, and `2 norms:

‖β‖0 =

d∑
j=1

1{βj 6= 0}, ‖β‖1 =

d∑
j=1

|βj |, ‖β‖2 =

( d∑
j=1

β2
j

)1/2

.

This gives rise to what we call best subset selection, the lasso, and ridge regression. In the current lecture
we’ll focus on the lasso, and in the next we’ll focus on ridge regression.

1Technically, this is only true if null(X) 6⊥ ej , where ej is the jth standard basis vector. Note that the latter condition
must hold for at least one j, as null(X) = {0}. And for random features, under very weak conditions, it will be true almost
surely for any j.
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Calling ‖ · ‖0 the “`0 norm” is a misnomer, as it is not actually a norm: it does not satisfy positive homo-
geneity, i.e., ‖aβ‖0 = a‖β‖0 for all a > 0. (It would be more accurate to call it the “`0 pseudonorm”, but in
keeping with common convention, we’ll simply use “norm”.)

Critically, ‖ · ‖0 is not convex, while ‖ · ‖1 and ‖ · ‖2 are convex (note any norm is a convex function). This
makes best subset selection a nonconvex problem, and one that is generally very hard to solve in practice
except for very small d. On the other hand, the lasso and ridge regression problems are convex, and many
efficient algorithms exist for them.

2 Lasso basics
This section covers some basic properties of the least absolute selection and shrinkage operator or lasso,
defined by

minimize
β

1

2
‖Y −Xβ‖22 + λ‖β‖1, (6)

for a tuning parameter λ ≥ 0. (The factor of 1
2 is just for convenience.) We start off by recalling a central

property that the lasso has in common with best subset selection, which replaces ‖ · ‖1 in (6) by ‖ · ‖0: they
produce sparse solutions, that is, at their solutions β̂, we will have

β̂j = 0, for many j.

Larger values of the tuning parameter λ typically means sparser solutions. Why care about sparsity? This
is often desirable, for two reasons: (i) it corresponds to performing variable selection in the fitted linear
model (providing a level of interpretability of what features may be important), and (ii) it can often pre-
dict better (in situations where the underlying regression function is well-approximated by a sparse linear
model).

In constrast, the ridge regression estimator,

minimize
β

‖Y −Xβ‖22 + λ‖β‖22, (7)

has a generically dense solution (all nonzero components), for any λ > 0. The fact that sparsity arises in
(6) but not (7) is often explained using the “classic” picture, in Figure 1 (which illustrates the problems
in constrained form). We can also see a clear difference in how they behave in the case of an orthogonal
predictor matrix X (meaning XTX = I); in this case, the solutions in (6), (7) are

β̂lasso = Sλ(XTY ),

β̂ridge = (XTY )/(1 + λ),

respectively, where Sλ is soft-thresholding operator at the level λ applied componentwise, which is defined
as Sλ(a) = sign(a)(|a| − λ)+.

Another difference between the lasso (6) and ridge (7) problems is that the latter is always strictly convex,
whereas the former is not strictly convex when d > n. This means that we are always guaranteed a unique
ridge solution, but not necessarily a unique lasso solution.

Some basic convex analysis, as developed over the next few subsections, will help us understand this better
(and reveal that there is often not much to worry about here). Our treament follows Tibshirani (2013).

2.1 Sign consistency
First, we make a basic observation: although the lasso solution is not always unique, the lasso fit Xβ̂ is
always unique. This is true because the least squares loss f(u) = ‖Y − u‖22 is strictly convex in u. (Note
that the same is true of the least squares fit: it is always unique, even when the solution is not.)
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3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

Figure 1: The “classic” illustration comparing lasso and ridge constraints. Credit: Chapter 3.4 of Hastie
et al. (2009).

Next, consider the subgradient optimality condition (sometimes called the KKT condition) for the lasso
problem (6), which is

XT(Y −Xβ̂) = λs, (8)

where s ∈ ∂‖β̂‖1, a subgradient of the `1 norm evaluated at β̂. Precisely,

sj ∈


{+1} β̂j > 0

{−1} β̂j < 0

[−1, 1] β̂j = 0,

, j = 1, . . . , d. (9)

From (8), (9) we can read off a straightforward but important fact: the optimal subgradient s is always
unique, for any λ > 0. This is because it is determined by the unique fitted value Xβ̂.

Why is this important? It tells us that even in the case when lasso solutions are nonunique, any two so-
lutions must always agree on the signs of common nonzero coefficients. That is, we cannot have two solu-
tions β̂, β̃ such that β̂j > 0 but β̃j < 0. In this sense, the lasso is already much better behaved than least
squares when d > n. The next subsection shows that a much stronger statement can be made about the
lasso solution itself, when d > n.

2.2 Structure of solutions
It is not hard to prove that the lasso solution is “often” unique even when d > n. But first, we’ll need to
do a little bit of work to to learn about the structure of lasso solutions (which should be interesting in its
own right). Define the equicorrelation set

E =
{
j ∈ {1, . . . , d} : |XT

j (Y −Xβ̂)| = λ
}
.

This is the set of variables that achieves the maximum absolute inner product (correlation, for standard-
ized predictors) with the lasso residual vector Y −Xβ̂. Assuming λ > 0, this is the same as

E =
{
j ∈ {1, . . . , d} : |sj | = 1

}
.
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The equicorrelation set E is always unique (as Xβ̂, s are unique). Note that the set E contains the sup-
port set—also called the active set, and denoted A = supp(β̂) of any lasso solution β̂, because for j /∈ E,
we have |sj | < 1, which implies that β̂j = 0 .

Thus we can write Xβ̂ = XE β̂E for any lasso solution β̂, where β̂E denotes the components of β̂ indexed
by E, and XE denotes the columns of X indexed by E. The subgradient condition (8) implies

XT
E(Y −XE β̂E) = λsE ,

and solving this for β̂E gives

β̂E = (XT
EXE)+(XT

EY − λsE) + η, where η ∈ null(XE).

From this we learn the following sufficient condition for uniqueness: if the equicorrelated predictors are
linearly independent, rank(XE) = |E|, then the lasso solution is unique and given by

β̂E = (XT
EXE)−1(XT

EY − λsE),

β̂−E = 0.
(10)

(Here β̂−E denotes the components of β̂ indexed by Ec = {1, . . . , d} \ E.) Interestingly, we can see above
that this is a certain shrunken least squares estimator on the active set E.

2.3 Uniqueness and saturation
The previous subsection established that when rank(XE) = |E|, then the lasso solution is unique. A short
calculation will show us that when the columns of X are in what is known as general position, a very weak
condition, then it must be the case that rank(XE) = |E|, and so the lasso solution is unique. We state and
prove this next.

Proposition 1. Assume that X has columns X1, . . . , Xd ∈ Rn that are in general position. This means that
for any k < min{n, d}, indices i1, . . . , ik+1 ∈ {1, . . . , d}, and signs σ1, . . . , σk+1 ∈ {−1,+1}, the affine span
of σ1Xi1 , . . . , σk+1Xik+1

does not contain any element of {±Xi : i 6= i1, . . . , ik+1}. Then for any Y ∈ Rn
and λ > 0, the lasso problem (6) has a unique solution.

Proof. We will prove the contrapositive. We assume the lasso solution is not unique, thus rank(XE) < |E|,
and will prove that this means the columns of X are not in general position. Since rank(XE) < |E|, there
exists some i ∈ E such that

Xi =
∑

j∈E\{i}
cjXj .

Hence
siXi =

∑
j∈E\{i}

(sisjcj) · (sjXj).

By definition of the equicorrelation set, XT
j r = sjλ for any j ∈ E, where r = Y −Xβ̂ is the lasso residual

vector. Taking the inner product of both sides above with r, we get

λ =
∑

j∈E\{i}
(sisjcj)λ,

and since λ > 0, ∑
j∈E\{i}

(sisjcj) = 1.

Therefore, denoting aj = sisjcj for j ∈ E \ {i}, we have shown that

siXi =
∑

j∈E\{i}
cjXj , aj · sjXj , and

∑
j∈E\{i}

aj = 1,
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which means that siXi lies in the affine span of sjXj , j ∈ E \ {i}. Note that we can assume without a loss
of generality that E \ {i} has at most n elements, since otherwise we can simply repeat the above arguments
replacing E by any one of its subsets with n+ 1 elements. This means that the columns of X cannot be in
general position, which completes the proof.

The lasso problem is an intriguing example where we get a unique solution without strict convexity. To
emphasize just how weak the general position assumption, we note that if the entries of X have a density
on Rnd, then it is not hard to show that X has columns in general position almost surely. To emphasize,
this gives us the following corollary.

Corollary 1. Assume that the entries of X are drawn from some continuous distribution on Rnd. Then
almost surely, for any Y ∈ Rn and λ > 0, the lasso problem (6) has a unique solution.

Here is another intriguing property of the lasso.

Proposition 2. For any X ∈ Rn×d, Y ∈ Rn, and λ > 0, there exists a solution in the lasso problem (6)
whose active set A has at most min{n, d} elements. In particular, when the lasso is unique, this means it
must have at most min{n, d} nonzero components.

This property is often called saturation of the lasso solution. It can be shown using Carathéodory’s the-
orem. Note that it is not necessarily a good thing—when we have, say, d = 10000 variables and n = 10
observations, then any lasso solution, when unique, can only have at most 10 nonzero coefficients. This is
often used as a point of motivation for the elastic net, which is an estimator that is based on combining
the lasso and ridge penalties into one criterion.

There is a lot more that can be said about the lasso, including some interesting geometry that underlies
it, which reveals important properties about its local stability and effective degrees of freedom. There are
also a number of interesting recent developments surrounding lasso inference, in high-dimensional, post-
selection, and other settings. Unfortunately we can’t cover all of this (without budgeting more time), and
in the rest of the lecture we’ll instead cover some of the most foundational estimation theory for the lasso.
We refer to Hastie et al. (2015) for a nice treatment of some topics we skipped (including “close cousins” of
the lasso, which are crafted to have similar properties in related but often different problem settings). It is
also a good reference for the theory we cover below, as is Buhlmann and van de Geer (2011).

3 “Slow” rates
In this section, we develop what are sometimes called “slow” rates for the lasso. You’ll see a strong parallel
to the way we analyzed nonparametric estimators in the empirical process theory lecture, and developing a
basic inequality will play a leading role. That said, in terms of the probabilistic tools that are needed, the
analysis here will be much simpler.

We assume the linear model (2), where the noise vector ε ∈ Rn has i.i.d. sub-Gaussian entries with mean
zero and variance proxy σ2. We will take X ∈ Rn×d to be fixed (or equivalently, we condition on it), and
assume that each maxj=1,...,d ‖Xj‖2 ≤

√
n. (Note that we can always rescale to make this true.)

3.1 Penalized form
First, we analyze the lasso in penalized form (6). As in the empirical process theory lecture, we start by
deriving a basic inequality. Let β̂ denote any solution in (6). For any coefficient vector β ∈ Rd,

1

2
‖Y −Xβ̂‖22 + λ‖β̂‖1 ≤

1

2
‖Y −Xβ‖22 + λ‖β‖1.

Rearranging,
‖Y −Xβ̂‖22 − ‖Y −Xβ‖22 ≤ λ(‖β0‖1 − ‖β̂‖1).

Adding and subtracting Xβ in the leftmost term, and expanding, we get

‖Xβ̂ −Xβ‖22 ≤ 2〈Y −Xβ,Xβ̂ −Xβ〉+ λ(‖β0‖1 − ‖β̂‖1).
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where we have moved the inner product term to the right-hand side. This is true for any vector β. Taking
β = β0 in particular, the true coefficient vector from (2), and recognizing Y −Xβ0 = ε, the noise vector, we
get from the last display our basic inequality for β̂,

‖Xβ̂ −Xβ0‖22 ≤ 2〈ε,Xβ̂ −Xβ0〉+ λ(‖β0‖1 − ‖β̂‖1). (11)

A result on the in-sample prediction risk for the lasso is only a few lines away. Observe that

〈ε,Xβ̂ −Xβ0〉 = 〈XTε, β̂ − β0〉
≤ ‖XTε‖∞‖β̂ − β0‖1

by Hölder’s inequality. Thus from (11), we learn that

‖Xβ̂ −Xβ0‖22 ≤ 2‖XTε‖∞‖β̂ − β0‖1 + λ(‖β0‖1 − ‖β̂‖1), (12)

and using the triangle inequality,

‖Xβ̂ −Xβ0‖22 ≤ 2‖XTε‖∞(‖β̂‖1 + ‖β0‖1) + λ(‖β0‖1 − ‖β̂‖1)

≤ 2λ‖β0‖1. (13)

where the second line holds if we take λ ≥ 2‖XTε‖∞. So far this has all been deterministic. Next comes
the probabilistic argument. Note that XTε has sub-Gaussian entries with mean zero and variance proxy
maxj=1,...,d ‖Xj‖22σ2 ≤ nσ2. By a result on the maximum of sub-Gaussian random variables (stated in the
empirical process theory, and you’ll prove it on the homework),

P
(
‖XTε‖∞ ≥ σ

√
2n(log(2d) + u)

)
≤ e−u,

for any u > 0. Therefore, from (13), taking λ = 2σ
√

2n(log(2d) + u), we get

1

n
‖Xβ̂ −Xβ0‖22 ≤ 4σ‖β0‖1

√
2(log(2d) + u)

n
, (14)

with probability at least 1 − e−u. This bound yields what is called the “slow” rate for the penalized lasso
estimator: the in-sample prediction risk scales as ‖β0‖1

√
(log d)/n.

3.2 Constrained form
To analyze the lasso in constrained form,

minimize
β

‖Y −Xβ‖22 subject to ‖β‖1 ≤ t, (15)

where now t ≥ 0 is our tuning parameter, the arguments are even easier. Take t = ‖β0‖1, so that the true
coefficient vector is feasible for (15); then following the same steps as in the previous subsection,

1

n
‖Xβ̂ −Xβ0‖22 ≤

2

n
〈ε,Xβ̂ −Xβ0〉

≤ 2

n
‖XTε‖∞(‖β̂‖1 + ‖β0‖1)

≤ 4σ‖β0‖1
√

2(log(2d) + u)

n
, (16)

where the last line holds with probability at least 1− e−u. Note that the bound in (16) for the constrained
estimator is exactly the same as that in (14) for the penalized one.
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3.3 Oracle inequality
If we don’t want to assume a linear model (2) for the mean, then we can still derive an interesting bound
on the in-sample prediction risk, that characterizes its risk in excess of the best linear predictor. We will
demonstrate this in the constrained case because the argument is simplest. Assume that

Y = f0(X) + ε,

for some function f0 : Rd → R, where we abbreviate f0(X) = (f0(x1), . . . , f0(xn)) ∈ Rn for the rowwise
application of f0 to X. Then as in the last subsection, for any solution β̂ in the constrained lasso problem
(15), and any coefficient vector β̄ with ‖β̄‖1 ≤ t,

‖Xβ̂ −Xβ̄‖22 ≤ 2〈Y −Xβ̄,Xβ̂ −Xβ̄〉
= 2〈f0(X)−Xβ̄,Xβ̂ −Xβ̄〉+ 2〈ε,Xβ̂ −Xβ̄〉.

Now we use the polarization identity ‖a‖22 + ‖b‖22 − ‖a − b‖22 = 2〈a, b〉 on the first term on the right-hand
side above, yielding

‖Xβ̂ −Xβ̄‖22 ≤ ‖Xβ̄ − f0(X)‖22 + ‖Xβ̂ −Xβ̄‖22 − ‖Xβ̂ − f0(X)‖22 + 2〈XTε, β̂ − β̄〉.
Cancelling the common term of ‖Xβ̂ −Xβ̄‖22 from each side, then rearranging, and following familiar
arguments,

‖Xβ̂ − f0(X)‖22 ≤ ‖Xβ̄ − f0(X)‖22 + 2〈XTε, β̂ − β̄〉
≤ ‖Xβ̄ − f0(X)‖22 + 4t‖XTε‖∞

≤ ‖Xβ̄ − f0(X)‖22 + 4σt

√
2(log(2d) + u)

n
,

where the last line holds with probability at least 1− e−u. To be clear, the above statement holds simultane-
ously over all β̄ such that ‖β̄‖1 ≤ t, with probability at least 1− e−u. Thus we can take an infimum over all
such β̄ on the right-hand side, yielding

1

n
‖Xβ̂ − f0(X)‖22 ≤ inf

‖β̄‖1≤t

(
1

n
‖Xβ̄ − f0(X)‖22

)
+ 4σt

√
2(log(2d) + u)

n
, (17)

with probability at least 1− e−u. The bound in (17) is called an oracle inequality for the constrained lasso
estimator. It says, in terms of in-sample risk, that we can expect the lasso to perform close as well as the
best `1-sparse linear predictor to f0.

Further, let β̄best achieve the infimum of 1
n‖Xβ̄ − f0(X)‖22 over ‖β̄‖1 ≤ t (we are minimizing a continuous

function over a compact set, hence its infimum is achieved). A slight variation on the above argument
(actually it comes from a sharpening of the basic inequality itself, where we remove the factor 2 that multi-
plies the sub-Gaussian process term) can be used to show that

1

n
‖Xβ̂ −Xβ̄best‖22 ≤ 4σt

√
2(log(2d) + u)

n
, (18)

with probability at least 1 − e−u. The bound in (18) says something interesting, above and beyond the
oracle inequality in (17): it says the in-sample predictions from the lasso are close to those from the best
`1-sparse linear predictor, even when this best `1-sparse linear predictor is far from f0.

4 “Fast” rates
Next, we develop what are sometimes called “fast” rates for the lasso. The “slow” rates for the lasso in the
last section assume nothing about the predictors and gave us rates (as measured by in-sample prediction
risk) that scale as

√
(log d)/n. In the current section, by assuming (admittedly fairly strong) conditions

on X, we’ll be able to get rates that scale as (log d)/n. Before developing this, we’ll pause to describe why
achieving such a rate is notable.
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4.1 Interlude: theory for subset selection
Suppose that in the linear model (2), the true coefficient vector β0 is `0-sparse, with s0 = ‖β0‖0. In other
words, β0 has s0 nonzero components. Denote by S = supp(β0) the true active set. Then we could for-
mulate an oracle estimator—with knowledge of S—by simply performing least squares regression on the
active predictors,

β̂oracle
S = (XT

SXS)−1XT
SY,

β̂oracle
−S = 0.

From our previous calculations, we know that this has in-sample prediction risk

1

n
E‖Xβ̂oracle −Xβ0‖22 = σ2 s0

n
.

(This is just as in (3), recalling that X here is fixed.)

How would subset selection do by comparison? Then Foster and George (1994) consider this question, and
study the in-sample prediction risk of a solution β̂ of

minimize
β

‖Y −Xβ‖22 + λ‖β‖0. (19)

They show that if we choose λ � σ2 log d, then the best subset selection estimator satisfies

E‖Xβ̂ −Xβ0‖22/n
σ2s0/n

≤ 4 log d+ 2 + o(1), as n, d→∞. (20)

This holds without any conditions on the predictor matrix X. Moreover, they prove the lower bound

inf
β̂

sup
X,β0

E‖Xβ̂ −Xβ0‖22/n
σ2s0/n

≥ 2 log d− o(log d),

where the infimum is over all estimators β̂, and the supremum is over all predictor matrices X and under-
lying coefficients β0 that have `0-sparsity equal at most s0. Hence, in terms of rate, best subset selection is
optimal: precisely, it achieves the optimal risk inflation over the oracle risk of σ2s0/n.

Comparison: subset selection versus lasso, when the true model is `0-sparse. It is informative
to compare rates from `0 and `1 penalization in the sparse linear model setting, where s0 = ‖β0‖0.

• From the result in (20), we see that best subset selection (19) leads to an-sample prediction risk on
the order of s0(log d)/n. Some authors like to say that the factor of log d is the “price it pays” for
searching over which of the d variables is relevant for prediction (which is, in a sense, a remarkably
small price). And notably, best subset selection achieves this with no assumptions on X whatsoever.

• From the result in (14), we see that the lasso (6) leads to an in-sample prediction risk on the order
of ‖β0‖1

√
(log d)/n, again with no assumptions on X. If each nonzero entry of β0 is of constant

order, then this will be s0

√
(log d)/n which is a still “full square root factor slower” than the subset

selection rate.

This observation motivates us to find a way to get sharper rates for in-sample prediction risk with the
lasso. We will see next that we can do so with conditions on X that limit correlations between features.

Interlude on an interlude: is subset selection the gold standard? (You can skip this if you want
and just head over to the analysis in the next subsection ... but this point is too important to not mention
at all.) Many authors seem to treat best subset selection as the gold standard. That is, if we could com-
pute it, then we would always want to use it over a method like the lasso. However, the story is actually
much more nuanced than that. Yes, the last subsection showed that in an idealized setting where the true
model linear and `0-sparse, using `0 penalization results in sharper guarantees than `1 penalization, for a
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generic feature matrix X. But this does not mean that it will perform better in practice for every (or even
a typical) high-dimensional regression problem that we might want to solve.

Best subset selection tends to have much higher variance than the lasso, because there is shrinkage inher-
ent in the latter’s coefficient estimates (recall that we can see this directly from (10)). As a result, which
estimator performs better in practice really depends on a lot of factors like the SNR (signal-to-noise ratio);
whether the true model is `0-sparse, `1-sparse, approximately sparse, etc.; feature correlations; and so on.
See Hastie et al. (2020) for a discussion of this, and extensive empirical comparisons.

4.2 Compatibility condition
Returning to the lasso, we’ll now show how certain assumptions on X can give us sharper rates. As in the
last subsection, we assume that β0 in (2) has support S = supp(β0) and we denote s0 = |S|. We note that
there are many flavors of “fast” rates, and the conditions required are all fairly closely related. We’ll limit
our discussion to only two such conditions, for simplicity.

The first condition, which we study in this subsection, is called the compatibility condition on X. This is
defined with respect to the true support set S, and says that for some compatibility constant φ0 > 0,

1

n
‖Xv‖22 ≥

φ2
0

s0
‖vS‖21, for all v ∈ Rd such that ‖v−S‖1 ≤ 3‖vS‖1. (21)

While this may look like an odd condition, we will see it being useful in the analysis below, and we will
also have some help interpreting it when we discuss the restricted eigenvalue condition shortly. Roughly, it
means the true active predictors can’t be too correlated.

Recall our previous analysis for the lasso estimator in penalized form (6). It turns out to be helpful to peel
back to the step right before we used the triangle inequality, i.e., the line above (13). Applying the result
on the maximum of sub-Gaussians, we get

‖Xβ̂ −Xβ0‖22 ≤ 2σ
√

2n(log(2d) + u)‖β̂ − β0‖1 + λ(‖β0‖1 − ‖β̂‖1),

on an event Ω of probability at least 1− e−u. The remainder of the analysis will be performed on Ω, implic-
itly. Choosing λ ≥ 4σ

√
2n(log(2d) + u) (note this is a factor of 2 larger than before) we have

‖Xβ̂ −Xβ0‖22 ≤
λ

2
‖β̂ − β0‖1 + λ(‖β0‖1 − ‖β̂‖1)

≤ λ

2
‖β̂S − β0,S‖1 + λ‖β̂−S‖1 + λ(‖β0‖1 − ‖β̂‖1)

≤ λ

2
‖β̂S − β0,S‖1 + λ‖β̂−S‖1 + λ(‖β0,S − β̂S‖1 − ‖β̂−S‖1)

=
3λ

2
‖β̂S − β0,S‖1 −

λ

2
‖β̂−S‖1, (22)

where the two inequalities each follow from the triangle inequality. As the left-hand side is nonnegative,
‖Xβ̂ −Xβ0‖22 ≥ 0, we have shown

‖β̂−S − β̂0,−S‖1 ≤ 3‖β̂S − β0,S‖1,

and thus we may apply the compatibility condition (21) to the vector v = β̂ − β0. This gives us two bounds:
one on the fitted values, and the other on the coefficients. Both use as a jumping off point the following
key inequality, which is a consequence of (22),

‖Xβ̂ −Xβ0‖22 ≤ 3λ‖β̂S − β0,S‖1. (23)

In-sample prediction risk. To bound the in-sample prediction risk, we upper bound the right-hand
side in (23) using (21),

‖Xβ̂ −Xβ0‖22 ≤ 3λ

√
s0

φ2
0n
‖Xβ̂ −Xβ0‖2.
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Dividing through both sides by ‖Xβ̂ −Xβ0‖2, then squaring both sides, and dividing by n,

1

n
‖Xβ̂ −Xβ0‖22 ≤

9s0λ
2

φ2
0n

2
.

Plugging in λ = 4σ
√

2n(log(2d) + u), we have shown that

1

n
‖Xβ̂ −Xβ0‖22 ≤

144σ2s0

√
2(log(2d) + u)

φ2
0n

, (24)

with probability at least 1 − e−u. As desired, we have achieved a “fast” rate for the lasso estimator: the
in-sample prediction risk scales as s0(log d)/n.

Coefficient risk. To bound the coefficient risk, we can essentially just perform the reverse argument: we
lower bound the left-hand side in the key inequality (23), giving

nφ2
0

s0
‖β̂S − β0,S‖21 ≤ 3λ‖β̂S − β0,S‖1.

Dviding through both sides by ‖β̂S − β0,S‖1, and recalling ‖β̂−S‖1 ≤ 3‖β̂S − β0,S‖1, which implies by the
triangle inequality that ‖β̂ − β0‖1 ≤ 4‖β̂S − β0,S‖1, we get

‖β̂ − β0‖1 ≤
12s0λ

φ2
0n

.

Plugging in λ = 4σ
√

2n(log(2d) + u), we have shown that

‖β̂ − β0‖1 ≤
24σs0

φ2
0

√
2(log(2d) + u)

n
, (25)

with probability at least 1− e−u. We see that the coefficient risk in the `1 norm scales as s0

√
(log d)/n.

4.3 Restricted eigenvalue condition
Instead of compatibility, we may assume that X satisfies what is called the restricted eigenvalue condition
with constant φ0 > 0,

1

n
‖Xv‖22 ≥ φ2

0‖v‖22, for all v ∈ Rd such that ‖v−J‖1 ≤ 3‖vJ‖1,
and all subsets J ⊆ {1, . . . , d} such that |J | = s0.

(26)

This produces similar results as in (24), (25), but instead of the latter we get a coefficient bound in the `2
norm, of the form

‖β̂ − β0‖22 .
s0 log d

φ4
0n

.

with high probability. Notice the similarity between (26) and (21). The restricted eigenvalue condition is
actually stronger, i.e., it implies the compatibility condition, as we always have ‖β‖22 ≥ ‖βJ‖22 ≥ ‖βJ‖21/s0.
We may interpret the restricted eigenvalue condition roughly as follows. The requirement

1

n
‖Xv‖22 ≥ φ2

0‖v‖22, for all v ∈ Rd,

would be a lower bound of φ2
0 on the smallest eigenvalue of XTX/n. We don’t assume this (and this would

of course mean that X needs to be full column rank, which couldn’t happen when d > n), but instead in
(26) we assume that this inequality holds for all vectors v that are “mostly” supported on small subsets J
of variables, with |J | = s0.
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