
Conformal Prediction Under Distribution Shift
Advanced Topics in Statistical Learning, Spring 2023

Ryan Tibshirani

Note: we’re following the context, problem setup, notation, etc. from the last lecture on conformal predic-
tion.

In this lecture we cover conformal methods that apply beyond the i.i.d. setting. This is a very active and
recent topic of research, and it’s possible (or even likely) that what’s considered fundamental in this area
will change in the next few years. Until then, there will be numerous topics from which we can “pick and
choose” for a lecture like this one. We’ve chosen three such topics—and shamelessly (shamefully?), for two
of these, you’ll notice an overlap between the authors list and the author of these lecture notes. We should
be clear that there is plenty of other interesting work out there that we can’t cover in just one lecture.

1 Likelihood-weighted conformal prediction
We first cover a likelihood-weighted conformal prediction method, due to Tibshirani et al. (2019). A pri-
mary motivation will be the setting of covariate shift, where

(Xi, Yi) ∼ P = PX × PY |X , independently, for i = 1, . . . , n,

(Xn+1, Yn+1) ∼ P̃ = P̃X × PY |X , independently.
(1)

Notice that the conditional distribution of Y |X is assumed to be the same for both the training and test
data, but the distribution of X is allowed to change, i.e., we allow P̃X 6= PX . This is a general framework
of great interest, because it encompasses may important problem settings. For example, we could have
done some kind of structured covariate sampling for our training set (demographically, geographically, etc.)
but then we do prediction “in the wild”, where the mix of covariates is different.

The first thing we could ask is: does this even matter for conformal prediction? That is, if we observed
data according to (1), and computed the usual conformal prediction intervals, then would we see a prob-
lem with coverage? The top row of Figure 1 provides an answer, empirically. This is taken from Tibshirani
et al. (2019), and shows the results of an experiment in which, over 5000 repetitions, two test sets are
drawn: one without covariate shift (results in red), and one with covariate shift (in blue). The top left
panel shows the test coverage of split conformal prediction intervals (drawn as histograms, over the 5000
repetitions). We can see that coverage fails quite noticeably in the covariate shift setting.

To remedy this, we are going to work with a weighed empirical distribution of conformity scores, rather
than the usual (unweighted) empirical distribution. And to approach this argument, it helps to build intu-
ition by looking back at the first key idea behind conformal, which recall, used ranks in order to construct
adjusted empirical quantiles.

Revisiting the first key idea: rank-based quantiles. The last lecture proved the following fact. If
R1, . . . , Rn+1 are exchangeable random variables, then for any α ∈ (0, 1),

P
{
Rn+1 ≤ Quantile

(
d(1− α)(n+ 1)e

n
;

1

n

n∑
i=1

δRi

)}
≥ 1− α.

We can equivalently express this as

P
{
Rn+1 ≤ Quantile

(
d(1− α)(n+ 1)e

n+ 1
;

1

n+ 1

n+1∑
i=1

δRi

)
≥ 1− α,
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Figure 1: Experiments for split conformal prediction under covariate shift. All results are aggregated over
5000 repetitions, each of which randomly forms training and test sets. Top row: the usual split conformal
prediction with and without covariate shift. Middle row: weighted split conformal using the true (and in
general unknown) likelihood ratio between test and training covariate feature distributions, compared to
ordinary split conformal without covariate shift but in a problem with a comparable effective sample size.
Bottom row: weighted split conformal using an estimated likelihood ratio from running classification with
logistic regression or random forests. Credit: Tibshirani et al. (2019).

because the event in each of the last two displays is equivalent to the statement that Rn+1 is among the
d(1− α)(n+ 1)e smallest of R1, . . . , Rn+1. The last display is itself equivalent to

P
{
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n+1∑
i=1

δRi

)}
≥ 1− α,

because the quantile function of the empirical distribution of R1, . . . , Rn+1, only changes in increments of
1/(n+ 1) (and will automatically round up to the nearest increment until it captured sufficient probability
mass to exceed 1− α). Finally, it turns out that we can equivalently express the last display as

P
{
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n∑
i=1

δRi +
1

n+ 1
δ∞

)}
≥ 1− α. (2)

This can be seen by applying the following fact to the complements of the two events in the previous two
displays: for a discrete distribution F with support points a1, . . . , ak ∈ R, denoting q = Quantile(β;F ), if
we reassign the points ai > q to arbitrary values strictly larger than q, yielding a new distribution F ′, then
the level β quantile remains unchanged, Quantile(β;F ) = Quantile(β;F ′).
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Alternate proof of the quantile result (2). We will now prove (2) from a new perspective (no longer
by reducing it to a statement about the rank of Rn+1 among R1, . . . , Rn+1) that will enable us to extend
this result to a more general setting. The basic idea is to condition on the unlabeled collection of values
obtained by our random variables R1, . . . , Rn+1, then inspect the probabilities that the last random vari-
able Rn+1 attains each one of these values.

Denote by f the probability density function (or mass function, or more generally, Radon-Nikodym deriva-
tive with respect to an arbitrary base measure) of the joint sample R1, . . . , Rn+1. Exchangeability means

f(r1, . . . , rn+1) = f(rσ(1), . . . , rσ(n+1)), for all permutations σ.

For simplicity, and without loss of generality, assume that there are almost surely no ties among the scores
R1, . . . , Rn+1. Let Er be the event that {R1, . . . , Rn+1} = {r1, . . . , rn+1}. Then for each i,

P(Rn+1 = ri |Er) =

∑
σ:σ(n+1)=i f(rσ(1), . . . , rσ(n+1))∑

σ f(rσ(1), . . . , rσ(n+1))

=

∑
σ:σ(n+1)=i f(r1, . . . , rn+1)∑

σ f(r1, . . . , rn+1)

=
n!

(n+ 1)!
=

1

n+ 1
.

This shows that the distribution of Rn+1|Er is uniform on the set {r1, . . . , rn+1}, that is,

Rn+1|Er ∼
1

n+ 1

n+1∑
i=1

δri ,

and it follows, since F (Q(t)) ≥ t for any cumulative distribution function F and corresponding quantile
function Q, that

P
{
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n+1∑
i=1

δri

) ∣∣∣∣Er} ≥ 1− α,

This is the same as

P
{
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n+1∑
i=1

δRi

) ∣∣∣∣Er} ≥ 1− α,

and we can marginalize to obtain

P
{
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n+1∑
i=1

δRi

)}
≥ 1− α.

This is the display right above (2), and by the same argument as given above, it is equivalent to (2).

1.1 Weighted exchangeability: quantile lemma
Though the alternate proof we just gave is a bit longer than the standard reduction to ranks, it is impor-
tant because it allows us to move past the setting of exchangeable scores R1, . . . , Rn+1. In words, after
revealing (conditioning on) the set of values obtained by the scores, we need to be able to answer the fol-
lowing question: what is the probability with which any given value is that of the test score?

This question still has a relatively clean answer when R1, . . . , Rn+1 are weighted exchangeable, which is a
generalization of exchangeability, and specifies that the random variables have a density (or mass function,
or more generally, Radon-Nikodym derivative with respect to an arbitrary base measure) of the form

f(r1, . . . , rn+1) =

n+1∏
i=1

wi(ri) · g(r1, . . . , rn+1), (3)
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where g is any function that is permutation invariant, i.e., g(r1, . . . , rn+1) = g(rσ(1), . . . , rσ(n+1)), for any
permutation σ.

We now have the following extension of (2), stated as a lemma, for concreteness.

Lemma 1. Let Zi, i = 1, . . . , n + 1 be weighted exchangeable random variables, with respect to weight
functions w1, . . . , wn+1. Assume without loss of generality that these are distinct almost surely. Let

Ri = V (Zi; Z1, . . . , Zn+1), i = 1, . . . , n+ 1,

where V is an arbitrary score function that is symmetric in its last n+ 1 arguments, and define

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j))∑

σ

∏n+1
j=1 wj(zσ(j))

, i = 1, . . . , n+ 1, (4)

where the sums are over permutations σ of the numbers 1, . . . , n+ 1. Then for any α ∈ (0, 1),

P
{
Rn+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi (Z1, . . . , Zn+1)δRi
+ pwn+1(Z1, . . . , Zn+1)δ∞

)}
≥ 1− α. (5)

Proof. We follow the same general strategy from the alternate proof of (2). Let Ez denote the event that
{Z1, . . . , Zn+1} = {z1, . . . , zn+1}, and let ri = V (zi; z1, . . . , zn+1), for i = 1, . . . , n+ 1. Let f be the density
function of the joint sample Z1, . . . , Zn+1. For each i, we have

P(Rn+1 = ri |Ez) = P(Zn+1 = zi |Ez) =

∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))
, (6)

and as Z1, . . . , Zn+1 are weighted exchangeable,∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))
=

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j)) · g(zσ(1), . . . , zσ(n+1))∑

σ

∏n+1
j=1 wj(zσ(j)) · g(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j)) · g(z1, . . . , zn+1)∑

σ

∏n+1
j=1 wj(zσ(j)) · g(z1, . . . , zn+1)

= pwi (z1, . . . , zn+1).

In other words,

Rn+1|Ez ∼
n+1∑
i=1

pwi (z1, . . . , zn+1)δri ,

which implies that

P
{
Rn+1 ≤ Quantile

(
1− α;

n+1∑
i=1

pwi (z1, . . . , zn+1)δri

) ∣∣∣∣Ez} ≥ 1− α.

This is equivalent to

P
{
Rn+1 ≤ Quantile

(
1− α;

n+1∑
i=1

pwi (Z1, . . . , Zn+1)δRi

) ∣∣∣∣Ez} ≥ 1− α,

and after marginalizing,

P
{
Rn+1 ≤ Quantile

(
1− α;

n+1∑
i=1

pwi (Z1, . . . , Zn+1)δRi

)}
≥ 1− α.

Finally, by the same arguments as before, we can change the point mass at Rn+1 to one at ∞, which
proves (5) as desired.
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We remark that computation of the probability weights in (4) is very difficult in general, due to the combi-
natorial form (note that this actually reduces to computing what is known as a matrix permanent, which
is known to be hard). However, for cetain weighted exchangeable structures, it can be easy, as we will see
a bit later for covariate shift.

1.2 Weighted exchangeability: conformal prediction
A weighted version of conformal prediction follows from Lemma 1, which we state next as a theorem, for
concreteness.

Theorem 1. Assume that Zi = (Xi, Yi) ∈ X × Y, i = 1, . . . , n + 1 are weighted exchangeable with weight
functions w1, . . . , wn+1. Define a weighted conformal set (based on the first n samples) at a point x ∈ X ,
with nominal error level α ∈ (0, 1) as follows. Let

R
(x,y)
i = V

(
(Xi, Yi); Z1, . . . , Zn, (x, y)

)
, i = 1, . . . , n,

R
(x,y)
n+1 = V

(
(x, y); Z1, . . . , Zn, (x, y)

)
,

(7)

for an arbitrary score function V that is symmetric in its last n+ 1 arguments, and

Ĉwn (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1, . . . , Zn, (x, y)

)
δ∞

)}
,

(8)
where pwi , i = 1, . . . , n+ 1 are as in (4). Then Ĉwn satisfies

P
(
Yn+1 ∈ Ĉwn (Xn+1)

)
≥ 1− α. (9)

Proof. Abbreviate Ri = R
(Xn+1,Yn+1)
i , i = 1, . . . , n+ 1. By construction

Yn+1 ∈ Ĉwn (Xn+1) ⇐⇒ Rn+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi (Z1, . . . , Zn+1)δRi
+ pwn+1(Z1, . . . , Zn+1)δ∞

)
,

and applying Lemma 1 gives the result.

Split version. The split conformal version of the above result can be viewed as a special case where the
score function relies on a point predictor that has been fit on an external data set. For example, if we take
it to be V (x, y) = |y − µ0(x)|, where µ0 has been fit on a data set Z0, then (8) simplifies to

Ĉwn (x) = µ0(x)±Quantile

(
1− α;

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ|Yi−µ0(Xi)| + pwn+1

(
Z1, . . . , Zn, (x, y)

)
δ∞

)
,

and by (9), this has coverage at least 1− α, conditional on Z0.

CDF form.* The analogous CDF form of the conformal set in (8) is as follows:

Ĉwn (x) =

{
y :

n+1∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
1
{
R

(x,y)
i < R

(x,y)
n+1

}
≤ d1− αew

}
, (10)

where d1− αew = min{τ ∈ range(F̂wn ) : τ ≥ 1− α} and we use F̂wn to denote the (random) CDF of the
discrete distribution

∑n
i=1 p

w
i (Z1, . . . , Zn, (x, y))δ

R
(x,y)
i

+ pwn+1(Z1, . . . , Zn, (x, y))δ∞. Compared to the CDF
form of the ordinary unweighted conformal prediction set, from the last lecture, the form in (8) is more
complicated—we need to adjust the nominal level of 1− α upwards so that it lies in the range of the CDF
of the weighted score distribution, and here this distribution is random, so the adjustment is itself random.
This is the main reason we worked with the quantile form in (8) in the first place, since we can always use
the unadjusted level 1− α and completely avoid any such complications.
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Auxiliary randomization.* It is worth noting that we can achieve exact coverage by using auxiliary
randomization, either in CDF or quantile form. Applying our previous randomization trick (from the last
lecture) to the CDF form (10) gives

Ĉw,∗n (x) =

{
y :

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
1
{
R

(x,y)
i < R

(x,y)
n+1

}
+

U

n+1∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
1
{
R

(x,y)
i = R

(x,y)
n+1

}
≤ 1− α

}
,

where U ∼ Unif(0, 1), independent of everything else. This is fairly simple and intuitive: it is free of any
level adjustments needed in the unrandomized CDF-based set in (10). Meanwhile, we can also randomize
the quantile form (8), as in

Ĉw,∗n (x) =

{
y : R

(x,y)
n+1 ≤

Bw ·Quantile

(
1− α;

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1, . . . , Zn, (x, y)

)
δ∞

)
+

(1−Bw) ·Quantile

(
b1− αcw;

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1, . . . , Zn, (x, y)

)}
,

where now b1− αcw = max{τ ∈ range(F̂wn ) : τ ≤ 1− α} with F̂wn denoting the (random) CDF of the dis-
crete distribution

∑n
i=1 p

w
i (Z1, . . . , Zn, (x, y))δ

R
(x,y)
i

+ pwn+1(Z1, . . . , Zn, (x, y))δ∞ as before, and

Bw ∼ Bernoulli

(
1− α− b1− αcw
d1− αew − b1− αcw

)
,

independent of everything else. Arguably, the randomized conformal set from the second-to-last display is
actually less simple and intuitive, as we must introduce level adjustments that were not needed in (8). Ul-
timately, either version of the set Ĉw,∗n defined above (it is not clear that the two are equivalent) satisfies

P
(
Yn+1 ∈ Ĉw,∗n (Xn+1)

)
= 1− α.

1.3 Conformal prediction for covariate shift
We now show how to apply the above results to get a version of conformal prediction for covariate shift
problems, as developed in Tibshirani et al. (2019). However, we note that Theorem 1 can also be used as
a basis for developing conformal methods in other non-i.i.d. settings, such as label shift (Podkopaev and
Ramdas, 2021), causal inference (Lei and Candès, 2021), experimental design (Fannjiang et al., 2022), and
survival analysis (Candès et al., 2023).

Corollary 1. Assume that Zi = (Xi, Yi), i = 1, . . . , n+ 1 obey the model (1). Assume that P̃X is absolutely
continuous with respect to PX , and denote w = dP̃X/dPX . Define a weighted conformal set (based on the
first n samples) at a point x ∈ X , with nominal error level α ∈ (0, 1), by

Ĉwn (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

πwi (x)δ
R

(x,y)
i

+ πwn+1(x)δ∞

)}
, (11)

where R(x,y)
i , i = 1, . . . , n + 1 are conformity scores as in (7), for an arbitrary score function V that is

symmetric in its last n+ 1 arguments, and

πwi (x) =
w(Xi)∑n

j=1 w(Xj) + w(x)
, i = 1, . . . , n, and πwn+1(x) =

w(x)∑n
j=1 w(Xj) + w(x)

. (12)

Then Ĉwn satisfies
P
(
Yn+1 ∈ Ĉwn (Xn+1)

)
≥ 1− α. (13)
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Proof. It is straightforward to see that the independent draws Zi = (Xi, Yi), i = 1, . . . , n+1 are weighted ex-
changeable (3) with wi ≡ 1 for i = 1, . . . , n, and wn+1((x, y)) = w(x). In this special case, the probabilities
in (4) simplify to

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i w(xi)∑
σ w(xσ(n+1))

=
w(xi)∑n+1
j=1 w(xj)

, i = 1, . . . , n+ 1,

in other words, pwi (Z1, . . . , Zn, (x, y)) = πwi (x), i = 1, . . . , n + 1, where the latter are as in (12). Applying
Theorem 1 gives the result.

The same remarks as before apply here: a split conformal version follows as a special case (via a particular
score function) and exact coverage in (13) can be achieved by randomizing the quantile in (11).

Looking back at Figure 1, the middle row provides an example of the (split version of the) conformal set
in (11), with oracle knowledge (in orange) of the likelihood ratio weight function w = dP̃X/dPX . We can
see from the middle left panel that its coverage is restored compared to the naive application of conformal
in the covariate shift problem, from the top row. However, we also see that the dispersion in the coverage
histogram from weighted conformal (over the 5000 repetitions of the experiment) is larger than that of
ordinary conformal without covariate shift (in red), from the top row. This is because, with non-uniform
weights due to covariate shift, we are effectively operating at a lower sample size. The middle row thus
also displays the results (in purple) of usual conformal prediction in a problem without covariate shift but
at the same effective sample size, defined as

n̂ =

( ∑n
i=1 |w(Xi)|√∑n
i=1 |w(Xi)|2

)2

=

(
‖w(X1:n)‖1
‖w(X1:n)‖2

)2

,

where we abbreviate w(X1:n) = (w(X1), . . . , w(Xn)) ∈ Rn. We see that its coverage dispersion is about the
same. Interestingly (and unfortunately for the likelihood-weighted method), even with the effective sample
size correction, the usual conformal prediction intervals are shorter than the weighted conformal prediction
intervals, as shown in the middle right panel.

1.4 Estimating the likelihood ratio from unlabeled data
Here we describe how to estimate w = dP̃X/dPX , the likelihood ratio of interest, when we have access to
unlabeled data Xn+1, . . . , Xn+m ∈ X at prediction time. (This is sometimes called the transductive or
semi-supervised setting in machine learning.) We can use any classifier that estimated probabilities of class
membership, such as logistic regression or random forests. We proceed as follows: we train the classifier on
feature-class pairs (Xi, Ci), i = 1, . . . , n+m, where Ci = 0 for i = 1, . . . , n and Ci = 1 for i = n+1, . . . , n+m.
Noting that

P(C = 1|X = x)

P(C = 0|X = x)
=

P(C = 1)

P(C = 0)

dP̃X
dPX

(x),

we can thus view the conditional odds ratio w(x) = P(C = 1|X = x)/P(C = 0|X = x) as an equivalent
representation for the oracle weight function—since we actually only need to know the likelihood ratio up
to a proportionality constant. Therefore, if p̂(x) is an estimate of P(C = 1|X = x) obtained by fitting a
probabilistic classifier to the data (Xi, Ci), i = 1, . . . , n+m, then we can use

ŵ(x) =
p̂(x)

1− p̂(x)
(14)

as our estimated weight function for the calculation of probabilities (12), needed for the weighted confor-
mal set (11). The better calibrated the classifier, the better the estimated weighted in (14) will be.

Looking back once again at Figure 1, the bottom row shows the results of using this method to estimate
the weights using logistic regression (in gray) and random forests (in green). Both classifiers provide rea-
sonably good prediction sets in the end (logistic regression is actually well-specified in this experiment, so
its favorable performance should not be surprising).
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1.5 Conformal prediction for structured-X settings
We saw that a particularly simple and computationally efficient application of Theorem 1 was the covari-
ate shift problem. Now we go in the opposite direction: make it even more general and add the same time,
even more computationally intractable (at least at face value). The next result essentially already follows
from what we proved in Lemma 1 and Theorem 1: we just stop at (6), without simplifying further.

Theorem 2. Assume that Zi = (Xi, Yi), i = 1, . . . , n+ 1 are distributed according to:

(X1, . . . , Xn+1) ∼ Λ,

Yi|Xi ∼ PY |X , independently, for i = 1, . . . , n+ 1.

Let λ denote the density (or mass function, or more generally, Radom-Nikodym derivative with respect to
an arbitrary base measure) of Λ. Define a weighted conformal set (based on the first n samples) at a point
x ∈ X , with nominal error level α ∈ (0, 1), by

Ĉλn(x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

pλi (X1, . . . , Xn, x)δ
R

(x,y)
i

+ pλn+1(X1, . . . , Xn, x)δ∞

)}
, (15)

where R(x,y)
i , i = 1, . . . , n + 1 are conformity scores as in (7), for an arbitrary score function V that is

symmetric in its last n+ 1 arguments, and

pλi (x1, . . . , xn+1) =

∑
σ:σ(n+1)=i λ(xσ(1), . . . , xσ(n+1))∑

σ λ(xσ(1), . . . , xσ(n+1))
, i = 1, . . . , n+ 1. (16)

Then Ĉλn satisfies
P
(
Yn+1 ∈ Ĉλn(Xn+1)

)
≥ 1− α. (17)

Computation of the weights in (16) is now even more difficult than (4) in the weighted exchangeable set-
ting (even more difficult than a matrix permanent, since λ could in principle depend in a complicated way
on the order of its inputs). That said, the above theorem still produces a conformal set (15) with the very
general guarantee (17), which is interesting. This may be useful (and computable) in certain structured-X
settings, for example, where the sequence X1, . . . , Xn+1 has some kind of Markov structure.

2 Custom-weighted conformal prediction
We next cover a custom-weight conformal prediction method, due to Barber et al. (2022). In comparison
to the likelihood-weighted method in the previous section, the weights considered in the current section
will be fixed (not a function of the data) but arbitrary. The theory, as we’ll see, is also quite different; in a
sense, it is more general in scope. We’ll only cover this at a relatively high level (no proof details).

To state the main theorems, we’ll need introduce a few additional pieces of notation. As before, let Zi =
(Xi, Yi), i = 1, . . . , n+ 1 be data points (with the last one Zn+1 = (Xn+1, Yn+1) serving as the test point),
and V a score function. The additional notation is as follows.

• Denote by Z = (Z1, . . . , Zn+1) the data vector (an ordered sequence).

• Denote by Zi the data vector after swapping components i and n+ 1.

• Denote by R(Z) the score vector, with components R(Z)j = V (Zj ;Z).

• Denote by R(Zi) the score vector had the data vector been Zi, with components R(Zi)j = V (Zij ;Z
i).

2.1 Custom weights, symmetric score function
Note that in the current notation, symmetry of V in its last n+ 1 arguments—which is the typical assump-
tion for the conformity score function—implies that we have V (Zj ;Z) = V (Zj ;Zσ), for any permutation σ,
where Zσ = (Zσ(1), . . . , Zσ(n+1)). Thus under this symmetry condition, we may write R(Zi) = R(Z)i.

Now we can state the first main result, for custom-weighted conformal prediction.
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Theorem 3. Let wi ∈ [0, 1], i = 1, . . . , n be fixed and arbitrary weights, and define

w̃i =
wi

w1 + · · ·+ wn + 1
, i = 1, . . . , n, and w̃n+1 =

1

w1 + · · ·+ wn + 1
. (18)

Define a weighted conformal set (based on the first n samples) at a point x ∈ X , with nominal error level
α ∈ (0, 1), by

Ĉwn (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

w̃i δR(x,y)
i

+ w̃n+1 δ∞

)}
, (19)

where R(x,y)
i , i = 1, . . . , n + 1 are conformity scores as in (7), for an arbitrary score function V that is

symmetric in its last n+ 1 arguments. Then with no assumptions on the joint distribution of Zi = (Xi, Yi),
i = 1, . . . , n+ 1, the set Ĉwn satisfies

P
(
Yn+1 ∈ Ĉwn (Xn+1)

)
≥ 1− α−

n∑
i=1

w̃i · TV(R(Z), R(Zi)), (20)

where TV(A,B) is the total variation (TV) distance between the distributions of random variables A,B.

Observe that the normalization step in (18) assigns a unit weight to the test point, and then renormal-
izes (so that the new weights have unit sum). As the initial weights were all between 0 and 1, this means
w̃n+1 ≥ w̃i, for all i = 1, . . . , n. The set in (19) reduces to the (unweighted) conformal prediction method
set when w1 = · · · = wn = 1.

We can interpret the result in (20) as follows. If the distribution of the test data point Zn+1 drifts from
that of the training data, but we are able identify a priori which training data points will be most rep-
resentative of the test distribution, then we can upweight these points and downweight the others. This
would result in a small coverage gap, where

coverage gap =

n∑
i=1

w̃i · TV(R(Z), R(Zi)) (21)

(since we have small weights multiplying large TV distances, and large weights multiplying small TV dis-
tances.) Of course, choosing a good weights scheme—identifying a priori which training points are rep-
resentative of the test data distribution—is an important problem unto itself. In certain structured data
settings, such as problems with time series or spatial structure, progress towards general methodology
for crafting weights seems more tangible than others. Figure 2 gives an example using an exponentially
decaying weight scheme in a time series problem, from Barber et al. (2022).

We now make several further remarks.

Split version. As before, the split conformal version of the above result can be viewed as a special case
where the score function relies on a point predictor fit on an external data set. For example, if we take it
to be V (x, y) = |y − µ0(x)|, where µ0 has been fit on a data set Z0 then (19) simplifies to

Ĉwn (x) = µ0(x)±Quantile

(
1− α;

n∑
i=1

w̃i δ|Yi−µ0(Xi)| + w̃n+1 δ∞

)
,

and (20) becomes

P
(
Yn+1 ∈ Ĉwn (Xn+1)

∣∣Z0

)
≥ 1− α−

n∑
i=1

w̃i · TV
(
R(Z), R(Zi)

∣∣Z0

)
,

where TV(A,B |C) is the TV distance between the conditional distributions of A|C and B|C. If Z0 is
independent of Z, then the coverage gap is just a before, in (21).
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Figure 2: Experiments for split conformal prediction under distribution drift. Top row: coverage and width
in a time series problem, for the usual conformal prediction (CP), weighted conformal with exponentially
decaying weights and least squares as the prediction algorithm (NexCP+LS), and the same method but now
with weighted least squares as the prediction algorithm (NexCP+WLS). Bottom row: the same metrics and
methods on a permuted version of the time series data set. Credit: Barber et al. (2022).

The i.i.d. setting. When Zi = (Xi, Yi), i = 1, . . . , n + 1 are i.i.d. (or more generally, exchangeable),
we are back to the traditional setting for conformal prediction. In this case, there is no slack in (20), since
exchangeability implies R(Z)

d
= R(Zi) and thus TV(R(Z), R(Zi)) = 0 for each i, and hence (20) collapses

to an exact 1− α coverage guarantee. This not only reproduces the standard result for ordinary conformal,
when we take w1 = · · · = wn = 1, but also shows us something new: in the i.i.d. (or exchangeable) setting,
we can use arbitrary weights and still get exact coverage with weighted conformal prediction.

Coverage gap bounds. It is worth noting a few upper bounds for the coverage gap in (21). First,

coverage gap ≤
n∑
i=1

w̃i · TV(Z,Zi),

since the TV distance between f(A), f(B) is always less than that between A,B. The bound in the above
display is easier to interpret, but can also be much larger than that in (21). (For example, think about the
case of a high-dimensional feature space, and a score function that ignores all but a few relevant features
for prediction.) Second, if Zi, i = 1, . . . , n+ 1 are independent (but not identically distributed), then it can
be shown that

coverage gap ≤ 2

n∑
i=1

w̃i · TV(Zi, Zn+1).

This lends more direct intuition to the idea that we want to assign large weights to training points whose
distributions are representative of the test distribution.

CDF form.* The analogous CDF form of the conformal set in (19) is as follows:

Ĉwn (x) =

{
y :

n+1∑
i=1

w̃i 1
{
R

(x,y)
i < R

(x,y)
n+1

}
≤ d1− αew

}
, (22)
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where d1− αew = min{τ ∈ range(F̂wn ) : τ ≥ β} and F̂wn denotes the (random) CDF of the discrete distribu-
tion

∑n
i=1 w̃i δR(x,y)

i
+ w̃n+1 δ∞. We note that, as before (for the likelihood-weighted case), the adjustment

of the probability level needed here is random.

Auxiliary randomization.* We can randomize the CDF form in (22) as follows:

Ĉw,∗n (x) =

{
y :

n∑
i=1

w̃i 1
{
R

(x,y)
i < R

(x,y)
n+1

}
+ U

n+1∑
i=1

w̃i 1
{
R

(x,y)
i = R

(x,y)
n+1

}
≤ 1− α

}
,

where U ∼ Unif(0, 1), independent of everything else. This is fairly simple and intuitive—it is free of any
level adjustments needed in the unrandomized CDF-based set in (22). The set Ĉw,∗n satisfies the same
guarantee as in (20). It is not clear whether we can say something sharper, but practically, it it gets rid of
the discretization error hidden in the inequality (20) by using randomization.

We can also randomize the quantile form in (19) in order to obtain exact coverage (similar to what we did
in the likelihood-weighted case) but we omit the details.

2.2 Custom weights, nonsymmetric score function
When the score function is nonsymmetric in its last n+ 1 elements—for example, V (Zi;Z) when denotes
a score assigned to Zi is based on a model trained on Z that used the order of the points in Z, such as
an autoregressive model for forecasting in a time series problem—then it is still reasonable to ask what
guarantees a weighted conformal prediction set would have. However, this lies outside of the scope of the
previous result given in Theorem 3.

It turns out that we can accommodate a completely arbitrary (possibly nonsymmetric) score function V ,
by injecting a random swap into the construction of the conformal prediction set. This is the second main
result, for custom-weighted conformal prediction.

Theorem 4. Let wi ∈ [0, 1], i = 1, . . . , n be fixed and arbitrary weights, and define w̃i, i = 1, . . . , n+ 1 as in
(18). Define a weighted conformal set (based on the first n samples) at a point x ∈ X , with nominal error
level α ∈ (0, 1), by

Ĉwn (x) =

{
y : R

(x,y),K
n+1 ≤ Quantile

(
1− α;

n∑
i=1

w̃i δR(x,y),K
i

+ w̃n+1 δ∞

)}
, (23)

where R(x,y),K
i , i = 1, . . . , n + 1 are conformity scores defined as follows. Let Z(x,y) = (Z1, . . . , Zn, (x, y)),

and let (Z(x,y))K denote this vector after swapping components K and n+ 1, where

K ∼
n+1∑
i=1

w̃i δi,

independent of everything else. Then

R
(x,y),K
i = V

(
(Xi, Yi); (Z(x,y))K

)
, i = 1, . . . , n,

R
(x,y),K
n+1 = V

(
(x, y); (Z(x,y))K

)
.

(24)

With no assumptions on V and no assumptions on the joint distribution of Zi = (Xi, Yi), i = 1, . . . , n+ 1,
the set Ĉwn satisfies the exact same guarantee as in (20).

To reiterate, the key difference here is that the scores (24) used in the construction of the conformal set
(23) are computed on a data vector in which we swap components K and n+ 1, where K follows a multi-
nomial distribution, with probabilities w̃i, i = 1, . . . , n+ 1. To be clear, in the case that the scores are the
result of fitting a particular prediction algorithm to the data vector, this swap will alter the fitted model
returned by the prediction algorithm. The extent to which this matters undoubtedly depends on the pre-
diction algorithm. In many practical situations, we would not expect this to have a large effect, and we
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note generally that applying this swap is much gentler than applying a random permutation to the data
vector before computing the scores (which would effectively render V symmetric).

Looking back at Figure 2, we can see this method being applied with weighted least squares as the predic-
tion algorithm (results in red), where the weights themselves decay into the past. This is a nonsymmetric
algorithm because the order of the data matters (observation weights get assigned accordingly, for the
regression). Compared to unweighted least squares (in yellow), we see comparable coverage and generally
shorter prediction intervals.

3 Adaptive conformal inference
Lastly we cover a conformal-like method, for sequential prediction problems, due to Gibbs and Candès
(2021). In a way, this is a signifcant departure from the methods we’ve seen thus far, since the base idea
isn’t specific to conformal prediction at all. Its core guarantee is quite simple and at the same time quite
strong. We’ll only cover some of the core properties of this method, skipping more advanced ones.

Assume we are given an infinite sequence of observations (Xt, Yt) ∈ X ×Y , t = 1, 2, 3, . . ., which we can think
of as being indexed by time. Assume that at each time t, we have a method for computing a prediction
set Cβt ⊆ Y for Yt, at any nominal level β ∈ R. The set Cβt could come from some version of conformal
prediction run on the past data (Xs, Ys), s < t, or really, any other method. All that we require is that the
method for producing sets saturates at any level below 0 or above 1, meaning

Cβt = ∅ for β ≤ 0, and Cβt = Y for β ≥ 1. (25)

Adaptive conformal inference (ACI)1 is an algorithm for adjusting the working level 1− αt of the prediction
sets over time t = 1, 2, 3, . . . so as to try to maintain a realized coverage as close to 1− α as possible, where
α ∈ (0, 1) is some prespecified error tolerance. It is very simple: it initializes α0 = α, and performs updates
according to

αt+1 = αt − η(errt − α), t = 0, 1, 2, . . . , (26)
where errt = 1{Yt /∈ C1−αt

t } and η > 0 is a step size. These updates are highly intuitive: if we cover, then
we increase the working error level by ηα (make future prediction sets smaller), and if we miscover, then
we decrease the working error level by η(1− α) (make future prediction sets larger).

Boundedness of ACI iterates. The following is a simple but important realization: the ACI iterates
in (26) are always uniformly bounded, because, as the proof of the next lemma shows, they have a kind of
self-correcting property.

Lemma 2. The iterates from ACI (26) satisfy αt ∈ [−η, 1 + η], for any t = 1, 2, 3, . . ..

Proof. Denote ` = inft≥1 αt and assume ` < −η. Fix any small ε > 0 such that ` + ε < −η and ε < ηα.
Then there exists some t ≥ 2 such that αt ≤ `+ ε < −η. The update (26) at t− 1 tells us that

αt = αt−1 − η(errt−1 − α)

=

{
αt−1 + ηα if errt−1 = 0

αt−1 − η(1− α) if errt−1 = 1.

We will be able to derive a contradiction in each of the above cases.

• In the first case αt−1 must have been smaller than αt, but this is impossible, since it would be less
than the infimum: αt−1 ≤ `+ ε− ηα < ` = inft≥1 αt, which is a contradiction.

• In the second case αt−1 must have been larger than αt, but this is impossible, since it would be less
than zero, leading to coverage: αt−1 < −η+ η(1−α) < 0, so errt−1 = 0, which is again a contradiction.

This proves that inft≥1 αt ≥ −η. The proof that supt≥1 αt ≤ 1 + η is similar.
1The method was proposed and named by Gibbs and Candès (2021) in the context of using conformal prediction as the

method used to compute prediction sets Cβt , but as noted, any method for prediction sets will work so long as it saturates in
the sense of (25).
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Asymptotic coverage of ACI. This boundedness property leads to a simple-to-prove, yet profound
fact about ACI: it achieves asymptotic coverage 1 − α, always, meaning, it achieves this no matter the
sequence (Xt, Yt), t = 1, 2, 3, . . . (even if this sequence were chosen adversarially).

Theorem 5. For any t0 ≥ 0 and T ≥ 1, the errors from the ACI iterates (26) satisfy∣∣∣∣ 1

T

t0+T∑
t=t0+1

errt − α
∣∣∣∣ ≤ 1 + 2η

Tη
. (27)

In particular, this implies

lim
T→∞

1

T

T∑
t=1

errt = α. (28)

Proof. Without a loss of generality we prove the result for t0 = 0. Let st = errt − α, and write the update in
(26) as αt − ηst. Then

1

T

T∑
t=1

st =
αT+1 − α1

Tη
.

But αT+1 ≤ 1 + η and α1 ≥ −η by Lemma 2, which proves the desired result.

To reiterate, Theorem 5 puts no constraints on the data generating distribution (or even assumes that the
data is random). It delivers a coverage guarantee over any interval [t0 + 1, t0 + T ] of ≈ 1− α± 1

T , as seen in
(27). This of translates into coverage exactly 1− α over all time, as seen in (28). Figure 3 gives an example
of ACI on financial time series data, from Gibbs and Candès (2021).

Figure 3: Experiments for adaptive conformal inference on predicting stock market volatility. The nomi-
nal coverage level is 0.9. Shown are the results of local coverage (averaged over a trailing window of 500
days) when using ACI (in blue), versus a fixed level (in red). The coverage fluctuations of ACI are not too
dissimilar to the trailing average of i.i.d. Bernoulli coin flips (in gray) with success probability 0.9. Credit:
Gibbs and Candès (2021).
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ACI as online gradient descent. Defining st = errt − α, we can show that st ∈ ∂ft(αt) for a particular
convex loss function ft, which will make (26) an instance of online gradient descent (technically, the online
subgradient method) applied to the convex problem

minimize
a

T∑
t=1

ft(a),

for some (arbitrarily large) time horizon T . In particular, let

βt = sup{β : Yt ∈ C1−β
t },

and

ft(a) = φ1−α(1− βt − (1− a))

= φ1−α(a− βt),

where φτ denotes the tilted `1 loss at quantile level τ , that is, φτ (x) = τ |x| for x ≥ 0 and (1 − τ)|x| for
x < 0. Then a straightforward calculation shows

∂ft(a) =


{1− α} if a > βt

[−α, 1− α] if a = βt

{−α} if a < βt.

Furthermore, note that by definition of βt, we have a > βt ⇐⇒ Yt /∈ C1−a
t . Thus it is clear that

st =

{
1− α if errt = 1

−α if errt = 0
∈ ∂ft(αt).
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