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1 Introduction
Conformal prediction is a relatively new framework for quantifying uncertainty in the predictions made by
arbitrary prediction algorithms. Fundamentally, it does so by converting an algorithm’s predictions into
prediction sets, which have strong finite-sample coverage properties.

The idea behind conformal prediction was born out of conversations between Vladimir Vovk and his col-
leagues, including Alexander Gammerman and Vladimir Vapnik (who was visiting the university), in the
mid 1990s at Royal Holloway, University of College London. The definitive reference is Vovk et al. (2005).
This remained a topic of intense interest for Vovk and collaborators for many years, up through current
day. It is Larry Wasserman who brought about the interest in the statistics community, and inspired
Carnegie Mellon University colleagues including Jing Lei (and the author of these lecture notes), to col-
laborate on conformal prediction in the mid 2010s. This lecture will draw mostly from the language for
conformal prediction developed in Lei et al. (2018); Tibshirani et al. (2019).

The community working on conformal prediction remained fairly small for most of its short history, until
fairly recently—just the last few years, really—when it exploded in popularity in the machine learning
community. As such, there will be a lot of interesting work about conformal prediction that we will not be
covering. A nice recent overview is Angelopoulos and Bates (2023). The last section of that monograph
provides some sense of the current trends in the field.

1.1 A lofty goal?
The basic goal of conformal prediction is as follows. Let (Xi, Yi) ∼ P , i = 1, . . . , n be i.i.d. feature and
response pairs, from a distribution P on X × Y. For concreteness, we can think of the feature space as say,
X = Rd, and the response space as Y = R, though this need not be the case in general. Let α ∈ (0, 1) be
and a nominal error level. Then we want to find a prediction band,

Ĉn : X → {subsets of Y},

with the property that for a new i.i.d. pair (Xn+1, Yn+1) ∼ P ,

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α, (1)

where the probability is over all of our data (Xi, Yi), i = 1, . . . , n+ 1.

On the one hand, without placing any assumptions on P , and without appealing to asymptotics of any
kind, this might seem like a really hard goal in general. On the other hand, we can do something trivial to
obtain it: for example,

Ĉn(Xn+1) =

{
Y with probability 1− α
∅ with probability α

will always have exactly 1− α coverage, that is, it will achieve (1) with an equality.

So the real question is this (albeit still somewhat vaguely-phrased): can we achieve (1), in finite samples,
without any assumptions on P , by doing something “nontrivial”? In particular, we would like our strategy
to adapt to the hardness of the problem, in the following sense: the more easily we can predict Yn+1 from
Xn+1, the smaller we would like our set Ĉn(Xn+1) to be.
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1.2 This is achieveable!
Perhaps remarkably, this last goal is actually achieveable, in a very general way. As we will see in the
coming sections, we can start with any algorithm that produces a “point predictor” f̂n that predicts Yn+1

from Xn+1, and turn this into a “set predictor” Ĉn that satisfies (1).

The basic idea behind conformal prediction is two-fold. The first key idea can actually be explained in a
simpler context, where there are no features at all, and we just have a sequence Yi ∈ R, i = 1, . . . , n of
real-valued response values. Suppose our goal is to find a one-sided prediction interval Ĉn = (−∞, q̂n] with

P
(
Yn+1 ≤ q̂n

)
≥ 1− α. (2)

Given this goal (2), a natural place to start would be to set q̂n to be the level (1 − α) sample quantile of
Y1, . . . , Yn, which we denote by

q̂n = Quantile

(
1− α; 1

n

n∑
i=1

δYi

)
,

with δa denoting a point mass at a, and hence 1
n

∑n
i=1 δYi denoting the empirical distribution of Y1, . . . , Yn.

But this would only give use the approximate result

P(Yn+1 ≤ q̂n) ≈ 1− α.

This becomes exact as n→∞, under standard conditions (that ensure convergence of the sample quantile
to the population quantile). So can we instead get something that satisfies (2) in finite-sample?

First key idea: use ranks to form adjusted quantiles. This is where the first key idea behind con-
formal prediction comes in (which in a sense traces back to work on rank-based statistics and permuta-
tions by Fisher and Pitman in the 1930s). As Yn+1 is i.i.d. with Y1, . . . , Yn, then

the rank of Yn+1 is uniformly distributed over the values Y1, . . . , Yn+1. (3)

This means that

P
(
Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn+1

)
≥ 1− α, (4)

which is in turn equivalent to1

P
(
Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn

)
≥ 1− α. (5)

The last step is critical: note that we have moved from a comparison between Yn+1 and a an order statis-
tic of Y1, . . . , Yn+1 in (4) to a comparison between Yn+1 and an order statistic of Y1, . . . , Yn in (5). This is
key, because what is on the right-hand side of the ≤ sign in (5) is computable from just the first n points.
Accordingly, by defining

q̂n = d(1− α)(n+ 1)e smallest of Y1, . . . , Yn, (6)

we have precisely achieved (2).

The formulation in (6) is arguably the most intuitive way to remember how to achieve coverage. There are
other equivalent formulations. One such equivalent formulation (we will see more later on) is

q̂n = Quantile

(
d(1− α)(n+ 1)e

n
;
1

n

n∑
i=1

δYi

)
. (7)

1To see this, consider the complement of the events (inside the probabilities) in (4), (5). Abbreviate k = d(1− α)(n+ 1)e.
Then Yn+1 > the k smallest of Y1, . . . , Yn+1 is clearly an equivalent statement to Yn+1 > the k smallest of Y1, . . . , Yn, since
Yn+1 can never be strictly larger than itself. That said, this argument really only makes sense for k ≤ n, and for k = n + 1,
which occurs if α < 1/(n + 1), then d(1− α)(n+ 1)e = n+ 1, then we have to interpret the (n + 1) smallest of Y1, . . . , Yn
as being +∞ to equate (4), (5). This is the consistent with interpreting the quantile function in (7) to return +∞ when the
input level is ≥ 1.
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In this way, we can also see the solution here as simply to taking the sample quantile at an adjusted level:
we use d(1− α)(n+ 1)e/n, instead of 1− α, which is a sort of finite-sample correction. But in our opinion,
the fact that (7) achieves the coverage guarantee is less obvious; only through its equivalence to (6)—and
then the equivalence to the precedings displays in (5), (4), (3)—does this become transparent. A very
simple illustration of the key idea here is given in Figure 1.

… …

Y(1) Y(2) Y(3) Y(4) Y⌈(1−α)(n+1)⌉ Y(n+1)

≥ 1 − α fraction       is equally likely to occupy

any of the values

Yn+1

Figure 1: Illustration of the first key idea in conformal prediction, as stated in (3), (4). Note also that we
have the sharpened version (8) when there are almost surely no ties.

Love Exchangeability is all you need. Looking back at (3), all that we need for this to hold is that
Y1, . . . , Yn+1 are exchangeable, which is a weaker than the i.i.d. assumption. Recall that exchangeability of
Y1, . . . , Yn+1 means that their joint distribution is unchanged under permutations:

(Y1, . . . , Yn+1)
d
= (Yσ(1), . . . , Yσ(n+1)), for all permutations σ.

Coverage upper bound when there are no ties. If there are almost surely no ties between Y1, . . . , Yn+1

(or we use a suitably random tie-breaking rule) then the statement in (4) can be sharpened to an equality,

P
(
Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn+1

)
=
d(1− α)(n+ 1)e

n+ 1
. (8)

Simply upper bounding the right-hand side above gives

P
(
Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn+1

)
< (1− α) + 1

n+ 1
. (9)

Carrying on from by the same logic as before leads to the sharpened conclusion,

P
(
Yn+1 ≤ q̂n

)
∈
[
1− α, 1− α+

1

n+ 1

)
. (10)

with q̂n still defined as in (6). To be clear, the lower bound on coverage in (10) always holds, and the
upper bound holds under the assumption that there are almost surely no ties.

Naive attempt to lift this idea to regression problems. Now let’s try to lift the first key idea to a
regression setting, where we observe both Xi ∈ X and Yi ∈ R, i = 1, . . . , n, and want a prediction set for
Yn+1 based on Xn+1. Suppose that f̂n is any point predictor, trained on (Xi, Yi), i = 1, . . . , n, such that
(to put it informally)

f̂n(x) predicts the value of y that we expect to see at x.

Then we could proceed naively as follows. We define (absolute) residuals made on the training set,

Ri = |Yi − f̂n(Xi)|, i = 1, . . . , n,

and just as in (6), let q̂n = d(1− α)(n+ 1)e smallest of R1, . . . , Rn. We could then define the prediction
set to be Ĉn(x) = {y : |y − f̂n(x)| ≤ q̂n}, or in other words

Ĉn(x) =
[
f̂n(x)− q̂n, f̂n(x) + q̂n

]
,
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in the hope that Yn+1 ∈ Ĉn(Xn+1) with probability at least 1− α. However,

Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ Rn+1 ≤ q̂n ⇐⇒ Rn+1 ≤ d(1− α)(n+ 1)e smallest of R1, . . . , Rn,

and the latter event does not hold with probability 1 − α, because Rn+1 = |Yn+1 − f̂n(Xn+1)| is not ex-
changeable with R1, . . . , Rn.

The problem is that f̂n has already "seen" (Xi, Yi), i = 1, . . . , n (since it was trained on them), but it has
not yet seen (Xn+1, Yn+1). Accordingly, the test residual Rn+1 will be generally stochastically larger than
the training residuals R1, . . . , Rn, and so the naive prediction set defined above will generally undercover.

2 Split conformal prediction
Enter the second key idea behind conformal prediction, and split conformal prediction, which is the sim-
plest and most computationally efficient way to carry out this idea. Split conformal prediction is the focus
of this section, and we stick to regression where responses are real-valued, so Y = R. The next section
describes a (much more complicated) method that avoids splitting the data. At the end of this lecture, we
will consider classification, where Y is discrete.

Second key idea: construct scores symmetrically. In a nutshell, the second key idea in conformal
prediction is to build residuals in way that treats all of the data (that goes into determining their dis-
tribution), including the test data, in a symmetric fashion. This will ensure that the residuals obey the
exchangeability condition we require in order to get coverage.

Concretely, in split conformal prediction (split CP) we do the following. We first divide the training set
into two sets:

• D1, called the proper training set ; and

• D2, called the calibration set.

We can think of these as sets of indices, so that D1, D2 are such that D1 ∩D2 = ∅ and D1 ∪D2 = {1, . . . , n}.
Let n1 = |D1| and n2 = |D2|. The next step is to fit our point predictor on proper training points (Xi, Yi),
i ∈ D1, call it f̂n1 . Then we define calibration set residuals

Ri = |Yi − f̂n1
(Xi)|, i ∈ D2,

a conformal quantile
q̂n2

= d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2,

and a conformal set
Ĉn(x) =

[
f̂n1

(x)− q̂n2
, f̂n1

(x) + q̂n2

]
, (11)

The main guarantee we can get is that

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ (Xi, Yi), i ∈ D1

)
∈
[
1− α, 1− α+

1

n2 + 1

)
, (12)

where the lower bound on coverage always holds, and the upper bound holds under the assumption that
the residuals are almost surely distinct. Why? If we condition on the proper training set (Xi, Yi), i ∈ D1,
then the calibration residuals Ri, i ∈ D2 and the test residual Rn+1 = |Yn+1 − f̂n1(Xn+1)| are all i.i.d.,
and therefore

Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ Rn+1 ≤ q̂n2 ⇐⇒ Rn+1 ≤ d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2

occurs (by our previous arguments) with probability at least 1− α, and at most 1− α+ 1/(n2 + 1) if the
residuals are almost surely distinct.
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Any score function will work. Above, we used absolute residuals as a negatively-oriented score func-
tion (negatively-oriented meaning that lower values are better). But really, any negatively-oriented score
function will do, and the argument goes through just as before. That is, suppose V (x, y) = V ((x, y); f̂n1

)
assigns a conformity score to the point (x, y) based on f̂n1

(for simplicity, we will generally drop the nota-
tional dependence on f̂n1

). Define, generalizing the construction leading up to (11), calibration set scores

Ri = V (Xi, Yi), i ∈ D2,

and a conformal set

Ĉn(x) =
{
y : V (x, y) ≤ d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2

}
.

Then we get the exact same guarantee as in (12), since Ri, i ∈ D2 and Rn+1 = V (Xn+1, Yn+1) are all still
i.i.d., conditional on f̂n1

). This will be important later, as we’ll see how to move beyond the residual score
to obtain better local adaptivity in our prediction bands.

Positively-oriented scores will work too, we can just negate them (to make the negatively-oriented) before
passing them through this construction. This would result in a conformal set of the form

Ĉn(x) =
{
y : V (x, y) ≥ bα(n2 + 1)c smallest of Ri, i ∈ D2

}
.

An example of a naturally occurring positively-oriented scores will arise in the classification setting.

Quantile and CDF formulations. Keeping the conformity score generic (and negatively-oriented) for
now, we note that there are multiple equivalent formulations for the split conformal prediction set:

Ĉn(x) =
{
y : V (x, y) ≤ d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2

}
(13)

=

{
y : V (x, y) ≤ Quantile

(
d(1− α)(n2 + 1)e

n2
;

1

n2

∑
i∈D2

δRi

)}
(14)

=

{
y :

1

n2

∑
i∈D2

1{Ri < V (x, y)} ≤ d(1− α)(n2 + 1)e
n2

}
. (15)

The original formulation in (13) is (we think) the most intuitive.

The second formulation in (14) is of the form “test score ≤ adjusted quantile”. This form will be useful for
generalizing conformal prediction to use weights, which we will cover in the next lecture, when we consider
certain settings where the scores are no longer exchangeable.

The third formulation (15) is expressed in terms the empirical cumulative distribution function (CDF) of
Ri, i ∈ D2, precisely, its left-continuous version. It is of the form “CDF evaluated at test score ≤ adjusted
level”. This is a useful form when considering auxiliary randomization schemes, covered next.

Auxiliary randomization to get exact coverage.* It is worth noting that we can always use auxil-
iary randomization to get exact coverage in our prediction sets, that is, to achieve 1 − α coverage in (12).
You can skip this without interrupting the flow of understanding the ideas in the rest of this lecture, hence
the asterisk. First, rewrite the conformal set in its CDF form (15) as

Ĉn(x) =

{
y :

1

n2 + 1

∑
i∈D2

1{Ri < V (x, y)}+ 1

n2 + 1
· 1{V (x, y) < V (x, y)} ≤ d(1− α)(n2 + 1)e

n2 + 1

}
.

This now compares the left-continuous empirical CDF of the n2 + 1 points Ri, i ∈ D2 and V (x, y), evaluated
at the test score V (x, y), to an adjusted level. To explain the auxiliary randomization mechanism, it helps
to look at what happens at the (unknown) test point (Xn+1, Yn+1): let Rn+1 = V (Xn+1, Yn+1) denote its
score, and let F̂−n2+1 denote the left-continuous CDF of Ri, i ∈ D2 and Rn+1. Then

Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ F̂−n2+1(Rn+1) ≤
d(1− α)(n2 + 1)e

n2 + 1
,
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which we know occurs with probability at least 1− α.

In general, for any random variable Z whose CDF is F (x) = P(Z ≤ z) and whose left-continuous CDF is
F−(z) = P(Z < z) = limy→z− F (y), we can construct a randomized version by defining, for U ∼ Unif(0, 1),

F ∗(z) = F−(z) + U ·
(
F (z)− F−(z)

)
.

This has the property that P(F ∗(Z) ≤ t) = t, for any t.

Returning to our conformal setting, we see that if we define a randomized conformal prediction set based
on auxiliary randomization of the empirical CDF, such that

Yn+1 ∈ Ĉ∗n(Xn+1) ⇐⇒ F̂ ∗n2+1(Rn+1) ≤ 1− α,

then we will get coverage with probability exactly 1− α. Spelling it out in more detail, this is the same as
defining the randomized conformal set

Ĉ∗n(x) =

{
y :

1

n2 + 1

∑
i∈D2

1{Ri < V (x, y)}+ U

n2 + 1

( ∑
i∈D2

1{Ri = V (x, y)}+ 1

)
≤ 1− α

}
,

where U ∼ Unif(0, 1) is independent of everything else. To record its guarantee, this set always satisfies

P
(
Yn+1 ∈ Ĉ∗n(Xn+1)

∣∣∣ (Xi, Yi), i ∈ D1

)
= 1− α.

2.1 Remarks
Here we make some brief remarks about split conformal prediction. First, recall that the naive prediction
band—as covered at the end of Section 1.2—is generally going to undercover, drastically so when f̂n over-
fits the training data. In a sense, we can think of the split conformal band (11) as being protected against
overfitting, since it based on comparing a test score to calibration set scores, and in the overfitting regime,
these will all be equally large (in distribution).

Second, note that the split conformal band (11) constructed using absolute residual scores has width that
is exactly constant in x. This is not generally a good thing: it means that the band does not adapt to
the local hardness of the problem (how hard it is to predict at any given x), as we will clearly see in an
example to follow. However, this can be addressed by changing the conformity score, as we will do in
Section 4.

Third and last, we note the following key fact: the better the point predictor f̂n1 (from the proper training
set), the tighter the prediction band will be. Both experiments and theory corroborate this claim; see, e.g.,
Lei et al. (2018), and Figure 2, which is taken from that paper. (Do not confuse this point with the last
point about local width at a particular x; here we are talking about the of the prediction band width in an
average sense over x.) Therefore, any prediction algorithm leads to valid coverage, but better algorithms
(for the prediction problem at hand) lead to smaller prediction sets.

An interesting way to interpret this last observation is as follows. Let us condition on the proper training
set implicitly so we do not have to express it notationally. Then, average length is:

E(Xi,Yi)∼P, i∈D2

[ ∫ ∫
Ĉn(x)

dµ(y) dPX(x)

]
where µ is Lebesgue measure and PX is the distribution of X, the feature vector. Meanwhile, coverage is:

E(Xi,Yi)∼P, i∈D2

[ ∫ ∫
Ĉn(x)

dPY |X(y) dPX(x)

]
,

where PY |X is the distribution of Y |X. Therefore, an inefficient prediction algorithm must somehow put
mas in low density regions of PY |X , which does not hurt its coverage, but inflates its length.
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Figure 2: Experiments demonstrating the coverage (top row), test error (middle row), and average length
(bottom row) of split conformal prediction in three different simulation settings, and with several different
prediction algorithms. The x-axis in each plot sweeps over internal hyperparameters of the algorithms
(they are simply put on a common scale using a notion called relative optimism). Settings A, B, and C are
increasingly challenging, in terms of the tractability of prediction. Takeaways: any algorithm, using any
hyperparameter value, leads to essentially exactly 90% coverage in all settings (this was the nominal level),
as seen in the top row; moreover, test error of the algorithm-hyperparameter pair and average length (or
width, these are used synonymously) of the prediction set correlate quite strongly. Credit: Lei et al. (2018).
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Figure 3: Example of split conformal prediction, based on a smoothing spline with 5 degrees of freedom.

2.2 Example
Now we give an example of split conformal in action, in Figure 3. In this simple univariate example (real-
valued features), we split the data randomly and equally into a proper training set (points drawn in black)
and a calibration set (drawn in blue). We use a smoothing spline with 5 degrees of freedom to fit f̂n1 on
the proper training set. The split conformal prediction band, which is simply computed from an adjusted
level 90% quantile of the calibration residuals, and is drawn in orange.

This is guaranteed to have at least 90% test coverage, when we draw test points from the same distribu-
tion as that used to generate the training data. We can see that the band is constant-width, by design.
This is a function of using the absolute residual as our conformity score. It is not desirable in the current
example because it will tend to overcover on the left side of the domain, and undercover on the right side
(note that the variance of Y |X is not constant in this example). We will revisit (and remedy) this later in
Section 4.

2.3 Conditional coverage properties?
We have seen that split conformal prediction comes with the strong, distribution-free coverage guarantee
in (12). Of course, simply by marginalizing over the proper training set, it also has the unconditional
coverage property,

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
∈
[
1− α, 1− α+

1

n2 + 1

)
.

Going the other direction, we could ask if it has coverage properties after we condition on more than just
the proper training set. If we condition on both the proper training set and the calibration set, that is, we
condition on the entire training set, then when the conformity scores are almost surely distinct (or we use
a suitably random tie-breaking rule):

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ (Xi, Yi), i = 1, . . . , n
)
∼ Beta(kα, n2 + 1− kα), (16)

where kα = d(1− α)(n2 + 1)e. The result in (16) is a consequence of standard facts about order statistics
and you’ll prove it on the homework. How do we interpret it? Note, the only thing random in this prob-
ability the test point (Xn+1, Yn+1) (everything else has been conditioned on). Therefore, we can think
about it as follows: as we draw random calibration sets, each one being of size n2 (containing i.i.d. draws
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from a fixed distribution P ), the coverage integrated over a single test point is distributed as Beta(kα, n2 +
1− kα). This distribution has mean

kα
n2 + 1

=
d(1− α)(n2 + 1)e

n2 + 1
,

exactly as expected. It has variance

kα(n2 + 1− kα)
(n2 + 1)2(n2 + 2)

≈ α(1− α)
n2 + 2

.

Thus when n2 is small, this distribution has considerable variability, and for any given calibration set in
hand, we might see the test coverage looking far from 1−α. To give you a more precise sense, Figure 4 plots
the density of this beta distribution for α = 0.1 and a few values of n2.
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20

40
60

80
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si
ty

n = 100
n = 1000
n = 5000

Figure 4: Density of the beta distribution in (16) that describes the calibration set conditional coverage of
split conformal prediction, for alpha = 0.1 and a few values of n2.

How about instead conditioning on Xn+1? This kind of coverage, which we will call X-conditional cover-
age, would be highly desirable: it would say that

P
(
Yn+1 ∈ Ĉn(x)

∣∣∣ (Xi, Yi), i ∈ D1, Xn+1 = x
)
≥ 1− α, for all x ∈ X ,

which means that we would cover the response at test feature value x. Alas, this is asking for too much,
and in a sense that we will make precise later, in Section 3.3, this is effectively impossible to do without
making assumptions about the distribution P governing the data.

3 Full conformal prediction
Is there some way to get guaranteed coverage without splitting the data? Enter full conformal prediction
(often just called conformal prediction). This method is generally much more expensive and much more
complicated than its split counterpart, but it is nonetheless a beautiful and important idea—and in some
cases, it can indeed be computed efficiently.
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In full conformal prediction, we still abide by the second key idea described previously, in which we con-
struct residuals in a way that treats all data symmetrically. We just do it in a more subtle way. Fix any
x ∈ X , and suppose that we want to figure out whether any given response value y ∈ R should be in
our prediction set Ĉn(x). We call y in the trial or query value. Now we do something unlike anything
we have seen thus far: we train our prediction algorithm on (X1, Y1), . . . , (Xn, Yn), (x, y)—note this is an
augmented training set, with n+ 1 points—to produce a point predictor f̂n,(x,y). We define residuals

R
(x,y)
i = |Yi − f̂n,(x,y)(Xi)|, i = 1, . . . , n,

R
(x,y)
n+1 = |y − f̂n,(x,y)(x)|.

Then we define a conformal set

Ĉn(x) =
{
y : R

(x,y)
n+1 ≤ d(1− α)(n+ 1)e smallest of R(x,y)

1 , . . . , R(x,y)
n

}
. (17)

The guarantee we get is that

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
∈
[
1− α, 1− α+

1

n+ 1

)
, (18)

where the lower bound on coverage always holds, and the upper bound holds under the assumption that
the residuals are almost surely distinct once we plug in for the random test point (x, y) = (Xn+1, Yn+1).
Why? After we plug in for the random test point, and abbreviate

Ri = R
(Xn+1,Yn+1)
i , i = 1, . . . , n+ 1,

we can see that these residuals are all exchangeable. (To be precise, this is only true if the algorithm that
we use to fit the point predictor f̂n,(x,y) is a symmetric function of the training data that it takes as input,
i.e., does not use knowledge of the order in which the training points were passed.) Therefore

Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ Rn+1 ≤ d(1− α)(n+ 1)e smallest of Ri, i = 1, . . . , n

occurs (by our previous arguments) with probability at least 1 − α, and at most 1 − α + 1/(n + 1) if the
residuals are almost surely distinct.

All of the extensions mentioned in the split conformal section, after defining the basic method based on
residual scores, carry over to full conformal. We summarize these below.

• Any negatively-oriented and suitably symmetric score function can be used in place of the absolute
residual score and the guarantee is unchanged. That is, define

R
(x,y)
i = V

(
(Xi, Yi); (X1, Y1), . . . , (Xn, Yn), (x, y)

)
i = 1, . . . , n,

R
(x,y)
n+1 = V

(
(x, y); (X1, Y1), . . . , (Xn, Yn), (x, y)

)
for any function V that is symmetric in its last n+ 1 arguments. This function can, for example, train
a point predictor on the last n+ 1 arguments—as long as it treats them symmetrically—and then use
it to return some score for the first argument. Then the conformal prediction set in (17) still has the
same guarantee in (18), by the same exchangeability arguments.

• We can rewrite the conformal set (17) in equivalent quantile and CDF forms:

Ĉn(x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
d(1− α)(n+ 1)e

n
;
1

n

n∑
i=1

δ
R

(x,y)
i

)}
(19)

=

{
y :

1

n

n∑
i=1

1
{
R

(x,y)
i < R

(x,y)
n+1

}
≤ d(1− α)(n+ 1)e

n

}
. (20)

• We can always inject auxiliary randomness in order to obtain coverage exactly 1− α in (18).
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3.1 Remarks
The remarks discussed for split conformal previously also carry over more or less to full conformal predic-
tion. To summarize briefly: the full conformal band is protected against overfitting, because now compu-
tation of f̂n,(x,y) involves the query point (x, y); the band produced by full conformal under the residual
score is often roughly (though not exactly) constant-width, which is not generally a good property, but
can be addressed by changing the score function (more later); and lastly, in general, the better the predic-
tion algorithm, the tighter the band will be overall.

Next we give two further remarks. The first one is on computation: full conformal is in general extremely
computationally expensive: for every x at which we want to compute the prediction set Ĉn(x) in (17), we
need to refit the point predictor f̂n,(x,y) (kernel regression, random forest, neural net, etc.) at in principle
every y ∈ R in order to compute and compare the residuals R(x,y)

i , i = 1, . . . , n+ 1. This would actually be
infinitely expensive, but in practice of course we would do it over a finite grid of y values, which could still
be tremendously expensive. Relatively speaking, split conformal is computationally trivial: it is typically
dominated by the cost of fitting the point predictor f̂n1

once. Due to its extreme computational cost, full
conformal prediction is rarely used in practice, except for small problem sizes, or with special prediction
algorithms that have something like a “shortcut” formula for refitting the point predictor. Also, it is worth
mentioning that in between split and full conformal prediction are methods that look like cross-validation,
and cycle through using different parts of the data for training and. See Barber et al. (2021) for details.

The second remark is about interpreting the conformal set via p-values. Observe that we can rewrite (20)
once more as

Ĉn(x) =

{
y :

1

n

n∑
i=1

1
{
R

(x,y)
i ≥ R(x,y)

n+1

}
︸ ︷︷ ︸

p(y)

≥ bα(n+ 1)c
n

}
.

Informally, we can interpret the fraction of residuals larger than the test residual, which we denote by p(y),
as a p-value for the null hypothesis H0 : Yn+1 = y. Thus we can think of conformal prediction as using y
as a pivotal value, and keeping all of values y for which we do not reject the null hypothesis, which it does
by comparing p(y) to an adjusted significance level of bα(n+ 1)c/n.

3.2 Example
Figure 5 gives an example of full conformal in action. The underlying data is the same as in Figure 3, but
for the prediction algorithm we now use a smoothing spline with 15 degrees of freedom (this allows the in-
fluence of the query point (x, y) on the spline fit to be more visible). We demonstrate how to calculate the
prediction set at a single value x = 4.75, marked in blue. Figure 5 is actually an animation, but it might
not render as one in many PDF viewers; if you can, try using Adobe Acrobat Reader to see the animation.
We run the query response value y over a grid, and for each y, compute the smoothing spline fit using n+ 1
points, the original data set and (x, y). Look carefully and you’ll see the gray smoothing spline curve get
pulled upwards as y moves upwards. For each value of y, we record the fraction p(y) of residuals larger
than the test residual, and in the end, the 90% prediction set keeps y for which p(y) ≥ bα(n+ 1)c/n ≈ 0.1,
visualized by thresholding the p-value histogram drawn along the right axis.

3.3 Impossibility of X-conditional coverage
Returning to the issue of X-conditional coverage raised previously, here we drop some disappointing news:
conformal prediction methods do not achieve this in general. The story is actually more grim: no method
does, in a meaningful way, in the distribution-free setting. If Ĉn is any prediction band such that

P
(
Yn+1 ∈ Ĉn(x)

∣∣∣Xn+1 = x
)
≥ 1− α, for any P , and PX -almost every x,

then Lei and Wasserman (2014) show that

P

(
lim
δ→0

sup
x∈Bδ(x0)

µ(Ĉn(x)) =∞

)
= 1, for any P , and any non-atom point x0 of PX .
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Figure 5: Example of full conformal prediction, where the prediction algorithm is a smoothing spline with
15 degrees of freedom. (This figure is actually an animation, but it might not render as one in most PDF
viewers; if you can, try using Adobe Acrobat Reader to see the animation.)

As before, µ denotes Lebesgue measure and PX is the feature distribution associated with P . A non-atom
point x0 of PX is one for which PX(Bδ(x0))→ 0 as δ → 0, where Bδ(x0) is the `2 ball of radius δ centered
at x0. Thus, in effect, the above says that any prediction band which claims to cover at almost every x,
for every joint distribution P , must be infinite in size at any point x0 at which we do not have a positive
probability of seeing duplicate observations. You’ll explore more of the details on your homework.

4 Improving local adaptivity
Even though X-conditional coverage is effectively impossible in the distribution-free setting, in the sense
made precise previously, this does not mean that different methods cannot have widely different behaviors
in practice, when it comes to their ability to deliver approximate X-conditional coverage. We will broaden
our terminology and perspective and use local adaptivity of a prediction band as a term that refers to its
ability to shrink the band at values of x at which prediction is easy, and inflate it at values of x at which
prediction is hard. This is admittedly somewhat vague, but because X-conditional coverage isn’t really our
precise goal, local adaptivity is a better notion to keep in mind.

There are different methods for obtaining better local adaptivity. The ones covered in this lecture all have
to do with simply changing the conformity score. Below we cover two options in regression.

4.1 Studentized residuals
A simple variant on the residual score is what we call a studentized residual. We describe the idea for split
conformal prediction (the full conformal extension is similar). On D1, we fit both a point predictor f̂n1

and a “spread predictor” σ̂n1
, which is designed to predict (say) the standard deviation of |Y − f̂n1

(X)| at
X = x. Then on D2, we compute “studentized” or normalized residuals

Ri =
|Yi − f̂n1

(Xi)|
σ̂n1

(Xi)
, i ∈ D2,

and as before q̂n2
= d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2. The conformal set is now

Ĉn(x) =
[
f̂n1(x)− σ̂n1(x)q̂n2 , f̂n1(x) + σ̂n1(x)q̂n2

]
, (21)
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whose width we can see adapts according to σ̂n1 . The guarantee is just as before, in (12). Figure 6 gives
an example.
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Figure 6: Examples of split conformal prediction with the usual residual score (left panel) and the studen-
tized residual score (right panel). The data comes from the same generative model as in Figures 3 and 5.
We can see that the studentized residual adapts to the local hardness of prediction (and delivers something
closer to conditional coverage). Credit: Lei et al. (2018).

4.2 Quantile regression
There are two issues that can make studentized residuals fall short in practice.

1. If f̂n1
is complex, then little information is left on the proper training set in order to fit σ̂n1

(because
the proper training residuals will be close to zero). This can be addressed with further data splitting,
but that comes at a cost of statistical efficiency.

2. More broadly, it does not need to be true that the variance of Y |X = x and the level 1− α quantile
of this distribution are always tied together; in some problem settings they can even have opposing
behaviors. Note that the former is being targeted by studentized residuals, but the latter is what
should really be targeting in prediction bands.

Romano et al. (2019) show that both of these can be addressed by changing our perspective on the point
predictor itself: why not have it predict the level 1 − α quantile of the response at X = x directly? (As
opposed to predicting the mean of the response at X = x, which is what generic regression methods do.)

Their proposal, called conformalized quantile regression (CQR), works as follows, in the split setting (the
full version is similar). We first fit two point predictors, denoted f̂α/2n1 and f̂1−α/2n1 , on the proper training
data (Xi, Yi), i ∈ D1. Here each f̂τn1

(x) is estimates the level τ quantile of Y |X = x. This can be obtained
from a variety of quantile regression methods, which often only require a change of the loss function from
a generic regression method. Then we form calibration set scores

Ri = max
{
f̂α/2n1

(Xi)− Yi, Yi − f̂1−α/2n1
(Xi)

}
, i ∈ D2,

and as before q̂n2 = d(1− α)(n+ 1)e smallest of Ri, i ∈ D2. The CQR set is now

Ĉn(x) =
[
f̂α/2n1

(x)− q̂n2 , f̂
1−α/2
n1

(x) + q̂n2

]
. (22)
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which enjoys the same guarantee as in (12).

In the example from Figure 6, the data set is large enough and the point predictor stable enough that
CQR (not shown) provides little gain over studentized residuals. However, in other examples, it can pro-
vide a clear gain. See Romano et al. (2019). Still, studentized residuals (or variants thereof) remain in
fairly common use because we can use “out-of-the-box” regression methods to fit each of f̂n1

, σ̂n1
in se-

quence.

5 Conformal classification
In this last section, we briefly cover conformal prediction for classification problems. The story is much the
same, but we need different conformity score functions, since residual or quantile regression scores are not
generally appropriate in classification. Below we cover a standard choice, based on predicted probabilities.
Then we cover a choice that is designed to have better local adaptivity, based on cumulative probabilities.
Throughout, we take Y = {1, . . . ,K}.

5.1 Likelihood scores
We describe the idea for split conformal formulation (full conformal being similar). We first fit a proba-
bilistic classifier f̂n1 to the proper training data (Xi, Yi), i ∈ D1. That is, to be clear,

f̂n1(x; k) estimates P(Y = k |X = x), for each k = 1, . . . ,K.

We then form calibration set scores,
Ri = f̂n1(Xi;Yi), ∈ D2.

In words, each Ri is the probability or likelihood assigned to the correct class (on the unseen observation
(Xi, Yi) from the calibration set). Thus note that this is a positively-oriented score. We let

q̂n2
= bα(n2 + 1)c smallest of Ri, i ∈ D2,

and define the conformal set
Ĉn(x) =

{
k : f̂n1

(x; k) ≥ q̂n2

}
.

This has precisely the same guarantee as in (12).

5.2 Cumulative likelihood
To make the conformal prediction sets more adaptive (still in the context of having fit a probabilistic clas-
sifier f̂n1

on D1), Romano et al. (2020) propose a conformity score based on cumulative likelihood, defined
as follows. For each i ∈ D2, let πi be the permutation of 1, . . . ,K that sorts the predicted probabilities
f̂n1(Xi; k), k = 1, . . . ,K in decreasing order, so that

f̂n1
(Xi;πi(1)) ≥ f̂n1

(Xi;πi(2)) ≥ · · · ≥ f̂n1
(Xi;πi(K)).

The the conformity scores are

Ri =

ki∑
j=1

f̂n1
(Xi;πi(j)), where πi(ki) = Yi, for each i ∈ D2.

In words, each Ri is the cumulative probability of all classes considered “at least as likely” as the true one,
by our probabilistic classifier. Note that this is negatively-oriented (if the true class is assigned a very low
probability, then the cumulative probability of all classes “at least as likely” as it will be very high). Hence
we let

q̂n2
= d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2,

14



and define the conformal set

Ĉn(x) = {πx(1), . . . , πx(kx)}, where kx = min

{
k :

k∑
j=1

f̂n1
(x;πx(j)) ≤ q̂n2

}
.

This has precisely the same guarantee as in (12).

Angelopoulos et al. (2021) refer to this method as adaptive prediction sets (APS) and define a regularized
version called RAPS that often delivers much smaller sets in practice. Figure 7 gives a few examples of
RAPS from their paper.

Figure 7: Examples of RAPS, which is conformal prediction with a regularized version of the cumulative
likelihood score. The true label in each case is “fox squirrel”, and we can see that the prediction sets adapt
appropriately in size to the hardness of the classification task. Credit: Angelopoulos et al. (2021).
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