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Note: this is pretty much taken shamelessly from Appendix C of Tibshirani (2022).

To parametrize the space of kth degree splines with knots at t1, . . . , tr, a simple choice is the truncated
power basis, g1, . . . , gr+k+1, which recall is defined as

gj(x) =
1

(j − 1)!
xj−1, j = 1, . . . , k + 1,

gj+k+1(x) =
1

k!
(x− tj)

k
+, j = 1, . . . , r,

(1)

Here x+ = max{x, 0} denotes the positive part of x.

Though the truncated power basis (1) is the simplest basis for splines, the B-spline basis is just as fun-
damental, and it was “there at the very beginning”, appearing in Schoenberg’s original paper on splines
(Schoenberg, 1946). Here we are quoting de Boor (1976), who gives a masterful survey of the history and
properties of B-splines (and points out that the name “B-spline” is derived from Schoenberg’s use of the
term “basic spline”, to further advocate for the idea that B-splines can be seen as the basis for splines).

Peano representation. There are different ways to construct B-splines; here we cover a construction
based on what is called the Peano representation for B-splines. If f is a k + 1 times differentiable function f
on an interval [a, b] (and its (k + 1)st derivative is integrable), then by Taylor expansion

f(z) =

k∑
i=0

1

i!
(Dif)(a)(z − a)i +

∫ z

a

1

k!
(Dk+1f)(x)(z − x)k dx.

Note that we can rewrite this as

f(z) =

k∑
i=0

1

i!
(Dif)(a)(z − a)i +

∫ b

a

1

k!
(Dk+1f)(x)(z − x)k+ dx. (2)

Next we will take a particular divided difference on both sides of the above display. First we recall the
definition of a divided difference: with respect to two centers z1, z2, it is defined by

f [z1, z2] =
f(z2)− f(z1)

z2 − z1
,

and more generally, with respect to k + 1 centers z1, . . . , zk+1, for an integer k ≥ 1, it is defined by

f [z1, . . . , zk+1] =
f [z2, . . . , zk+1]− f [z1, . . . , zk]

zk+1 − z1
.

(For this to reduce to the definition with two centers, when k = 1, we take by convention f [z] = f(z).)

Returning back to our main thread, we take a divided difference in the Taylor expansion (2) with respect
to arbitrary centers z1, . . . , zk+2 ∈ [a, b], where we assume without a loss of generality that z1 < · · · < zk+2,
and then we use linearity to exchange divided differencing with integration, yielding

k! · f [z1, . . . , zk+2] =

∫ b

a

(Dk+1f)(x) (· − x)k+[z1, . . . , zk+2]︸ ︷︷ ︸
Pk(x;z1:(k+2))

dx, (3)
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where we have also used the fact that a (k + 1)st order divided difference (with respect to any k + 2 cen-
ters) of a kth degree polynomial is zero, and we multiplied both sides by k!. To be clear, the notation
(· − x)k+[z1, . . . , zk+2] means that we are taking the divided difference of the function z 7→ (z − x)k+ with
respect to centers z1, . . . , zk+2.

B-spline definition. The result in (3) shows that the (k + 1)st divided difference of any (smooth enough)
function f can be written as a weighted average of its (k + 1)st derivative, in a local neighborhood around
the corresponding centers, where the weighting is given by a universal kernel P k(·; z1:(k+2)) (that does not
depend on f), which is called the Peano kernel formulation for the B-spline; to be explicit, this is

P k(x; z1:(k+2)) = (· − x)k+[z1, . . . , zk+2].

Since
(z − x)k+ − (−1)k+1(x− z)k+ = (z − x)k,

and any (k + 1)st order divided difference of the kth degree polynomial z 7→ (z − x)k is zero, we can rewrite
the second-to-last display as

P k(x; z1:(k+2)) = (−1)k+1(x− ·)k+[z1, . . . , zk+2].

The function P k(·; z1:(k+2)) is called a kth degree B-spline with knots z1:(k+2). It is a linear combination of
kth degree truncated power functions and is hence indeed a kth degree spline.

It is often more convenient to deal with the normalized B-spline:

Mk(x; z1:(k+2)) = (−1)k+1(zk+2 − z1)(x− ·)k+[z1, . . . , zk+2].

It is easy to show that

Mk(·; z1:(k+2)) is supported on [z1, zk+2], and Mk(x; z1:(k+2)) > 0 for x ∈ (z1, zk+2).

To see the support result, note that for x > zk+2, we are taking a divided difference of all zeros, which of
course zero, and for x < z1, we are taking a (k + 1)st order divided difference of a polynomial of degree
k, which is again zero. To see the positivity result, we can, for example, appeal to induction on k and the
recursion to come later.

B-spline basis. To build a local basis the space of kth degree splines with knots t1, . . . , tr, which we
assume lie in the interior of [a, b], we first define boundary knots

t−k < · · · < t−1 < t0 = a, and b = tr+1 < tr+2 < · · · < tr+k+1.

(Any such values for t−k, . . . , t0 and tr+1, . . . , tr+k+1 will suffice to produce a basis; in fact, setting t−k =
· · · = t0 and tr+1 = · · · = tr+k+1 would suffice, though this would require us to understand how to properly
interpret divided differences with repeated centers; as in Definition 2.49 of Schumaker (2007).) We then
define the normalized B-spline basis Mk

j , j = 1, . . . , r + k + 1

Mk
j = Mk(·; t(j−k−1):j)

∣∣∣
[a,b]

, j = 1, . . . , r + k + 1.

It is clear that each Mk
j , j = 1, . . . , r + k + 1 is a kth degree spline with knots in t1, . . . , tr; hence to verify

that they are a basis for this space we only need to show their linear independence, which is straightfor-
ward using the structure of their supports.

For concreteness, we note that the 0th degree normalized B-splines basis are simply indicator functions,

M0
j = 1Ij , j = 1, . . . , r + 1.

Here I0 = [t0, t1] and Ii = (ti, ti+1], i = 1, . . . , r, and we use tr+1 = b for notational convenience. We
note that this particular choice for the half-open intervals (left- versus right-side open) is arbitrary, but
consistent with our definition of the truncated power basis (1) when k = 0.

Figure 1 shows example normalized B-splines of degrees 0 through 3.
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Figure 1: B-splines of degrees 0 through 3. The knot points are marked by dashed blue vertical lines.

Recursive formulation. B-splines satisfy a recursion relation that can be seen directly from the recur-
sive nature of divided differences: for any k ≥ 1 and centers z1 < · · · < zk+2,

(x− ·)k+[z1, . . . , zk+2] =
(x− ·)k+[z2, . . . , zk+2]− (x− ·)k+[z1, . . . , zk+1]

zk+2 − z1

=
(x− zk+2)(x− ·)k−1

+ [z2, . . . , zk+2]− (x− z1)(x− ·)k−1
+ [z1, . . . , zk+1]

zk+2 − z1
,

where in the second line we applied the Leibniz rule for divided differences

fg[z1, . . . , zk+1] =

k+1∑
i=1

f [z1, . . . , zi]g[zi, . . . , zk+1]

to conclude that

(x− ·)k+[z1, . . . , zk+1] = (x− z1) · (x− ·)k−1
+ [z1, . . . , zk+1]

(x− ·)k+[z2, . . . , zk+2] = (x− ·)k−1
+ [z2, . . . , zk+2] · (x− zk+2).

Translating the above recursion over to normalized B-splines, we get

Mk(x; z1:(k+2)) =
x− z1

zk+1 − z1
·Mk−1(x; z1:(k+1)) +

zk+2 − x

zk+2 − z2
·Mk−1(x; z2:(k+2)),
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which means that for the normalized basis,

Mk
j (x) =

x− tj−k−1

tj−1 − tj−k−1
·Mk−1

j−1 (x) +
tj − x

tj − tj−k
·Mk−1

j (x), j = 1, . . . , r + k + 1.

Above, we naturally interpret Mk−1
0 = Mk−1(·; t−k:0)|[a,b] and Mk−1

r+k+1 = Mk−1(·; t(r+1):(r+k+1))|[a,b].

The above recursions are very important, both for verifying numerous properties of B-splines and for
computational purposes. In fact, many authors prefer to use recursion to define a B-spline basis in the
first place.
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