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Note: this is pretty much taken shamelessly from Appendix C of Tibshirani (2022).

To parametrize the space of k™" degree splines with knots at ty,...,t,, a simple choice is the truncated
power basis, g1, ..., gr+k+1, which recall is defined as
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Here x = max{z,0} denotes the positive part of x.

Though the truncated power basis (1) is the simplest basis for splines, the B-spline basis is just as fun-
damental, and it was “there at the very beginning”, appearing in Schoenberg’s original paper on splines
(Schoenberg, 1946). Here we are quoting de Boor (1976), who gives a masterful survey of the history and
properties of B-splines (and points out that the name “B-spline” is derived from Schoenberg’s use of the
term “basic spline”, to further advocate for the idea that B-splines can be seen as the basis for splines).

Peano representation. There are different ways to construct B-splines; here we cover a construction
based on what is called the Peano representation for B-splines. If f is a k + 1 times differentiable function f
on an interval [a, b] (and its (k + 1)5* derivative is integrable), then by Taylor expansion
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Next we will take a particular divided difference on both sides of the above display. First we recall the
definition of a divided difference: with respect to two centers z1, z2, it is defined by

f(z2) = f(21)
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and more generally, with respect to k + 1 centers z1,..., zkx41, for an integer k > 1, it is defined by
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(For this to reduce to the definition with two centers, when k = 1, we take by convention f[z] = f(z).)

Returning back to our main thread, we take a divided difference in the Taylor expansion (2) with respect
to arbitrary centers 21, ..., zx412 € [a,b], where we assume without a loss of generality that 23 < --+ < zg42,
and then we use linearity to exchange divided differencing with integration, yielding
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where we have also used the fact that a (k + 1)5* order divided difference (with respect to any k + 2 cen-
ters) of a k*® degree polynomial is zero, and we multiplied both sides by k!. To be clear, the notation

(- — )% [21,..., 2k42] means that we are taking the divided difference of the function z — (2 — )% with
respect to centers z1,..., 2x42.

B-spline definition. The result in (3) shows that the (k 4 1) divided difference of any (smooth enough)

function f can be written as a weighted average of its (k + 1)%* derivative, in a local neighborhood around

the corresponding centers, where the weighting is given by a universal kernel Pk(-; 21:(k42)) (that does not

depend on f), which is called the Peano kernel formulation for the B-spline; to be explicit, this is
PR(x;21.0042) = (- — 25 [21, . 2ig)-

Since
(z—o)f - ()" (z - 2)f = (z - o),

and any (k + 1) order divided difference of the k** degree polynomial z — (z — x)¥ is zero, we can rewrite
the second-to-last display as

Pk<.'IJ, Zl:(k»+2)) = (—1>k+1(.1' — -){Hzl, e ,ZkJrg].

The function P*(-; 21:(k+2)) 1s called a kth degree B-spline with knots 21:(k+2)- 1t is a linear combination of
k' degree truncated power functions and is hence indeed a k' degree spline.

It is often more convenient to deal with the normalized B-spline:
M (@5 21 042)) = (=1 (zge — 20) (@ = Vi 21, 202
It is easy to show that
Mk(-; Z1.(k+2)) is supported on [z1, zp42], and Mk(x; 21 (k42)) > 0 for z € (21, 2r42).

To see the support result, note that for © > 249, we are taking a divided difference of all zeros, which of
course zero, and for x < z1, we are taking a (k + 1) order divided difference of a polynomial of degree
k, which is again zero. To see the positivity result, we can, for example, appeal to induction on k and the
recursion to come later.

B-spline basis. To build a local basis the space of k" degree splines with knots t¢1,...,t,, which we
assume lie in the interior of [a,b], we first define boundary knots

t g <---<t_1<tg=a, and b:tr+1<tr+2<"'<tr+k+1.

(Any such values for t_g, ..., to and t41,...,tr4,41 Will suffice to produce a basis; in fact, setting t_5 =
-o-=tgand t,41 = - = t, 141 would suffice, though this would require us to understand how to properly
interpret divided differences with repeated centers; as in Definition 2.49 of Schumaker (2007).) We then
define the normalized B-spline basis M]’-“, j=1...r+k+1

MF = M"(it_g—1)y) j=1...,r+k+1

[a,b)]

It is clear that each MJ’-“, j=1,...,r+k+1is ak*™ degree spline with knots in t1,...,t,; hence to verify
that they are a basis for this space we only need to show their linear independence, which is straightfor-
ward using the structure of their supports.

For concreteness, we note that the 0" degree normalized B-splines basis are simply indicator functions,
M) =17, j=1,...,r+1

Here Iy = [to,t1] and I; = (¢;,ti41],¢ = 1,...,r, and we use ;1 = b for notational convenience. We
note that this particular choice for the half-open intervals (left- versus right-side open) is arbitrary, but
consistent with our definition of the truncated power basis (1) when k = 0.

Figure 1 shows example normalized B-splines of degrees 0 through 3.
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Figure 1: B-splines of degrees 0 through 3. The knot points are marked by dashed blue vertical lines.

Recursive formulation. B-splines satisfy a recursion relation that can be seen directly from the recur-
sive nature of divided differences: for any k£ > 1 and centers z; < --- < 242,
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where in the second line we applied the Leibniz rule for divided differences
k41
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to conclude that
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Translating the above recursion over to normalized B-splines, we get
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which means that for the normalized basis,
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Above, we naturally interpret Mé“il = M*F1(;; t_k:0)|[a,p) and MfJ:klﬂ = M"”“l(-;t(r+1):(r+k+1))|[a’b].

The above recursions are very important, both for verifying numerous properties of B-splines and for
computational purposes. In fact, many authors prefer to use recursion to define a B-spline basis in the
first place.
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