
Homework 3
Advanced Topics in Statistical Learning, Spring 2023

Due Friday March 24 at 5pm

1 Carathéodory’s view on sparsity of lasso solutions [10 points]
In this exercise, we will prove the fact we cited in lecture about sparsity of lasso solutions, by invoking
Caratheodory’s theorem. Let Y ∈ Rn be a response vector, X ∈ Rn×d be a predictor matrix, and consider
the lasso estimator defined by solving

minimize
β

1

2
‖Y −Xβ‖22 + λ‖β‖1,

for a tuning parameter λ > 0.

(a) Let β̂ be any solution to the lasso problem. Let α̂ = β̂/‖β̂‖1. Prove that Xα̂ lies in the convex hull
of the vectors [2 pts]

{±Xj}dj=1.

Note: here Xj ∈ Rn denotes the jth column of X.

(b) Recall that Carathéodory’s theorem states the following: given any set C ⊆ Rk, every element in its
convex hull conv(C) can be represented as a convex combination of k + 1 elements of C.

Use this theorem and part (a) to prove that there exists a lasso solution β̃ with at most n+ 1 nonzero
coefficients. [2 pts]

Hint: start with a generic solution β̂, and use Carathéodory’s theorem to construct a coefficient vec-
tor β̃ such that (i) the fit is the same, Xβ̃ = Xβ̂; (ii) the penalty is at worst the same, ‖β̃‖1 ≤ ‖β̂‖1;
and (iii) Xβ̃ is a nonnegative linear combination of at most n+ 1 of ±Xj , j = 1, . . . , d.

(c) Now, assuming λ > 0, use the subgradient optimality condition for the lasso problem to prove that
the fit Xβ̃ from part (b) is supported on a subset of [3 pts]

{±Xj}dj=1

that has affine dimension at most n− 1.

Hint: this is similar to the proof of Proposition 1 in the lasso lecture notes. Assume that Xβ̃ is a
nonnegative combination of exactly n + 1 of ±Xj , j = 1, . . . , d. Then one of these n + 1 vectors,
denote it by siXi (where si = sign(β̃i)) can be written as a linear combination of the others. Take an
inner product with the lasso residual and use the subgradient optimality condition for the lasso to
prove that the coefficients in this linear combination must sum to 1, and therefore, siXi is actually
an affine combination of the others. Notice that this shows the affine span of the n + 1 vectors in
question is (n− 1)-dimensional.

(d) A refinement of Carathéodory’s is as follows: given a set C ⊆ Rk, every element in its convex hull
conv(C) can be represented as a convex combination of r + 1 elements of C, where r is the affine
dimension of conv(C).

Use this theorem and part (c) to prove that there exists a lasso solution β̌ with at most n nonzero
coefficients. [2 pts]
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2 Variance of least squares in nonlinear feature models [15 points]
In this exercise, we will examine the variance of least squares (in the underparametrized regime) and min-
norm least squares (in the overparametrized regime) in nonlinear feature models. Recall for a response
vector Y ∈ Rn and feature matrix X ∈ Rn×d, the min-norm least squares estimator β̂ = (XTX/n)+XTY/n
has a variance component of its out-of-sample prediction risk (conditional on X) given by:

VX(β̂) =
σ2

n
tr(Σ̂+Σ). (1)

Here Σ̂ = XTX/n, and Σ = Cov(xi), for an arbitrary row xi of X (the rows all have the same distribu-
tion). Also, σ2 = Var[yi|xi] is the noise variance. In lecture, we studied a linear feature model of the form

X = ZΣ1/2, (2)

for a covariance matrix Σ ∈ Rd×d and a random matrix Z ∈ Rn×d that has i.i.d. entries with mean zero
and unit variance. When Σ = I, which we will assume throughout this homework problem, recall that we
proved that the variance (1) satisfies, under standard random matrix theory conditions, as n, d→∞ and
d/n→ γ ∈ (0,∞),

VX(β̂)
as→

{
σ2 γ

1−γ for γ < 1

σ2 1
γ−1 for γ > 1.

(3)

(The result for γ < 1 actually holds regardless of Σ.) Instead, we can consider a nonlinear feature model of
the form

X = ϕ(ZΓ1/2WT), (4)

for a covariance matrix Γ ∈ Rk×k, and a random matrix Z ∈ Rn×k as before (except with k in place of d).
Moreover, now W ∈ Rd×k is a matrix of i.i.d. N(0, 1/k) entries, and ϕ : R → R is a nonlinear function—
called the activation function in a neural network context—that we interpret to act elementwise on its
input.

There turns to be an uncanny connection between the asymptotic variance in linear and nonlinear fea-
ture models, which will you uncover via simulation in this homework problem. Attach your code as an
appendix to this homework.

***Note: for parts (a)–(d) below, just consider isotropic features, so that Σ = I in (1) and (2), and Γ = I
in (4).***

(a) Fix n = 200, and let d = [γn] over a wide range of values for γ (make sure your range covers both
γ < 1 and γ > 1). each n, d, draw X from the linear feature model (2) and your choice of distribu-
tion for the entries of Z. Compute the finite-sample variance (1), and plot it, as a function of γ, on
top of the asymptotic variance curve (3). To get a general idea of what this should look like, refer
back to Figure 2 in the overparametrization lecture notes. [3 pts]

(b) For the same values of n, d, and k = 100, draw X from the nonlinear feature model (4), for three
different choices of ϕ:

i. ϕ(x) = a1 tanh(x);

ii. ϕ(x) = a2(x+ − b2);

iii. ϕ(x) = a3(|x| − b3).

Here a1, a2, b2, a3, b3 are constants that you must choose to meet the standardization conditions
E[ϕ(G)] = 0 and E[ϕ(G)2] = 1, for G ∼ N(0, 1). Produce a plot just as in part (a), with the
finite-sample variances for choice of each activation function plotted in a different color, on top of
the asymptotic variance curve (3) for the linear model case. Comment on what you find: do the
nonlinear finite-sample variances lie close to the asymptotic variance for the linear model case? [9 pts]
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(c) Now use a linear activation function φ(x) = ax − b, and create a plot as in part (b) with the same
settings (same values of n, d, k, and so on). What behavior do the finite-sample variances have as a
function of γ? Is this surprising to you? Explain why what you are seeing is happening. [3 pts]

(d) As a bonus, in light of part (c), elaborate on why the results in part (b) are remarkable.

(e) As another (large) bonus, rerun the analysis in this entire problem but with a non-isotropic covari-
ance Σ in (2), and Γ in (4). Extra bonus points if you properly recompute the asymptotic variance
curves.

3 Implicit regularization buffet: choose your dish [15 points]
In this exercise, you get to choose between multiple options for studying implicit regularization. To be
clear, each part (a), (b), and (c) below are worth equal points, and you only have to choose one (bonus
points for doing more than one).

(a) Given any response vector Y ∈ Rn and feature matrix X ∈ Rn×d, let β̂rg(λ) denote the ridge estima-
tor, which solves

minimize
β

‖Y −Xβ‖22 + λ‖β‖22,

for a tuning parameter λ ≥ 0, and β̂gf
t denote the gradient flow estimator, which solves

β̇(t) = XT(Y −Xβ(t)),

over time t ≥ 0, subject to the initial condition β(0) = 0. Prove that these two satisfy the relation-
ship, for any λ ≥ 0:

β̂rg(λ) = E[β̂gf(Tλ)], Tλ ∼ Exp(1/λ),

where Exp(µ) denotes the exponential distribution with mean µ. In other words, if we stop gradient
flow at a random time that fluctuates around 1/λ, then on average it will look like ridge with tuning
parameter λ.

Hint: there are two ways to prove this. Either way starts by having you make the observation that
for a function g, its Laplace transform evaluated at a λ, denoted L{g}(λ), can be written in terms
of an expectation of g with respect to the Exp(1/λ) distribution. Then you have two paths you can
pursue. The first path is to write down the explicit forms for the ridge and gradient flow solutions,
and relate them using Laplace transforms. The second path is to start with the differential equation
that defines gradient flow and take Laplace transforms, then relate this to the optimality conditions
for ridge. Either way you will have to read up a little bit on Laplace transforms if you don’t know
much about them already.

(b) We saw in the ridge regression lecture that we can view the ridge estimator in terms of the min-
norm least squares estimator on an augmented feature set, where we append a growing number of
random features (independent of the response and given features) with suitably shrinking variance.
Conduct a comprehensive simulation suite to (i) validate that this fact appears to be true for a very
large number of auxiliary features, and (ii) investigate the speed of convergence: what happens as
you vary the number of auxiliary features, down to a moderate or even small number?

Then, extend your simulations study to examine what happens when you use an augmented feature
set (by appending random features) in other interpolating estimators, like the minimum `1 norm
least squares estimator, or a neural network. Describe what you find. Does anything interesting
come out?

(c) Conduct a literature search to identify an interesting example of implicit regularization in statistics
or machine learning that is new—new just meaning that we did not cover it in class. This could
be an example that is studied theoretically, or one that arises from methods or algorithms that are
popular in practice. Describe in reasonable detail (1-2 pages) what is known about this example of
implicit regularization.
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