
Homework 1
Advanced Topics in Statistical Learning, Spring 2023

Due Friday February 10 at 5pm

1 Mathematical statistics warm-up [15 points]
(a) Suppose that Xn ≥ 0 and E[Xn] = O(rn). Prove that Xn = Op(rn). [1 pt]

(b) Suppose that Xn ≥ 0 and Xn = Op(rn). Give an example to show that in general, this does not
imply that E[Xn] = O(rn). [1 pt]

(c) Prove that for X ≥ 0, it holds that

E[X] =

∫ ∞
0

P(X > t) dt.

You may assume that X is continuously distributed and hence has a probability density function. [2 pts]

(d) Suppose that Xn ≥ 0 and Xn = Op(rn), the latter bound holding “exponentially fast”, meaning that
there are constants γ0, n0 > 0 such that for all γ ≥ γ0 and n ≥ n0, we have

Xn ≤ γrn, with probability at least 1− exp(−γ).

Prove that E[Xn] = O(rn). Hint: use the formulation for E[Xn] from the last question. [3 pts]

(e) Let X1, . . . , Xn ∼ P , i.i.d., with µ = E[Xi] and σ2 = Var[Xi]. Define

X̄n =
1

n

n∑
i=1

Xi, s2n =
1

n

n∑
i=1

(Xi − X̄n)2.

(i) Prove that s2n
p→ σ2. [1 pt]

(ii) Prove that
√
n(X̄n − µ)/sn

d→ N(0, 1). [1 pt]

(f) Let X ∈ Rd and Y ∈ R.

(i) Prove that E[(Y − f(X))2] is minimized at f(x) = E[Y |X = x]. [1 pt]

(ii) Prove that E[(Y −XTβ)2] is minimized at β = Σ−1α, where Σ = E[XXT ] and α = E[Y X]. [1 pt]

(g) This part will involve a small bit of coding. Attach your code in an appendix.

(i) Simulate Brownian motion on [0, 1], and a Brownian bridge on [0, 1], and plot them. [1 pt]

(ii) Simulate the 95th percentile of the supremum of the Brownian bridge, i.e., the value q such that

P
(

sup
t∈[0,1]

B(t) ≥ q
)

= 0.05.

where B(t), t ∈ [0, 1] is the Brownian bridge. [1 pt]

(iii) Draw X1, . . . , Xn ∼ F from any distribution F of your liking (uniform, normal, etc.), calculate
the Kolmogorov-Smirnov (KS) test statistic

T =
√
n sup

x
|Fn(x)− F (x)|,

where Fn is the empirical distribution of X1, . . . , Xn, and calculate the proportion of times out of
(say) 1000 repetitions that T exceeds the threshold q computed in part (ii). [2 pts]
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2 Risk analysis for least squares [15 points]
In this exercise, we will work on risk calculations for least squares regression.

(a) First, we start with an algebraic fact. Suppose that A,B � 0, which we write to mean that are
positive semidefinite matrices (symmetric with nonnegative eigenvalues). Prove that tr(AB) ≥ 0. [2 pts]

Hint: there are many ways to prove this, but for one, take an eigendecomposition of B, and expand
the trace as a sum of products involving its eigenvectors.

(b) For this part and the next, suppose that we observe i.i.d. (xi, yi) ∈ Rd × R. We write f(x) = E[yi|xi =
x], εi = yi − f(xi), and assume that each xi ⊥⊥ εi. We denote σ2 = Var[εi].

Let Y ∈ Rn be the response vector and X ∈ Rn×d the predictor matrix (whose ith row is xi). Let
β̂ = (XTX)−1XTY be the least squares solution of Y on X (where we assume that XTX is invert-
ible, which requires d ≤ n), and let f̂(x) = xTβ̂.

Follow/reproduce the calculations in the review lecture to show that [3 pts]

E
[

1

n

n∑
i=1

Var(f̂(xi) |X)

]
= σ2 d

n
,

and that, for an independent draw x0 from the predictor distribution, [3 pts]

E[Var(f̂(x0) |X,x0)] =
σ2

n
tr
(
E[XTX]E[(XTX)−1]

)
.

Therefore, using part (a), argue that [1 pt]

E[Var(f̂(x0) |X,x0)] ≥ E
[

1

n

n∑
i=1

Var(f̂(xi) |X)

]
.

Hint: the calculations in lecture assumed the underlying model was linear and hence the bias (both
in- and out-of-sample) was zero. But if you look back carefully, the variance calculations are unaf-
fected by whether the true mean is linear or not.

(c) Follow/reproduce the calculations leading up to Theorem 1 in Rosset and Tibshirani (2020) to prove
the inequality: [6 pts]

E[Bias2(f̂(x0) |X,x0)] ≥ E
[

1

n

n∑
`=1

Bias2(f̂(xi) |X)

]
.

Note that you have shown that
Risk(f̂) ≥ E[Risk(f̂ ;x1:n)].

In other words, the out-of-sample risk of least squares is always at least as large as the in-sample
risk (integrated over the feature values). To emphasize, this assumes nothing really at all (i.e., no
underlying linear model) about the data model, except for the independence of xi and εi.

(d) As a bonus, prove or disprove: there is a predictor distribution such that we get an equality in the
last display, i.e., the out-of-sample and in-sample risks are equal. Note that we are still talking about
standard least squares regression, so we are restricting attention to distributions such that XTX is
almost surely invertible.

3 Risk analysis for wavelet denoising [22 points]
In this exercise, we will analyze the risk of wavelet denoising.
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(a) Assume for now that we observe data according to the normal sequence model

z` = θ` + δ`, ` = 1, . . . , N, (1)

where δ` ∼ N(0, τ2), independently, for ` = 1, . . . , N . Consider the soft-thresholding estimator,

θ̂` = Sλ(z`) =


z` − λ if z` > λ

0 if |z`| ≤ λ
z` + λ if z` < −λ

, ` = 1, . . . , N.

Here λ ≥ 0 is a tuning parameter. For arbitrary λ, prove that we have the exact risk expression: [3 pts]

E‖θ − θ̂‖22 =

N∑
`=1

r(θ`, λ),

where

r(µ, λ) = µ2

∫ λ−µ
τ

−λ−µ
τ

φ(z) dz +

∫ ∞
λ−µ
τ

(τz − λ)2φ(z) dz +

∫ −λ−µ
τ

−∞
(τz + λ)2φ(z) dz,

and φ denotes the standard (univariate) normal density function.

(b) Prove that for λ = τ
√

2 logN , we have the risk upper bound: [5 pts]

E‖θ − θ̂‖22 ≤ τ2 + (2 logN + 1)

N∑
`=1

min{θ2` , τ2}.

Hint: start with τ2 = 1 for simplicity. Prove that, for any µ, λ ≥ 0, we have 0 ≤ ∂r(µ, λ)/∂µ ≤ 2µ.
From this, argue that r(µ, λ) is monotone increasing in µ, and further

r(µ, λ) ≤ r(0, λ) + min{µ2, r(∞, λ)}.

Then, derive upper bounds on r(0, λ) and r(∞, λ) (for the former you can use Mills’ ratio, for the
latter you can use direct arguments) to give

r(µ, λ) ≤ e−λ
2/2 + min{µ2, 1 + λ2}.

Plug in λ =
√

2 logN ; show that an analogous bound holds for general τ2 > 0; and sum the bound
over µ = θ`, ` = 1, . . . , N to give the result.

(c) Now consider the nonparametric regression model

yi = f(xi) + εi, i = 1, . . . , n, (2)

where εi ∼ N(0, σ2), independently, for i = 1, . . . , n, and xi ∈ [0, 1], i = 1, . . . , n are fixed (more on
them later). We are going to analyze the L2 risk of a wavelet smoothing estimator f̂ ,

E‖f − f̂‖22 = E
[ ∫ 1

0

(f(x)− f̂(x))2 dx

]
.

The estimator f̂ will be defined by
f̂(x) =

∑
j,k

θ̃jk(y)ψjk, (3)

where each ψjk is a Haar wavelet function, and each θ̃jk(y) is a noisy empirical wavelet coefficient.

We begin with a simple Haar calculation. To recall the Haar basis on [0, 1], first define ψ(x) = 1{x ∈
(0, 1/2]} − 1{x ∈ (1/2, 1]}. Then the Haar basis is given by the collection

1, ψjk, for k = 0, . . . , 2j − 1 and j = 0, 1, 2, . . . ,
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where ψjk(x) = 2j/2ψ(2jx− k). (For notational convenience, we let ψ−10 = 1, and implicitly index all
basis calculations starting from j = −1.) Verify that this collection is orthonormal in L2: show that
the functions are pairwise orthogonal and unit norm, with respect to the L2 inner product on [0, 1], [2 pts]

〈g, h〉 =

∫ 1

0

g(x)h(x) dx.

(Accordingly the L2 norm is simply given by ‖g‖22 = 〈g, g〉 =
∫ 1

0
g(x)2 dx.)

(d) Explain why it is that we can write [1 pt]

‖f − f̂‖22 =
∑
j,k

(θjk(f)− θ̃jk(y))2,

where the wavelet coefficients of f are

θjk(f) = 〈f, ψjk〉 =

∫ 1

0

f(x)ψjk(x) dx,

and θ̃jk(y) are the coefficients to define the estimator f̂ in its Haar basis expansion (3).

Hint: by orthonormality, observe that f =
∑
j,k θjk(f)ψjk. It suffices to just name the theorem that

relates the L2 norm of a function to the norm of its coefficients.

(e) We define the last few parts needed to understand f̂ and analyze its risk. For each j, k, we define the
empirical wavelet coefficient

θ̃jk(f) =
1

n

n∑
i=1

f(xi)ψjk(xi).

We also define a noisy empirical wavelet coefficient

θ̃jk(y) =

Sλ
(

1

n

n∑
i=1

yiψjk(xi)

)
if j ≤ j∗

0 if j > j∗
,

where Sλ is the soft-thresholding operator, as before, and j∗ is a truncation level, to be chosen.

By part (d), and the inequality (a+ b)2 ≤ 2a2 + 2b2 (applied twice), we have

E‖f − f̂‖22 ≤ 2
∑
j>j∗,k

θ2jk(f)︸ ︷︷ ︸
e1

+ 4
∑
j≤j∗,k

(θjk(f)− θ̃jk(f))2︸ ︷︷ ︸
e2

+ 4E

[ ∑
j≤j∗,k

(θ̃jk(f)− θ̃jk(y))2

]
︸ ︷︷ ︸

e3

.

We can interpret e1 as the truncation error, e2 as the discretization error (between population and
empirical wavelet coefficients), and e3 as the estimation error (in estimating the empirical wavelet
coefficients from noisy data).

Denote by θj·(f) the vector (θjk(f) : k = 0, . . . , 2j − 1). Assume that TV(f) ≤ 1, and assume that the
design points xi = i/n, i = 1, . . . , n are evenly-spaced. It can be shown that

‖θj·(f)‖1 ≤ c12−j/2, ‖θ̃j·(f)‖1 ≤ c22−j/2, and ‖θj·(f)− θ̃j·(f)‖1 ≤ c3
2j/2

n
, (4)

for constants c1, c2, c3 > 0. Use the first and third inequalities to show that there is a truncation
level j∗ such that sum of truncation and discretization errors satisfy e1 + e2 ≤ C/n, for another
constant C > 0. [2 pts]
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(f) It remains to study the estimation error. Assume that n is a power of 2. Show that, starting from
the nonparametric regression model (2), we may transform this to a model of the form [3 pts]

z` = θ̃`(f) + δ`, ` = 1, . . . , n,

where δ` ∼ N(0, σ2/n), independently, for ` = 1, . . . , n. Note that here, in indexing wavelet coeffi-
cients, we collapse the pair j, k into a single index `.

Hint: use the appropriate truncation level j∗, from part (e), and only consider j ≤ j∗. Then define a
matrix Ψ with elements [Ψ]i` = ψ`(xi)/n, where in indexing the Haar wavelets, we again collapse the
pair j, k into a single index `. Using the fact we have an evenly-spaced design xi = i/n, i = 1, . . . , n,
show that ΨΨT = 1

nI, where I is the n× n identity matrix.

(g) Finally, note that from the transformation in part (f) you have brought yourself back to the problem
studied in parts (a), (b): soft-thresholding under the sequence model (1), with noise level τ2 = σ2/n.

From the risk bound from part (b), note that we have

E

[ ∑
j≤j∗,k

(θ̃jk(f)− θ̃jk(y))2

]
≤ σ2

n
+ (2 log n+ 1)

∑
j≤j∗,k

min

{
θ̃2jk(f),

σ2

n

}
.

Use the second inequality in (4), on the empirical wavelet coefficients, to establish that for each j, [4 pts]∑
k

min

{
θ̃2jk(f),

σ2

n

}
≤ Cσ

2

n
2j min

{
1, 2−3j/2

√
n

σ

}
,

for a constant C > 0. Show that gives the estimation error bound, [2 pts]

e3 ≤ C log n

(
σ2

n

)2/3

.

for a constant C > 0, redefined as needed.

Hint: the first bound (second-to-last display) is a bit tricky, whereas the second (last display) is more
of a straight algebraic calculation, summing the first bound over j. To prove the first, argue that

sup
‖θ̃j·‖1≤cj

∑
k

min

{
θ̃2jk,

σ2

n

}
will be achieved at a vector θ̃j· for which each entry is equal to 0 or σ/

√
n, except for (possibly) one

entry, which is defined so that we hit the constraint ‖θ̃j·‖1 = cj . For the current problem, note that
we have cj = c22−j/2.

Concluding note: the risk bound you have shown, redefining the constant C > 0 as needed, is

E‖f − f̂‖22 ≤ C
[

1

n
+ log n

(
σ2

n

)2/3]
,

for estimating a function with TV(f) ≤ 1 using Haar wavelet denoising. This is minimax rate opti-
mal for the class of functions with bounded TV, ignoring log factors (which could be removed from
the upper bound with a slightly finer analysis).

4 Bonus: minimax lower bounds for Hölder classes
This is an optional bonus problem. Consider the d-dimensional Hölder ball

Ck(L; [0, 1]d) =
{
f : [0, 1]d → R : |Dαf(x)−Dαf(z)| ≤ L‖x− z‖2 for all |α| < k, and x, z ∈ [0, 1]d

}
,
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where k ≥ 1 is an integer and L > 0 is a constant (not growing with n), and consider the data model

yi = f(xi) + εi, εi ∼ N(0, 1), i = 1, . . . , n.

You may either assume a Random-X model: (xi, εi), i = 1, . . . , n are i.i.d. with each xi ∼ Unif[0, 1]d and
xi ⊥ εi, or a Fixed-X model: xi, i = 1, . . . , n are fixed and laid out on a regular lattice in [0, 1]d, and εi,
i = 1, . . . , n are i.i.d. Whatever you prefer.

Generalize the calculations given in the minimax theory lecture to show that there exists a constant c > 0
(which may depend on L) such that

inf
f̂

sup
f∈Ckd (L;[0,1]d)

E‖f − f̂‖22 ≥ cn−2k/(2k+d).

To be clear, here ‖g‖22 =
∫
[0,1]d

g(x)2 dx. Make sure to write the full calculation from start to finish (even
detailing the steps that may be analogous to those in lecture).

Explain why this certifies that the upper bound given in the last question for estimation over a univariate
TV ball is rate optimal (ignoring log factors).
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