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A.1 Proof of Lemma 1

Consider the following useful fact about quantiles of a discrete distribution F , having support points
a1, . . . , ak ∈ R: denoting q = Quantile(β;F ), if we reassign the points ai > q to arbitrary values
that are strictly larger than q, yielding a new distribution F̃ , then the level β quantile is unchanged,
Quantile(β;F ) = Quantile(β; F̃ ). Using this fact,

Vn+1 > Quantile
(
β;V1:n ∪ {∞}

)
⇐⇒ Vn+1 > Quantile

(
β;V1:(n+1)

)
,

or equivalently,

Vn+1 ≤ Quantile
(
β;V1:n ∪ {∞}

)
⇐⇒ Vn+1 ≤ Quantile

(
β;V1:(n+1)

)
. (A.1)

Moreover, it is straightforward to check that

Vn+1 ≤ Quantile
(
β;V1:(n+1)

)
⇐⇒ Vn+1 is among the dβ(n+ 1)e smallest of V1, . . . , Vn+1.

By exchangeability, the latter event occurs with probability at least dβ(n+ 1)e/(n+ 1) ≥ β, which
establishes the lower bound; when there are almost surely no ties, it holds with probability exactly
dβ(n+ 1)e/(n+ 1) ≤ β + 1/(n+ 1), which proves the upper bound.

A.2 Proof of Theorem 1

To lighten notation, abbreviate Vi = V
(Xn+1,Yn+1)
i , i = 1, . . . , n+ 1. Observe

Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ Vn+1 ≤ Quantile
(
1− α;V1:n ∪ {∞}

)
.

By the symmetric construction of the nonconformity scores in (3),

(Z1, . . . , Zn+1)
d
= (Zσ(1), . . . , Zσ(n+1)) ⇐⇒ (V1, . . . , Vn+1)

d
= (Vσ(1), . . . , Vσ(n+1)),

for any permutation σ of the numbers 1, . . . , n+ 1. Therefore, as Z1, . . . , Zn+1 are exchangeable,
so are V1, . . . , Vn+1, and applying Lemma 1 gives the result.
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A.3 Split conformal prediction

In general, constructing a conformal prediction band can be computationally intensive, though this
of course depends on the choice of score function. Consider the use of absolute residuals as in (2).
To compute the nonconformity scores in (3), we must first run our base algorithm A on the data set
Z1:n ∪ {(x, y)} to produce a fitted regression function µ̂, and then calculate

V
(x,y)
i = |Yi − µ̂(Xi)|, i = 1, . . . , n, and V

(x,y)
n+1 = |y − µ̂(x)|.

As the formation of the conformal set in (4) (ordinary case) or (7) (covariate shift case) requires us to
do this for each x ∈ Rd and y ∈ R (which requires refitting µ̂ each time), this can clearly become
computationally burdernsome.

A fast alternative, known as split conformal prediction [Papadopoulos et al., 2002, Lei et al., 2015],
resolves this issue by taking the score function S to be defined using absolute residuals with respect
to a fixed regression function, typically, one that has been trained on an preliminary data set. Denote
by (X0

1 , Y
0
1 ), . . . , (X

0
n0
, Y 0
n0
) this preliminary data set, used for fitting the regression function µ0,

and consider the score function

S
(
(x, y), Z

)
= |y − µ0(x)|.

Given data (X1, Y1), . . . , (Xn, Yn), independent of (X0
1 , Y

0
1 ), . . . , (X

0
n0
, Y 0
n0
), we calculate

V
(x,y)
i = |Yi − µ0(Xi)|, i = 1, . . . , n, and V

(x,y)
n+1 = |y − µ0(x)|.

The conformal prediction interval (4), defined at a point x ∈ Rd, reduces to

Ĉn(x) = µ0(x)±Quantile
(
1− α;

{
|Yi − µ0(Xi)|

}n
i=1
∪ {∞}

)
, (A.2)

and by Theorem 1 it has coverage at least 1 − α, conditional on (X0
1 , Y

0
1 ), . . . , (X

0
n0
, Y 0
n0
). This

holds because, when we treat µ0 as fixed (i.e., condition on (X0
1 , Y

0
1 ), . . . , (X

0
n0
, Y 0
n0
)), the scores

V
(x,y)
1 , . . . , V

(x,y)
n+1 are exchangeable for (x, y) = (Xn+1, Yn+1), since (X1, Y1), . . . , (Xn+1, Yn+1)

are.

As split conformal prediction can be seen as a special case of conformal prediction, in which the
regression function µ0 is treated as fixed, Corollary 1 also applies to the split scenario, and ensures
that the band defined for x ∈ Rd by

Ĉn(x) = µ0(x)±Quantile

(
1− α;

n∑
i=1

pwi (x)δ|Yi−µ0(Xi)| + pwn+1(x)δ∞

)
, (A.3)

with the probabilities as in (6), has coverage at least 1−α, conditional on (X0
1 , Y

0
1 ), . . . , (X

0
n0
, Y 0
n0
).

Likewise, Theorem 2 carries over to the split conformal scenario, the weighted conformal prediction
interval in (11) now simplifying to

Ĉn(x) = µ0(x)±Quantile

(
1− α;

n∑
i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ|Yi−µ0(Xi)|+

pwn+1

(
Z1, . . . , Zn, (x, y)

)
δ∞

)
.

with the probabilities as defined in (10), and Theorem 2 ensures this has coverage at least 1 − α,
conditional on (X0

1 , Y
0
1 ), . . . , (X

0
n0
, Y 0
n0
).

A.4 Exponentially tilting the airfoil data

Figure A.1 visualizes the effect of the exponential tilting (8) in the airfoil data set. Only the 1st and
5th dimensions of the covariate distribution are tilted; the bottom row of Figure A.1 plots the marginal
densities of the 1st and 5th covariates (estimated via kernel smoothing) before and after the tilt. The
top row plots the response versus the 1st and 5th covariates, simply to highlight the fact that there is
heteroskedasticity, and thus we might expect the shift in the covariate distribution to have some effect
on the validity of the ordinary conformal prediction intervals.
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Figure A.1: The top row plots the response in (a randomly chosen half of) the airfoil data set, versus the 1st
and 5th covariates. The bottom row plots kernel density estimates for the 1st and 5th covariates, in black. Also
displayed are kernel density estimates for the 1st and 5th covariates after exponential tilting (8), in blue.

A.5 More airfoil data simulation results

Lengths of weighted conformal intervals. Figure A.2 conveys the same setup as Figure 1, but
displays histograms of the median lengths of prediction intervals rather than empirical coverages
(meaning, in each of the 5000 trials, we ran unweighted or weighted split conformal prediction to
cover test points, and report the median length of the prediction intervals over the test sets). We
see no differences in the lengths of ordinary split conformal intervals (top row) when there is or is
not covariate shift, as expected since these two settings differ only in the distributions of their test
sets, but use the same procedure and have the same distribution of the training data. We see that the
oracle-weighted split conformal intervals are longer than the ordinary split conformal intervals that
use an equivalent effective sample size (middle row). This is also as expected, since in the former
situation, the regression function µ0 was fit on training data Dtrain of a different distribution than
Dshift, and µ0 itself should ideally be adjusted to account for covariate shift (plenty of methods for this
are available from the covariate shift literature, but we left it unadjusted for simplicity). Lastly, we
see that the random forests-weighted split conformal intervals are more variable, and in some cases,
much longer, than the logistic regression-weighted split conformal intervals (bottom row, difficult to
confirm visually because the bars in the histogram lie so close to the x-axis).

Weighted conformal when there is actually no covariate shift. Lastly, Figure A.3 compares the
empirical coverages and median lengths of split conformal intervals to cover points in Dtest (no
covariate shift), using the ordinary unweighted approach (in red), the logistic regression-weighted

3



Length

F
re

qu
en

cy

10 15 20 25 30 35 40

0
50

0
10

00
15

00
No covariate shift
Covariate shift

Length

F
re

qu
en

cy

10 15 20 25 30 35 40

0
50

0
10

00
15

00

Oracle weights
No shift, fewer samples

Length

F
re

qu
en

cy

10 15 20 25 30 35 40

0
50

0
10

00
15

00

Logistic regression weights
Random forest weights

Figure A.2: Median lengths of conformal prediction intervals, computed using 5000 different random splits of
the airfoil data set. The averages of median lengths in each histogram are marked on the x-axis.
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Figure A.3: Empirical coverages and median lengths from conformal prediction, on the airfoil data set, with no
covariate shift.

approach (in gray), and the random forests-weighted approach (in green). The unweighted and
logistic regression approaches are very similar. The random forests approach yields slightly more
dispersed coverages and lengths. This is because random forests are very flexible, and in the present
case of no covariate shift, the estimated weights from random forests in each repetition are in general
further from constant (compared to those from logistic regression). Still, random forests must not be
overfitting dramatically here, since the coverages and lengths are still reasonable.

A.6 Alternate proof of Lemma 1

We now give an alternate proof of Lemma 1, which sheds light onto why the weighted generalization
in Lemma 3 holds. The general strategy we pursue here is to condition on the unlabeled multiset of
values obtained by our random variables V1, . . . , Vn+1, and then inspect the probabilities that the
last random variable Vn+1 attains each one of these values. For simplicity, we assume that there
are almost surely no ties among the scores V1, . . . , Vn+1, so that we can work with sets rather than
multisets (our arguments apply to the general case as well, but the notation is more cumbersome).

Denote by Ev the event that {V1, . . . , Vn+1} = {v1, . . . , vn+1}, and consider

P{Vn+1 = vi |Ev}, i = 1, . . . , n+ 1.

Denote by f the probability density function1 of the joint sample V1, . . . , Vn+1. By exchangeability,

f(v1, . . . , vn+1) = f(vσ(1), . . . , vσ(n+1))

1More generally, f may be the Radon-Nikodym derivative with respect to an arbitrary base measure.
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for any permutation σ of the numbers 1, . . . , n+ 1. Thus, for each i, we have

P{Vn+1 = vi |Ev} =
∑
σ:σ(n+1)=i f(vσ(1), . . . , vσ(n+1))∑

σ f(vσ(1), . . . , vσ(n+1))

=

∑
σ:σ(n+1)=i f(v1, . . . , vn+1)∑

σ f(v1, . . . , vn+1)

=
n!

(n+ 1)!
=

1

n+ 1
.

This shows that the distribution of Vn+1|Ev is uniform on the set {v1, . . . , vn+1}, i.e.,

Vn+1|Ev ∼
1

n+ 1

n+1∑
i=1

δvi ,

and it follows immediately that

P
{
Vn+1 ≤ Quantile

(
β;

1

n+ 1

n+1∑
i=1

δvi

) ∣∣∣∣Ev} ≥ β.
On the event Ev , we have {V1, . . . , Vn+1} = {v1, . . . , vn+1}, so

P
{
Vn+1 ≤ Quantile

(
β;

1

n+ 1

n+1∑
i=1

δVi

) ∣∣∣∣Ev} ≥ β.
Because this true for any v, we can marginalize to obtain

P
{
Vn+1 ≤ Quantile

(
β;

1

n+ 1

n+1∑
i=1

δVi

)}
≥ β,

which, as argued in (A.1), is equivalent to the desired lower bound in the lemma. (The upper bound
follows similarly.)

A.7 Proof of Lemma 3

We follow the same general strategy in the alternate proof of Lemma 1 in Section A.6. As before, we
assume for simplicity that V1, . . . , Vn+1 are distinct almost surely (but the result holds in the general
case as well).

Denote by Ez the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}, and denote vi = S(zi, z1:(n+1)),
for i = 1, . . . , n+ 1. Let f denote the density function of the joint sample Z1, . . . , Zn+1. For each i,

P{Vn+1 = vi |Ez} = P{Zn+1 = zi |Ez} =
∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))
,

and as Z1, . . . , Zn+1 are weighted exchangeable,∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))
=

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j)) · g(zσ(1), . . . , zσ(n+1))∑

σ

∏n+1
j=1 wj(zσ(j)) · g(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j)) · g(z1, . . . , zn+1)∑

σ

∏n+1
j=1 wj(zσ(j)) · g(z1, . . . , zn+1)

= pwi (z1, . . . , zn+1).

In other words,

Vn+1|Ez ∼
n+1∑
i=1

pwi (z1, . . . , zn+1)δvi ,
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which implies that

P
{
Vn+1 ≤ Quantile

(
β;

n+1∑
i=1

pwi (z1, . . . , zn+1)δvi

) ∣∣∣∣Ez} ≥ β.
This is equivalent to

P
{
Vn+1 ≤ Quantile

(
β;

n+1∑
i=1

pwi (Z1, . . . , Zn+1)δVi

) ∣∣∣∣Ez} ≥ β,
and after marginalizing,

P
{
Vn+1 ≤ Quantile

(
β;

n+1∑
i=1

pwi (Z1, . . . , Zn+1)δVi

)}
≥ β.

Finally, as in (A.1), this is equivalent to the claim in the lemma.

A.8 Proof of Theorem 2

Abbreviate Vi = V
(Xn+1,Yn+1)
i , i = 1, . . . , n+ 1. Note Yn+1 ∈ Ĉn(Xn+1) if and only if

Vn+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi (Z1, . . . , Zn+1)δVi
+ pwn+1(Z1, . . . , Zn+1)δ∞

)
,

and applying Lemma 3 gives the result.

A.9 Proof of Corollary 1

We return to the case of covariate shift, and show that Corollary 1 follows from the general weighted
conformal result. By Lemma 2, we know that the independent draws Zi = (Xi, Yi), i = 1, . . . , n+1
are weighted exchangeable with wi ≡ 1 for i = 1, . . . , n, and wn+1((x, y)) = w(x). In this special
case, the probabilities in (10) simplify to

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i w(xi)∑
σ w(xσ(n+1))

=
w(xi)∑n+1
j=1 w(xj)

, i = 1, . . . , n+ 1,

in other words, pwi (Z1, . . . , Zn, (x, y)) = pwi (x), i = 1, . . . , n+ 1, where the latter are as defined in
(6). Applying Theorem 2 gives the result.
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