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Abstract

We consider the problem of estimating a multivariate function f0 of bounded variation (BV), from noisy observa-
tions yi = f0(xi) + zi made at random design points xi ∈ Rd, i = 1, . . . , n. We study an estimator that forms the
Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain
discrete notion of total variation (TV): the sum of weighted absolute differences of parameters θi, θj (which estimate
the function values f0(xi), f0(xj)) at all neighboring cells i, j in the Voronoi diagram. This is seen to be equivalent to
a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV,
once we restrict the domain to functions that are piecewise constant over the Voronoi diagram.

The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed
unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing
inspiration from Tukey’s regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and
theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized
estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional;
and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are
essentially bounded.

1 Introduction
Consider a standard nonparametric regression setting, given observations (xi, yi) ∈ Ω× R, i = 1, . . . , n, for an open
and connected subset Ω of Rd, and with

yi = f0(xi) + zi, i = 1, . . . , n, (1)

for i.i.d. mean zero stochastic errors zi, i = 1, . . . , n. We are interested in estimating the function f0 under the working
assumption that f0 adheres to a certain notion of smoothness. A traditional smoothness assumption on f0 involves its
integrated squared derivatives, for example, the assumption that∫

Ω

∑
‖α‖1=2

(Dαf)2(x) dx

is small, where α = (α1, . . . , αd) ∈ Zd+ is a multi-index and Dα = ( ∂
∂x1

)α1 . . . ( ∂
∂xd

)αd denotes the associated mixed
partial derivative operator. This is the notion of smoothness that underlies the celebrated smoothing spline estimator in
the univariate case d = 1 (Schoenberg, 1964) and the thin-plate spline estimator when d = 2 or 3 (Duchon, 1977). We
also note that assuming f0 is smooth in the sense of the above display is known as second-order L2 Sobolev smoothness
(where we interpret Dαf as a weak derivative).

Smoothing splines and thin-plate splines are quite popular and come with a number of advantages. However, one
shortcoming of using these methods, i.e., to using the working model of Sobolev smoothness, is that it does not permit
f0 to have discontinuities, which limits its applicability. More broadly, smoothing splines and thin-plate splines do not
fare well when the estimand f0 possesses heterogeneous smoothness, meaning that f0 is more smooth at some parts of
its domain Ω and more wiggly at others. This motivates us to consider regularity measured by the total variation (TV)
seminorm

TV(f ; Ω) = sup

{∫
Ω

f(x) div φ(x) dx : φ ∈ C1
c (Ω;Rd), ‖φ(x)‖2 ≤ 1 for all x ∈ Ω

}
, (2)
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where C1
c (Ω;Rd) denotes the space of continuously differentiable compactly supported functions from Ω to Rd, and

we use div φ =
∑d
i=1 ∂φi/∂xi for the divergence of φ = (φ1, . . . , φd). Accordingly, we define the bounded variation

(BV) class on Ω by
BV(Ω) = {f ∈ L1(Ω) : TV(f ; Ω) <∞},

to contain all L1(Ω) functions with finite TV. The definition in (2) is often called the measure-theoretic definition of
multivariate TV. For simplicity we will often drop the notational dependence on Ω and simply write this as TV(f).
This definition may appear complicated at first, but it admits a few natural interpretations, which we present next to
help build intuition.

1.1 Perspectives on total variation
Below are three perspectives on total variation. The first two reveal the way that TV acts on special types of functions;
the third is a general equivalent form of TV.

Smooth functions. If f is (weakly) differentiable with (weak) gradient∇f = ( ∂f∂x1
, . . . , ∂f∂xd

), then

TV(f) =

∫
Ω

‖∇f(x)‖2 dx, (3)

provided that the right-hand here is well-defined and finite. Consider the difference between this and the first-order L2

Sobolev seminorm ∫
Ω

∑
‖α‖1=1

(Dαf)2(x) dx =

∫
Ω

‖∇f(x)‖22 dx.

The latter uses the squared `2 norm ‖ · ‖22 in the integrand, whereas the former (3) uses the `2 norm ‖ · ‖2. It turns out
that this is a meaningful difference—one way to interpret this is as a difference between L2 and L1 regularity. Noting
that ‖x‖1 ≤

√
d‖x‖2 for all x ∈ Rd, the space BV(Ω) contains the first-order L1 Sobolev space

W 1,1(Ω) = {f ∈ L1(Ω) :

∫
Ω

‖∇f(x)‖1 dx <∞},

which, loosely speaking, contains functions that can be more locally peaked and less evenly spread out (i.e., permits a
greater degree of heterogeneity in smoothness) compared to the first-order L2 Sobolev space

W 1,2(Ω) = {f ∈ L2(Ω) :

∫
Ω

‖∇f(x)‖22 dx <∞}.

It is important to emphasize, however, that BV(Ω) is still much larger than W 1,1(Ω), because it permits functions to
have sharp discontinuities. We discuss this next.

Indicator functions. If S ⊆ Ω is a set with locally finite perimeter, then the indicator function 1S , which we define
by 1S(x) = 1 for x ∈ S and 0 otherwise, satisfies

TV(1S) = per(S), (4)

where per(S) is the perimeter of S (or equivalently, the codimension-1 Hausdorff measure of ∂S, the boundary of S).
Thus, we see that that TV is tied to the geometry of the level sets of the function in question. Indeed, there is a precise
sense in which this is true in full generality, as we discuss next.

Coarea formula. In general, for any f ∈ BV(Ω), we have

TV(f) =

∫ ∞
−∞

per
(
{x ∈ Ω : f(x) > t}

)
dt. (5)

This is known as the coarea formula for BV functions (see, e.g., Theorem 5.9 in Evans and Gariepy, 2015). It offers a
highly intuitive picture of what total variation is measuring: we take a slice through the graph of a function f , calculate
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the perimeter of the set of points (projected down to the Ω-axis) that lie above this slice, and add up these perimeters
over all possible slices.

The coarea formula (5) also sheds light on why BV functions are able to portray such a great deal of heterogeneous
smoothness: all that matters is the total integrated amount of function growth, according to the perimeter of the level
sets, as we traverse the heights of level sets. For example, if the perimeter has a component ρ that persists for a range of
level set heights [t, t+ h], then this contributes the same amount ρh to the TV as does a smaller perimeter component
ρ/100 that persists for a larger range of level set heights [t, t+ 100h]. To put it differently, the former might represent
a local behavior that is more spread out, and the latter a local behavior that is more peaked, but these two behaviors
can contribute the same amount to the TV in the end. Therefore, a ball in the BV space—all L1 functions f such that
TV(f) ≤ r—contains functions with a huge variety in local smoothness.

1.2 Why is estimating BV functions hard?
Now that we have motivated the study of BV functions, let us turn towards the problem of estimating a BV function
from noisy samples. Given the centrality of penalized empirical risk minimization in nonparametric regression, one
might be tempted to solve the TV-penalized variational problem

minimize
f∈BV(Ω)

1

2

n∑
i=1

(yi − f(xi))
2 + λTV(f), (6)

given data (xi, yi), i = 1, . . . , n from the model (1), and under the working assumption that f has small TV. However,
in short, solving (6) will “not work” in any dimension d ≥ 2, in the sense that it does not yield a well-defined estimator
regardless of the choice of tuning parameter λ > 0.

When d = 1, solving (6) produces a celebrated estimator known as the (univariate) TV denoising estimator (Rudin
et al., 1992) or the fused lasso signal approximator (Tibshirani et al., 2005). (More will be said about this shortly, under
the related work subsection.) But for any d ≥ 2, problem (6) is ill-posed, as the criterion does not achieve its infimum.
To see this, consider the function

fε =

n∑
i=1

yi · 1B(xi,ε),

where B(xi, ε) denotes the closed `2 ball of radius ε centered at xi, and 1B(xi,ε) denotes its indicator function (which
equals 1 on B(xi, ε) and 0 outside of it). Now let us examine the criterion in problem (6): for small enough ε > 0, the
function fε has a squared loss equal to 0, and has TV penalty equal to λncdεd−1 (here cd > 0 is a constant depending
only on d). Hence, as ε→ 0, the criterion value in (6) achieved by fε tends to 0. However, as ε→ 0, the function fε
itself trivially approaches the zero function, defined as f(x) = 0 for all x.1 Note that this is true for any λ > 0, whereas
the zero function certainly cannot minimize the objective in (6) for all λ > 0.

The problem here, informally speaking, is that the BV class is “too big” when d ≥ 2; more formally, the evaluation
operator is not continuous over the BV space—which means that convergence in BV norm2 does not imply pointwise
convergence—when d ≥ 2. It is worth noting that this problem is not specific to BV spaces and it occurs also with the
kth order Lp Sobolev space W k,p(Ω) = {f ∈ Lp(Ω) :

∫
Ω

∑
‖α‖1=k(Dαf)p(x) dx <∞} when pk ≤ d, known as the

the subcritical regime. In the supercritical regime, pk > d, convergence in norm does imply pointwise convergence,3

but all bets are off when pk ≤ d. Thus, just as the TV-penalized problem (6) is ill-posed for d ≥ 2, the more familiar
thin-plate spline problem

minimize
f∈W 2,2(Ω)

1

2

n∑
i=1

(yi − f(xi))
2 + λ

∫
Ω

‖∇2f(x)‖2F dx

is itself ill-posed when d ≥ 4. (Here we use ∇2f(x) for the weak Hessian of f , and ‖ · ‖F for the Frobenius norm, so
that the second-order L2 Sobolev seminorm can be written as

∫
Ω

∑
‖α‖1=2(Dαf)2(x) dx =

∫
Ω
‖∇2f(x)‖2F dx.)

1Just as with Lp classes, elements in BV(Ω) are actually only defined up to equivalence classes of functions. Hence, to make point evaluation
well-defined in the random design model (1), we must identify each equivalence class with a representative; we use the precise representative, which
is defined at almost every point x by the limiting local average of a function around x; see Appendix A.1 for details. It is straightforward to see that
the precise representative associated with fε converges to the zero function as ε→ 0.

2Traditionally defined by equipping the TV seminorm with the L1 norm, as in ‖f‖BV = ‖f‖L1 + TV(f).
3This is effectively a statement about the everywhere continuity of the precise representative, which is a consequence of Morrey’s inequality; see,

e.g., Theorem 4.10 in Evans and Gariepy (2015).
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What can we do to circumvent this issue? Broadly speaking, previous approaches from the literature can be stratified
into two types. The first maintains the smoothness assumption on TV(f0) for the regression function f0, but replaces
the sampling model (1) by a white noise model of the form

dY (x) = f0(x)dx+
σ√
n
dW (x), x ∈ Ω,

where dW is a Gaussian white noise process. Given this continuous-space observation model, we can then replace the
empirical loss term

∑n
i=1(yi − f(xi))

2 in (6) by the squared L2 loss ‖Y − f‖2L2(Ω) =
∫

Ω
(Y (x)− f(x))2 dx (or some

multiscale variant of this). The second type of approach keeps the sampling model (1), but replaces the assumption on
TV(f0) by an assumption on discrete total variation (which is based on the evaluations of f0 at the design points alone)
of the form

DTV(f0) =
∑
{i,j}∈E

wij |f0(xi)− f0(xj)|,

for an edge set E and weights wij ≥ 0. We then naturally replace the penalty TV(f) in (6) by DTV(f). More details
on both types of approaches will be given in the related work subsection.

The approach we take in the current paper sits in the middle, between the two types. Like the first, we maintain a
bona fide smoothness assumption on TV(f0), rather than a discrete version of TV. Like the second, we work in the
sampling model (1), and define an estimator by solving a discrete version of (6) which is always well-posed, for any
dimension d ≥ 2. In fact, the connections run deeper: the discrete problem that we solve is not constructed arbitrarily,
but comes from restricting the domain in (6) to a special finite-dimensional class of functions, over which the penalty
TV(f) in (6) takes on an equivalent discrete form.

1.3 The Voronoigram
This brings us to the central object in the current paper: an estimator defined by restricting the domain in the infinite-
dimensional problem (6) to a finite-dimensional subspace, whose structure is governed by the Voronoi diagram of the
design points x1, . . . , xn ∈ Ω. In detail, let Vi = {x ∈ Ω : ‖xi − x‖2 < ‖xj − x‖} be the Voronoi cell4 associated
with xi, for i = 1, . . . , n, and define

FV
n = span

{
1V1

, . . . , 1Vn

}
,

where recall 1Vi is the indicator function of Vi. In words, FV
n is a space of functions from Ω to R that are piecewise

constant on the Voronoi diagram of x1, . . . , xn. (We remark that this is most certainly a subspace of BV(Ω), as each
Voronoi cell has locally finite perimeter; in fact, as we will see soon, the TV of each f ∈ FV

n takes a simple and explicit
closed form.) Now consider the finite-dimensional problem

minimize
f∈FV

n

1

2

n∑
i=1

(yi − f(xi))
2 + λTV(f). (7)

We call the solution to (7) the Voronoigram and denote it by f̂V. This idea—to fit a piecewise constant function to the
Voronoi tessellation of the input domain Ω—dates back to (at least) Koenker (2005), where it was briefly proposed in
Chapter 7 of this book (further discussion of related work will be given in Section 1.5). It does not appear to have been
implemented or studied beyond this. Its name is inspired by Tukey’s classic regressogram (Tukey, 1961).

Of course, there a many choices for a finite-dimensional subset of BV(Ω) that we could have used for a domain
restriction in (7). Why FV

n , defined by piecewise constant functions on the Voronoi diagram, as in (7)? A remarkable
feature of this choice is that it yields an equivalent optimization problem

minimize
θ∈Rn

1

2

n∑
i=1

(yi − θi)2 + λ
∑

{i,j}∈EV

wV
ij · |θi − θj |, (8)

for an edge set EV defined by neighbors in the Voronoi graph, and weights wV
ij that measure the “length” of the shared

boundary between cells Vi and Vj , to be defined precisely later (in Section 2.1). The equivalence between problems (7)

4As we have defined it, each Voronoi cell is open, and thus a given function f ∈ FV
n is not actually defined on the boundaries of the Voronoi cells.

But this is a set of Lebesgue measure zero, and on this set it can be defined arbitrarily—any particular definition will not affect results henceforth.
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and (8) sets θi = f(xi), i = 1, . . . , n, and is driven by the following special fact: for such a pairing, whenever f ∈ FV
n ,

it holds (proved in Section 2.1) that
TV(f) =

∑
{i,j}∈EV

wV
ij · |θi − θj |. (9)

In this way we can view the Voronoigram as marriage between a purely variational approach, which maintains the use
of a continuum TV penalty on a function f , and a purely discrete approach, which instead models smoothness using a
discrete TV penalty on a vector θ defined over a graph. In short, the Voronoigram does both.

1.3.1 A first look at the Voronoigram

From its equivalent discrete problem form (8), we can see that the penalty term drives the Voronoigram to have equal
(or “fused”) evaluations at points xi and xj corresponding to neighboring cells in the Voronoi tessellation. Generally,
the larger the value of λ ≥ 0, the more neighboring evaluations will be fused together. Due to fact that each f ∈ FV

n is
constant over an entire Voronoi cell, this means that the Voronoigram fitted function f̂V is constant over adaptively
chosen unions of Voronoi cells. Furthermore, based on what is known about solutions of generalized lasso problems
(details given in Section 2.2), we can express the fitted function here as

f̂V =

K̂∑
k=1

(ȳk − ŝk) · 1R̂k
, (10)

where K̂ is the number of connected components that appear in the solution θ̂V over the Voronoi graph, R̂k denotes a
union of Voronoi cells associated with the kth connected component, ȳk denotes the average of response points yi such
that xi ∈ R̂k; and ŝk is a data-driven shrinkage factor. To be clear, each of K̂, R̂k, ȳk, and ŝk here are data-dependent
quantities—they fall out of the structure of the solution in problem (8).

Thus, like the regressogram, the Voronoigram estimates the regression function by fitting (shrunken) averages over
local regions; but unlike the regressogram, where the regions are fixed ahead of time, the Voronoigram is able to choose
its regions adaptively, based on the geometry of the design points xi (owing to the use of the Voronoi diagram) and on
how much local variation is present in the response points yi (a consideration inherent to the minimization in (8), which
trades off between the loss and penalty summands).

Figure 1 gives a simple example of the Voronoigram and its adaptive structure in action.

f0 and samples Voronoi tessellation Voronoigram estimate

0.5

0.0

0.5

1.0

1.5

Figure 1: A simple example of using the Voronoigram to estimate a function f0, from noisy observations. Left: f0 and
noisy observations made at n = 1274 random points in d = 2 dimensions. Center: the Voronoi tessellation, whose
cells constitute the piecewise constant basis for the Voronoigram. Right: the Voronoigram estimate (at a certain choice
of λ), with the resulting adaptively chosen constant pieces—over which it performs averaging—outlined in orange.

1.4 Summary of contributions
Our primary practical and methodological contribution is to motivate and study the Voronoigram as a nonparametric
regression estimator for BV functions in a multivariate scattered data (random design) setting, including comparing and
contrasting it to two related approaches: discrete TV regularization using ε-neighborhood or k-nearest neighbor graphs.
A summary is as follows (a more detailed summary is given in Section 2.4).
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• The graph used by Voronoigram—namely, the Voronoi adjacency graph—is tuning-free. This stands in contrast to
ε-neighborhood or k-nearest neighbor graphs, which require a choice of a local radius ε or number of neighbors
k, respectively.

• The Voronoigram penalty becomes density-free in large samples, which is term we use to describe the fact that it
converges to “pure” total variation, independent of the density p of the (random) design points x1, . . . , xn. This
follows from one of our main theoretical results (reiterated below), and it stands in contrast to the TV penalties
based on ε-neighborhood and k-nearest neighbor graphs, which are known to asymptotically approach particular
p-weighted versions of total variation.

• The Voronoigram estimator yields a natural passage from a discrete set of fitted values f̂V(xi), i = 1, . . . , n to a
fitted function f̂V defined over the entire input domain Ω: this is simply given by local constant extrapolation of
each fitted value f̂V(xi) to its containing Voronoi cell Vi. (Equivalently, f̂V(x) is given by the 1-nearest neighbor
prediction rule based on (xi, f̂

V(xi)), i = 1, . . . , n.) Further, thanks to (9), we know that such an extrapolation
method is complexity-preserving: the discrete TV of θ̂V

i , i = 1, . . . , n is precisely the same as the continuum TV
of the extrapolant f̂V. Other graph-based TV regularization methods do not come with this property.

On the theoretical side, our primary theoretical contributions are twofold, summarized below.

• We prove that the Voronoi penalty functional, applied to evaluations of f at i.i.d. design points x1, . . . , xn from a
density p, converges to TV(f), as n→∞ (see Section 3 for details). The fact that its asymptotic limit here is
independent of p is both important and somewhat remarkable.

• We carry out a comprehensive minimax analysis for L2 estimation over BV(Ω). The highlights (Section 5 gives
details): for any fixed d ≥ 2 and regression function f0 with TV(f0) ≤ L and ‖f0‖L∞ ≤M (where L,M > 0
are constants), a modification of the Voronoigram estimator f̂V in (7)—defined by simply clipping small weights
wV
ij in the penalty term—converges to f0 at the squared L2 rate n−1/d (ignoring log terms). We prove that this

matches the minimax rate (up to log terms) for estimating a regression function f0 that is bounded in TV and L∞.
Lastly, we prove that an even simpler unweighted Voronoigram estimator—defined by setting all edge weights in
(7) to unity—also obtains the optimal rate (up to log terms), as do more standard estimators based on discrete TV
regularization over ε-neighborhood and k-nearest neighbor graphs.

1.5 Related work
The work of Mammen and van de Geer (1997) marks an important early contribution promoting and studying the use
of TV as a regularization functional, in univariate nonparametric regression. These authors considered a variational
problem similar to (6) in dimension d = 1, with a generalized penalty TV(Dkf), the TV of the kth weak derivative
Dkf of f . They proved that the solution is always a spline of degree k (whose knots may lie outside the design points
if k ≥ 2) and named the solution the locally adaptive regression spline estimator. A related, more recent idea is trend
filtering, proposed by Steidl et al. (2006); Kim et al. (2009) and extended by Tibshirani (2014) to the case of arbitrary
design points. Trend filtering solves a discrete analog of the locally adaptive regression spline problem, in which the
penalty TV(Dkf) is replaced by the discrete TV of the kth discrete derivative of f—based entirely on evaluations of f
at the design points.

Tibshirani (2014) showed that trend filtering, like the Voronoigram, admits a special duality between discrete and
continuum representations: the trend filtering optimization problem is in fact the restriction of the variational problem
for locally adaptive regression splines to a particular finite-dimensional space of kth degree piecewise polynomials. The
key fact underlying this equivalence is that for any function f in this special piecewise polynomial space, its continuum
penalty TV(Dkf) equals its discrete penalty (discrete TV applied to its kth discrete derivatives), a result analogous to
the property (9) of functions f ∈ FV

n . Thus we can view the Voronoigram a generalization of this core idea, at the heart
of trend filtering, to multiple dimensions—albeit restricted the case k = 0.

We note that similar ideas to locally adaptive regression splines and trend filtering were around much earlier; see,
e.g., Schuette (1978); Koenker et al. (1994). Tibshirani (2022) provides an account of the history of these and related
ideas in nonparametric smoothing, and also makes connections to numerical analysis—the study of discrete splines in
particular. It is worth highlighting that when k = 0, the locally adaptive regression spline and trend filtering estimators
coincide, and reduce to a method known as TV denoising, which has even earlier roots in applied mathematics (to be
covered shortly).
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Beyond the univariate setting, there is still a lot of related work to cover across different areas of the literature, and
we break up our exposition into parts accordingly.

Continuous-space TV methods. The seminal work of Rudin et al. (1992) introduced TV regularization in the context
of signal and image denoising, and has spawned to a large body of follow-up work, mostly in the applied mathematics
community, where this is called the Rudin-Osher-Fatemi (ROF) model for TV denoising. See, e.g., Rudin and Osher
(1994); Vogel and Oman (1996); Chambolle and Lions (1997); Chan et al. (2000), among many others. In this literature,
the observation model is traditionally continuous-time (univariate), or continuous-space (multivariate)—this means that,
rather than having observations at a finite set of design points, we have an entire observation process (deterministic or
random), itself a function over a bounded and connected subset of Rd. TV regularization is then used in a variational
optimization context, and discretization usually occurs (if at all) as part of numerical optimization schemes for solving
such variational problems.

Statistical analysis in continuous-space observation models traditionally assumes a white noise regression model,
which has a history of study for adaptive kernel methods (via Lepski’s method) or wavelet methods in particular, see,
e.g., Lepski et al. (1997); Lepski and Spokoiny (1997); Neumann (2000); Kerkyacharian et al. (2001, 2008). In this
general area of the literature, the recent paper of del Álamo et al. (2021) is most related to our paper: these authors
consider a multiresolution TV-regularized estimator in a multivariate white noise model, and derive minimax rates for
Lp estimation of TV and L∞ bounded functions. When p = 2, they establish a minimax rate (ignoring log factors) of
n−1/d on the squared L2 error scale, for arbitrary dimension d ≥ 2, which agrees with our results in Section 5.

Discrete, lattice-based TV methods. Next we discuss purely discrete TV-regularization approaches, in which both
the observation model and the penalty are discrete, and are based on function values at a discrete sequence of points.
Such approaches can be further delineated into two subsets: models and methods based on discrete TV over lattices
(multi-dimensional grid graphs), and those based on discrete TV over geometric graphs (such as ε-neighborhood or
k-nearest neighbor graphs constructed from the design points). We cover the former first, and the latter second.

For lattice-based TV approaches, Tibshirani et al. (2005) marks an early influential paper proposing discrete TV
regularization over univariate and bivariate lattices, under the name fused lasso.5 This generated much follow-up work
in statistics, e.g., Friedman et al. (2007); Hoefling (2010); Tibshirani and Taylor (2011); Arnold and Tibshirani (2016),
among many others. In terms of theory, we highlight Hutter and Rigollet (2016), who established sharp upper bounds
for the estimation error of TV denoising over lattices, as well as Sadhanala et al. (2016), who certified optimality (up to
log factors) by giving minimax lower bounds. The rate here (ignoring log factors) for estimating signals with bounded
discrete TV, in mean squared error across the lattice points, is n−1/d. This holds for an arbitrary dimension d ≥ 2, and
agrees with our results in Section 5. Interestingly, Sadhanala et al. (2016) also prove that the minimax linear rate over
the discrete TV is class is constant—which means that the best estimator that is linear in the response vector y ∈ Rn, of
the form f̂(x) = w(x)Ty, is inconsistent in terms of its max risk (over signals with bounded discrete TV). We do not
pursue minimax linear analysis in the current paper but expect a similar phenomenon to hold in our setting.

Lastly, we highlight Sadhanala et al. (2017, 2021), who proposed and studied an extension of trend filtering on
lattices. Just like univariate trend filtering, the multivariate version allows for an arbitrary smoothness order k ≥ 0,
and reduces to TV denoising (or the fused lasso) on a lattice for k = 0. In the lattice setting, the theoretical picture is
fairly complete: for general k, d, denoting by s = (k + 1)/d the effective degree of smoothness, the minimax rate for
estimating signals with bounded kth order discrete TV is n−s for s ≤ 1/2, and n−2s/(2s+1) for s > 1/2. The minimax
linear rates display a phase transition as well: constant for s ≤ 1/2, and n−(2s−1)/(2s) for s > 1/2. In our setting, we
do not currently have error analysis, let alone an estimator, for higher-order notions of TV smoothness (for general
k ≥ 1). With continuum TV and scattered data (random design), this is more challenging to formulate. However, the
lattice-based world continues to provides goalposts for what we would hope to find in future work.

Discrete, graph-based TV methods. Turning to graph-based TV regularization methods, as explained above, much
of the work in statistics stemmed from Tibshirani et al. (2005), and the algorithmic and methodological contributions
cited above already considers general graph structures (beyond lattices). While one can view our proposal as a special
instance of TV regularization over a graph—the Voronoi adjacency graph—it is important to recognize the independent

5The original work here proposed discrete TV regularization on the coefficients of regressor variables that obey an inherent lattice structure. If we
denote the matrix of regressors by X , then a special case of this is simply X = I (the identity matrix), which reduces to the TV denoising problem.
In some papers, the resulting estimator is sometimes referred to as the fused lasso signal approximator.
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and visionary work of Koenker and Mizera (2004), which served as motivation for us and intimately relates to our work.
These authors began with a triangulation of scattered points in d = 2 dimensions (say, the Delaunay triangulation) and
defined a nonparametric regression estimator called the triogram by minimizing, over functions f that are continuous
and piecewise linear over the triangulation, the squared loss of f plus a penalty on the TV of the gradient of f . This is
in some ways completely analogous to the problem we study, except with one higher degree of smoothness. As we
mentioned in the introduction above, in Koenker (2005) the author actually proposes the Voronoigram as a lower-order
analog of the triogram, but the method has not, to our knowledge, been studied beyond this brief proposal.

Outside of Koenker and Mizera (2004), existing work involving TV regularization on graphs relies on geometric
graphs like ε-neighborhood or k-nearest neighbor graphs. In terms of theoretical analysis, the most relevant paper to
discuss is the recent work of Padilla et al. (2020): they study TV denoising on precisely these two types of geometric
graphs (ε-neighborhood and k-nearest neighbor graphs), and prove that it achieves an estimation rate in squared L2

error of n−1/d, but require that f0 is more than TV bounded—they require it to satisfy a certain piecewise Lipschitz
assumption. Although we primarily study TV regularization over the Voronoi adjacency graph, we build on some core
analysis ideas in Padilla et al. (2020). In doing so, we are able to prove that the Voronoigram achieves the squared L2

error rate n−1/d, and we only require that TV(f0) and ‖f0‖L∞ are bounded (with the latter condition actually necessary
for nontrivial estimation rates over BV spaces when d ≥ 2, as we explain in Section 5.1). Furthermore, we are able to
generalize the results of Padilla et al. (2020), and we prove that the TV-regularized estimator over ε-neighborhood and
k-nearest neighbor graphs achieves the same rate under the same assumptions, removing the need for the piecewise
Lipschitz condition. See Remark 9 for a more detailed discussion. We also mention that earlier ideas from Wang et al.
(2016); Padilla et al. (2018) are critical analysis tools in Padilla et al. (2020) and critical for our analysis as well.

Finally, we would like to mention the recent and parallel work of Green et al. (2021a,b), which studies regularized
estimators by discretizing Sobolev (rather than TV) functionals over neighborhood graphs, and establishes results on
estimation error and minimaxity entirely complementary to ours, but with respect to Sobolev smoothness classes.

2 Methods and basic properties
In this section, we discuss some basic properties of our primary object of study, the Voronoigram, and compare these
properties to those of related methods.

2.1 The Voronoigram and TV representation
We start with a discussion of the property behind (9)—we call this a TV representation property of functions in FV

n , as
their total variation over Ω can be represented exactly in terms of their evaluations over x1, . . . , xn.

Proposition 1. For any x1, . . . , xn, with Voronoi tessellation V1, . . . , Vn, and any f ∈ FV
n = span{1V1

, . . . , 1Vn
} of

the form

f =

n∑
i=1

θi · 1Vi
,

it holds that

TV(f) =

n∑
i,j=1

Hd−1(∂Vi ∩ ∂Vj) · |θi − θj |, (11)

whereHd−1 denotes Hausdorff measure of dimension d− 1, and ∂Vi denotes the boundary of Vi.

The proof of this proposition follows from the measure-theoretic definition (2) of total variation, and we defer it to
Appendix A.2. In a sense, the above result is a natural extension of the property that the TV of an indicator function is
the perimeter of the underlying set, recall (4).

Note that (11) in Proposition 1 reduces to the property (9) claimed in the introduction, once we define weights

wV
ij = Hd−1(∂Vi ∩ ∂Vj), i, j = 1, . . . , n, (12)

and define the edge set EV to contain all {i, j} such that wV
ij 6= 0. In words, each wV

ij is the surface measure (length, in
dimension d = 2) of the shared boundary between Vi and Vj . We say that i, j are adjacent with respect to the Voronoi
diagram provided that wV

ij 6= 0. Using this nomenclature, we can think of EV as the set of all adjacent pairs i, j. This
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defines a weighted undirected graph on {1, . . . , n}, which we call the Voronoi adjacency graph (the Voronoi graph for
short). We denote this by GV = ([n], EV, wV), where here and throughout we write [n] = {1, . . . , n}.

Backing up a little further, we remark that (12) also provides the remaining details needed to completely describe
the Voronoigram estimator in (7). By the TV representation property (9), we see that we can equivalently express the
penalty in (7) as that in (8), which certifies the equivalence between the two problems. Of course, since (9) is true of
all functions in FV

n , it is also true of the Voronoigram solution f̂V. Hence, to summarize the relationship between the
discrete (8) and continuum (7) problems, once we solve for the Voronoigram fitted values θ̂V

i = f̂V(xi), i = 1, . . . , n
at the design points, we extrapolate via

f̂V =

n∑
i=1

θ̂V
i · 1Vi

, which satisfies TV(f̂V) =
∑

{i,j}∈EV

wV
ij · |θ̂V

i − θ̂V
j |. (13)

In other words, the continuum TV of the extrapolant f̂V is exactly the same as the discrete TV of the vector of fitted
values θ̂V. This is perhaps best appreciated when discussed relative to alternative approaches based on discrete TV
regularization on graphs, which do not generally share the same property. We revisit this in Section 2.4.

2.2 Insights from generalized lasso theory
Consider a generalized lasso problem of the form:

minimize
θ∈Rn

1

2
‖y − θ‖22 + λ‖Dθ‖1, (14)

where y = (y1, . . . , yn) ∈ Rn is a response vector and D ∈ Rm×n is a penalty operator (as problem (14) has identity
design matrix, it is hence sometimes also called a generalized lasso signal approximator problem). The Voronoigram is
a special case of a generalized lasso problem: that is, problem (8) can be equivalently expressed in the more compact
form (14), once we take D = DV, the edge incidence operator of the Voronoi adjacency graph. In general, given an
weighted undirected graph G = ([n], E, w), we denote its edge incidence operator D(G) ∈ Rm×n; recall that this is a
matrix whose number of rows equals the number of edges, m = |E|, and if edge ` connects nodes i and j, then

[
D(G)

]
`k

=


+wij k = i

−wij k = j

0 otherwise.
(15)

Thus, to reiterate the equivalence using the notation just introduced, the penalty operator in the generalized lasso form
(14) of the Voronoigram (8) is DV = D(GV), the edge incidence operator of the Voronoi graph GV. And, as is clear
from the discussion, the Voronoigram is not just an instance of an arbitrary generalized lasso problem, it is an instance
of TV denoising on a graph. Alternative choices of graphs for TV denoising will be discussed in Section 2.3.

What does casting the Voronoigram in generalized lasso form do for us? It enables us to use existing theory on the
generalized lasso to read off results about the structure and complexity of Voronoigram estimates. Tibshirani and Taylor
(2011, 2012) show the following about the solution θ̂ in problem (14): if we denote by A = {i ∈ [n] : (Dθ̂)i 6= 0} the
active set corresponding to Dθ̂, and s = sign((Dθ̂)A) the active signs, then we can write

θ̂ = Pnull(D−A)(y − λDT
As). (16)

where DA is the submatrix of D with rows that correspond to A, D−A is the submatrix with the complementary set
of rows, and Pnull(D−A) is the projection matrix onto null(D−A), the null space of D−A. When we take D = D(G),
the edge incidence operator on a graph G, the null space D−A has a simple analytic form that is spanned by indicator
vectors on the connected components of the subgraph of G that is induced by removing the edges in A. This allows us
to rewrite (16), for a generic TV denoising estimator θ̂ = θ̂(G), as

[
θ̂(G)

]
i

=

K̂∑
k=1

(ȳk − ŝk) · 1
{
i ∈ Ĉk

}
, i = 1, . . . , n (17)

where K̂ is the number of connected components of the subgraph of G induced by removing edges in A, Ĉk denotes
the kth such connected component, ȳk denotes the average of points yi such that i ∈ Ĉk, and ŝk denotes the average of
the values λ(DT

As)i over i ∈ Ĉk.
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What is special about the Voronoigram is that (17), combined with the structure of FV
n (piecewise constant functions

on the Voronoi diagram), leads to an analogous piecewise constant representation on the original input domain Ω, as
written and discussed in (10) in the introduction. Here each R̂k = {Vi : i ∈ Ĉk}, the union of Voronoi cells of points in
connected component Ĉk.

Beyond local structure, we can learn about the complexity of the Voronoigram estimator—vis-a-vis its degrees of
freedom—from generalized lasso theory. In general, the (effective) degrees of freedom of an arbitrary estimator θ̂ is
defined (Efron, 1986; Hastie and Tibshirani, 1990) as:

df(θ̂) =
1

σ2

n∑
i=1

Cov(θ̂i, yi),

where σ2 = Var(zi) denotes the noise variance in the data model (1). Tibshirani and Taylor (2011, 2012) show using
Stein’s lemma (Stein, 1981) that when each zi ∼ N(0, σ2) (i.i.d. for i = 1, . . . , n), it holds that

df(θ̂) = E[nullity(D−A)], (18)

where nullity(D−A) is the nullity (dimension of the null space) of D−A, and recall A is the active set corresponding to
Dθ̂. For D = D(G) and θ̂ = θ̂(G), the TV denoising estimator over a graph G, the result in (18) reduces to

df
(
θ̂(G)

)
= E

[
# of connected components in θ̂(G)

]
. (19)

As a short interlude, we note that this somewhat remarkable because the connected components are adaptively chosen
in the graph TV denoising estimator, and yet it does not appear that we “pay extra” for this data-driven selection in (19).
This is due to the `1 penalty that appears in the TV denoising criterion, which induces a “counterbalancing” shrinkage
effect—recall we fit shrunkage averages, rather than averages, in (17). For more discussion, see Tibshirani (2015).

The result (19) is true of any TV denoising estimator, including the Voronoigram. However, what is special about
the Voronoigram is that we are able to write this purely in terms of the fitted function f̂V:

df(θ̂V) = E
[
# of locally constant regions in f̂V

]
, (20)

because by construction the number of locally constant regions in f̂V is equal to the number of connected components
in θ̂V.6

2.3 Alternatives: ε-neighborhood and kNN graphs
We now review two more standard graph-based alternatives to the Voronoigram: TV denoising over ε-neighborhood
and k-nearest neighbor (kNN) graphs. Discrete TV over such graphs has been studied by many, including Wang et al.
(2016) (experimentally), and García Trillos and Slepčev (2016); García Trillos (2019); Padilla et al. (2020) (formally).
The general recipe is to run TV denoising over a graph G = ([n], E, w) formed using the design points x1, . . . , xn. We
note that it suffices to specify the weight function here, since the edge set is simply defined by all pairs of nodes that are
assigned nonzero weights. For the ε-neighborhood graph, we take

wεij =

{
1 ‖xi − xj‖2 ≤ ε
0 otherwise,

i, j = 1, . . . , n, (21)

where ε > 0 is a user-defined tuning parameter. For the (symmetrized) k-nearest neighbor graph, we take

wkij =

{
1 ‖xi − xj‖2 ≤ max

{
‖xi − x(k)(xi)‖2, ‖xj − x(k)(xj)‖2

}
0 otherwise,

i, j = 1, . . . , n, (22)

where x(k)(xi) denotes the element of {x1, . . . , xi−1, xi+1, . . . , xn} that is kth closest in `2 distance to xi (breaking
ties arbitrarily, if needed), and k ∈ [n] is a user-defined tuning parameter.

6For this to be true, strictly speaking, we require that for each i and j in different connected components with respect to the subgraph defined
by the active set A of θ̂V, we have θ̂i 6= θ̂j . However, for any fixed λ, this occurs with probability one if the response vector y is drawn from a
continuous probability distribution; see Tibshirani and Taylor (2012); Tibshirani (2013).
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We denote the resulting graphs by Gε and Gk, respectively, and the resulting graph-based TV denoising estimators
by θ̂ε = θ̂(Gε) and θ̂k = θ̂(Gk), respectively. To be explicit, these solve (14) when the penalty operators are taken to
be the relevant edge incidence operators D = D(Gε) and D = D(Gk), respectively.

It is perhaps worth noting that the ε-neighborhood graph is a special case of a kernel graph whose weight function
is of the form wij = K(‖xi − xj‖2) for a kernel function K. Though we choose to analyze the ε-neighborhood graph
for simplicity, much of our theoretical development for TV denoising on this graph carries over to more general kernel
graphs, with suitable conditions on K. We remark that the kNN and Voronoi graphs do not fit neatly in kernel form, as
the weight they assign to i, j depends not only xi, xj but also on x1, . . . , xn. That said, in either case the graph weights
are well-approximated by kernels asymptotically; see Appendix B for the effective kernel for the Voronoi graph.

2.4 Discussion and comparison of properties
We begin with some similarities, starting by recapitulating the properties discussed in the second-to-last subsection: all
three of θ̂ε, θ̂k, and θ̂V—the TV denoising estimators on the ε-neighborhood, kNN, and Voronoi graphs, respectively—
have adaptively chosen piecewise constant structure, as per (17) (though to be clear, they will have generically different
connected components for the same response vector y and tuning parameter λ). All three estimators also have a simple
unbiased estimate for their degrees of freedom, as per (19). And lastly, all three are given by solving a highly structured
convex optimization problems for which a number of efficient algorithms exist; see, e.g., Osher et al. (2005); Chambolle
and Darbon (2009); Goldstein et al. (2010); Hoefling (2010); Chambolle and Pock (2011); Tibshirani and Taylor (2011);
Landrieu and Obozinski (2015); Wang et al. (2016).

A further notable property that all three estimators share, which has not yet been discussed, is rotational invariance.
This means that, for any orthogonal U ∈ Rd×d, if we were to replace each design point xi by x̃i = Uxi and recompute
the TV denoising estimate using the ε-neighborhood, kNN, or Voronoi graphs (and with the same response vector y and
tuning parameter λ) then it will remain unchanged. This is true because the weights underlying these three graphs—as
we can see from (12), (21), and (22)—depend on the design points only through the pairwise `2 distances ‖xi − xj‖2,
which an orthogonal transformation preserves.

We now turn to a discussion of the differences between these graphs and their use in denoising.

Auxiliary tuning parameters. TV denoising over the ε-neighborhood and k-nearest neighbor graphs each have an
“extra” tuning parameter when compared the Voronoigram: a tuning parameter associated with learning the graph itself
(ε and k, respectively). This auxiliary tuning parameter must be chosen carefully in order for the discrete TV penalty to
be properly behaved; as usual, we can turn to theory (e.g., García Trillos and Slepčev, 2016; García Trillos, 2019) to
prescribe the proper asymptotic scaling for such choices, but in practice these are really just guidelines. Indeed, as we
vary ε and k, we can typically find an observable practical impact on the performance of TV denoising estimators using
their corresponding graphs, especially for the ε-neighborhood graph (for which ε impacts connectedness). One may see
this by comparing the results of Section 4 to those of Appendix C. All in all, the need to appropriately choose auxiliary
tuning parameters when using these graphs for TV denoising is a complicating factor for the practitioner.

Connectedness. A related practical consideration: only the Voronoi adjacency graph is guaranteed to be connected
(cf. Lemma S.16 in the appendix), while the kNN and ε-neighborhood graphs have varying degrees of connectedness
depending on their auxiliary parameter. In particular, the ε-neighborhood graph is susceptible to isolated points. This
can be problematic in practice: having many connected components and in particular having isolated points prevents
the estimator from properly denoising, leading to degraded performance. This phenomenon is studied in Section 4.3,
where the ε-neighborhood graph, grown to have roughly the same average degree as the Voronoi adjacency and kNN
graphs, sees worse performance when used in TV denoising. A workaround is to grow the ε-neighborhood graph to be
denser; but of course this increases the computational burden in learning the estimator and storing the graph.

Computation. On computation of the graphs themselves, the Voronoi diagram of n points in d dimensions has worst-
case complexity of O(n log n+ ndd/2e) (Aurenhammer and Klein, 2000).7 In applications, this worst-case complexity

7Note that the Voronoi adjacency graph as considered in Section 2.1 intersects the Voronoi diagram with the domain Ω on which the n points are
sampled, which incurs the additional step of checking whether each vertex of the Voronoi diagram belongs in Ω. For simple domains (say, the unit
cube), this can be done in constant time for each edge as they are enumerated during graph construction.
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may be pessimistic; for example, Dwyer (1991) finds that the Voronoi diagram of n points sampled uniformly at random
from the d-dimensional unit ball may be computed in linear expected time.

On the other hand, the O(n log n+ ndd/2e) runtime does not include calculation of the weights (12) on the edges of
the Voronoi adjacency graph, which significantly increases the computational burden, especially in higher dimensions
(it is essentially intractable for d ≥ 4). One alternative is to simply use the unweighted Voronoi adjcacency graph for
denoising—dropping the weights wV

ij in the summands in (8) but keeping the same edge structure—which we will see,
in what follows, has generally favorable practical and theoretical (minimax) performance.

Construction of the ε-neighborhood and kNN graphs, in a brute-force manner, has complexity O(dn2) in each case.
The complexity of building the k-nearest neighbor graph can be improved to O(dn log n) by using k-d trees (Friedman
et al., 1977). This is dominated by initial cost of building the k-d tree itself, so a practitioner seeking to tune over the
number of nearest neighbors is able to build kNN graphs at different levels of density relatively efficiently. As far as we
know, there is no analogous general-purpose algorithmic speedup for the ε-neighborhood graph, but practical speedups
may be possible by resorting to approximation techniques (for example, using random projections or hashing).

Extrapolation. A central distinction between the Voronoigram and TV denoising methods based on ε-neighborhood
and kNN graphs is that the latter methods are purely discrete, which means that—as defined—they really only produce
fitted values (estimates of the underlying regression function values) at the design points, and not an entire fitted
function (an estimate of the underlying function). Meanwhile, the Voronoigram produces a fitted function via the fitted
values at the design points. Recall the equivalence between problems (7) and (8), and the central property between the
discrete and continuum estimates highlighted in (13)—to rephrase once again, this says that f̂V is just as complex in
continuous-space (as measured by continuum TV) as θ̂V is in discrete-space (as measured by discrete TV).

We note that it would also be entirely natural to extend the fitted values θ̂i = f̂(xi), i = 1, . . . , n from TV denoising
using the ε-neighborhood or kNN graph as a piecewise constant function over the Voronoi cells V1, . . . , Vn,

f̂ =

n∑
i=1

θ̂i · 1Vi
.

To see this, observe that this is nothing more than the ubiquitous 1-nearest neighbor (1NN) prediction rule performed
on the fitted values,

f̂(x) = f̂(xi), where ‖x− xi‖2 = min
j=1,...,n

‖x− xj‖2.

However, this extension f̂ does not generally satisfy the property that its continuum TV is equal to the graph-based TV
of θ̂ (with respect to the original geometric graph, be it ε-neighborhood or kNN). The complexity-preserving property
in (13) of the Voronoigram is truly special.8

We finish by summarizing two more points of comparison for discrete TV on the Voronoi graph versus ε-neighborhood
and kNN graphs. These will come to light in the theory developed later, but are worth highlighting now. First, discrete
TV on the Voronoi adjacency graph, the ε-neighborhood graph, and the kNN graph can be said to each track different
population-level quantities—the most salient difference being that discrete TV on a Voronoi graph in the large-sample
limit does not depend on the distribution of the design points, unlike the other two graphs (compare (24) to (25) and
(26)). Second, while TV denoising on all three graphs obtains the minimax error rate for functions that are bounded in
TV and L∞, on the ε-neighborhood and the kNN graphs TV denoising is furthermore manifold adaptive, and it is not
clear the same is true of the Voronoigram (see Remark 9 following Theorem 2).

3 Asymptotics for graph TV functionals
Having introduced, discussed, and compared graph-based formulations of total variation—with respect to the Voronoi,
k-nearest neighbor, and ε-neighborhood graphs—a natural question remains: as we grow the number of design points n
used to construct the graphs, do these discrete notions of TV approach particular continuum notions of TV? Answers

8In fact, this occurs for not one but two natural notions of complexity: TV, as in (13), and degrees of freedom, as in (20). The latter says that f̂V

has just as many locally constant regions (connected subsets of Ω) as θ̂V has connected components (with respect to the Voronoi adjacency graph).
This is not true in general for the 1NN extensions fit to TV denoising estimates on ε-neighborhood or kNN graphs; see Section 4.4 and Figure 6 in
particular.
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to these questions, aside from being of fundamental interest, will help us better understand the effects of using these
different graph-based TV regularizers in the context of nonparametric regression.

The asymptotic limits for the TV functional over the ε-neighborhood and k-nearest neighbor graphs have in fact
already been derived by García Trillos and Slepčev (2016) and García Trillos (2019), respectively. These results are
reviewed in Remark 2, following the presentation of our main result in this section, Theorem 1, on the asymptotic limit
for the TV functional over the Voronoi graph. First, we introduce some helpful notation. Given G = ([n], E, w), a
weighted undirected graph, we denote its corresponding discrete TV functional by

DTV(θ;w) =
∑
{i,j}∈E

wij |θi − θj |. (23)

Given x1, . . . , xn ∈ Ω, and f : Ω→ R, we also use the shorthand f(x1:n) = (f(x1), . . . , f(xn)) ∈ Rn.
Next we introduce an assumption that we require on the sampling distribution of the random design points.

Assumption A1. The design distribution has density p (with respect to Lebesgue measure), which is bounded away
from 0 and∞ uniformly on Ω = (0, 1)d; that is, there exist constants pmin, pmax such that

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ Ω.

We are now ready to present our main result in this section.

Theorem 1. Assume that x1, . . . , xn are i.i.d. from a distribution satisfying Assusmption A1, and additionally assume
its density p is Lipschitz: |p(y)− p(x)| ≤ L‖y − x‖2 for all x, y ∈ Ω and some constant L > 0. Consider the Voronoi
graph whose edge weights are defined in (12). For any fixed d ≥ 2 and f ∈ C2(Ω), as n→∞, it holds that

DTV
(
f(x1:n); wV

)
→ cd

∫
Ω

‖∇f(x)‖2 dx, (24)

in probability, where cd is the constant

cd =
η2
d−2

d− 1

∫ ∞
0

∫ ∞
0

tdsd−2 exp

(
−µd

{ t2
4

+ s2
}d/2)

ds dt,

and ηd−2 denotes the Hausdorff measure of the (d− 2)-dimensional unit sphere, and µd the Lebesgue measure of the
d-dimensional unit ball.

The proof of Theorem 1 is long and involved and deferred to Appendix B. A key idea in the proof is show that the
weights (12) have an asymptotically equivalent kernel form, for a particular (closed-form) kernel that we refer to as the
Voronoi kernel. We believe this result is itself significant and may be of independent interest.

We now make some remarks.

Remark 1. The assumption that f is twice continuously differentiable, f ∈ C2(Ω), in Theorem 1 is used to simplify
the proof; we believe this can be relaxed, but we do not attempt to do so. It is worth recalling that under this condition,
the right-hand side in (24) is a scaled version of the TV of f , since in this case TV(f) =

∫
Ω
‖∇f(x)‖2 dx.

Remark 2. The fact that the asymptotic limit of the Voronoi TV functional is density-free, meaning the right-hand side
in (24) is (a scaled version of) “pure” total variation and does not depend on p, is somewhat remarkable. This stands
in contrast to the asymptotic limits of TV functionals defined over ε-neighborhood and kNN graphs, which turn out
to be density-weighted versions of continuum total variation. We transcribe the results of García Trillos and Slepčev
(2016) and García Trillos (2019) to our setting, to ease the comparison. From García Trillos and Slepčev (2016), for the
ε-neighborhood weights (21) and any sequence ε = εn satisfying certain scaling conditions, it holds as n→∞ that

1

n2εd+1
n

DTV
(
f(x1:n); wε

)
→ c′d

∫
Ω

‖∇f(x)‖2 p2(x) dx, (25)

in a particular notion of convergence, for a constant c′d > 0. From García Trillos (2019), for the kNN weights (22) and
any sequence k = kn satisfying certain scaling conditions, defining ε̄n = (kn/n)1/d, it holds as n→∞ that

1

n2ε̄d+1
n

DTV
(
f(x1:n); wk

)
→ c′′d

∫
Ω

‖∇f(x)‖2 p1−1/d(x) dx, (26)
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again in a particular notion of convergence, and for a constant c′′d > 0.
These differences have interesting methodological interpretations. First, recall that traditional regularizers used in

nonparametric regression—which includes those in smoothing splines, thin-plate splines, and locally adaptive regression
splines, trend filtering, RKHS estimators, and so on—are not design-density dependent. In this way, the Voronoigram
adheres closer to the statistical mainstream than TV denoising on ε-neighborhood or kNN graphs, since the regularizer
in the Voronoigram tracks “pure” TV in large samples. Furthermore, by comparing (25) to (24) we see that, relative to
the Voronoigram, TV denoising on the ε-neighborhood graph does not assign as strong a penalty to functions that are
wiggly in low-density regions and smoother in high-density regions. TV denoising on the k-nearest neighbor graph lies
in between the two: the density p appears in (26), but raised to a smaller power than in (25).

We may infer from this scenarios in which density-weighted TV denoising would be favorable to density-free TV
denoising and vice versa. In a sampling model where the underlying regression function exhibits more irregularity in a
low-density region of the input space, we would expect a density-weighted method to perform better since the density
weighting provides a larger effective “budget” for the penalty, leading to greater regularization and variance reduction
overall. Conversely, in a sampling model where the regression function exhibits greater irregularity in a high-density
region, we would expect a density-free method to have a comparative advantage because the density weighting gives
rise to a smaller “budget”, hampering the ability to properly regularize. In Section 4, we consider sampling models that
reflect these qualities and assess the performance of each method empirically.

Remark 3. It is worth noting that it should be possible to remove the density dependence in the asymptotic limits for
the TV functionals over the ε-neighborhood and kNN graphs. Following seminal ideas in Coifman and Lafon (2006),
we would first form an estimate p̂ of the design density p, and then we would reweight the ε-neighborhood and kNN
graphs to precisely cancel the dependence on p in their limiting expressions. Under some conditions (which includes
consistency of p̂) this should guarantee that the asymptotic limits are density-free, that is, in our case, the reweighted
ε-neighborhood and kNN discrete TV functionals converge to “pure” TV.

4 Illustrative empirical examples
In this section, we empirically examine the properties elucidated in the last section. We first investigate whether the
large sample behavior of the three graph-based TV functionals of interest matches the prediction from asymptotics.
We then examine the use of each as a regularizer in nonparametric regression. Our experiments are not intended to be
comprehensive, but are meant to tease out differences that arise from the interplay between the density of the design
points and regions of wiggliness in the regression function.

4.1 Basic experimental setup
Throughout this section, our experiments center around a single function, in dimension d = 2: the indicator function of
a ball of radius r0 = 1

4 centered at x0 = ( 1
2 ,

1
2 ) ∈ R2,

f0 = 1{x ∈ B(x0, r0)}, (27)

supported on Ω = (0, 1)2. This is depicted in the upper display of Figure 2 using a wireframe plot.
We also consider three choices for the distribution P of the design points x1, . . . , xn, supported on Ω.

1. “Low inside tube”: the sampling density p is 0.295 on an annulus A centered at x0 that has inner radius r0 − 0.1
and outer radius r0 + 0.1. (The density on Ω \A is set to a constant value such that p integrates to 1.)

2. “High inside tube”: the sampling density p is 1.2 on A (with again a constant value chosen on Ω \A such that p
integrates to 1).

3. “Uniform”: the sampling distribution is uniform on Ω.

We illustrate these sampling distributions empirically by drawing n = 1274 observations from each and plotting them
on the lower set of plots in Figure 2. We note that the “high” density value of 1.2 for the “high inside tube” sampling
distribution yields an empirical distribution that—by eye—is indistinguishable from the empirical distribution formed
from uniformly drawn samples. However, as we will soon see, this departure from uniform is nonetheless large enough
that the large sample behavior of the TV functionals on Voronoi adjacency, ε-neighborhood, and k-nearest neighbor
graphs admit discernable differences.
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Figure 2: Illustration of the basic experimental setup used in this section. Top: the function f0 in (27) depicted using a
wireframe plot, along with n = 1274 noisy evaluations of f0 in blue (the noise level is set such that the signal-to-noise
ratio is 1). Bottom row: n = 1274 samples from each of the three design distributions considered. The boundary of the
set B(x0, r0) is denoted in red, and the annulus A is shaded in translucent gray.

4.2 Total variation estimation
We examine the of use of the Voronoi adjacency, k-nearest neighbor, and ε-neighborhood graphs, built from a random
sample of design points, to estimate the total variation of the function f0 in (27). To be clear, here we compute (using
the notation (23) introduced in the asymptotic limits section):

DTV
(
f0(x1:n);w

)
=

∑
{i,j}∈E

wij |f0(xi)− f0(xj)|,

for three choices of edge weights w: Voronoi (12), ε-neighborhood (21), and kNN (22).
We let the number of design points n range from 102 to 105, logarithmically spaced, with 20 repetitions indepen-

dently drawn from each design distribution for each n. The k-nearest neighbor graph is built using k = bC1 log1.1 nc,
and the ε-neighborhood graph is built using ε = C2(log1.1 n/n)1/2, where C1, C2 are constants chosen such that the
average degree of these graphs is roughly comparable to the average degree of the Voronoi adjacency graph (which has
no tuning parameter). We note that it is possible to obtain marginally more stable results for the k-nearest neighbor and
ε-neighborhood graphs by taking C1, C2 to be larger, and thus making the graphs denser. These results are deferred to
Appendix C, though we remark that the need to separately tune over such auxiliary parameters to obtain more stable
results is a disadvantage of the kNN and ε-neighborhood methods (recall also the discussion in Section 2.4).
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Figure 3 shows the results under the three design distributions outlined previously. For each sample size n and for
each graph, we plot the average discrete TV, and its standard error, with respect to the 20 repetitions. We additionally
plot the limiting asymptotic values predicted by the theory—recall (24), (25), (26)—as horizontal lines. Generally, we
can see that the discrete TV, as measured by each of the three graphs, approaches its corresponding asymptotic limit.
The standard error bars for the Voronoi graph tend to be the narrowest, whereas those for the kNN and ε-neighborhood
graphs are generally wider. In the rightmost plot, showing the results under uniform sampling, the asymptotic limits of
the discrete TV for the three methods match, since the density weighting is nullified by the uniform distribution.
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Figure 3: Results from the TV estimation experiment (“weighted Voronoi” refers to the usual Voronoi adjacency graph,
with weights in (12), and is used to distinguish it from the Voronoi adjacency graph with unit edge weights, which will
appear in later experiments). We see that the discrete TV as measured by each graph converges to its asymptotic limit,
drawn as a dashed horizontal line, as n grows (note that the x-axis is on a log scale).

To give a qualitative sense of their differences, Figure 4 displays the graphs from each of the methods for a draw of
n = 1274 samples under each sampling distribution. Note that the Voronoi adjacency and kNN graphs are connected
(this is always the case for the former), whereas this is not true of the ε-neighborhood graph (recall Section 2.4), with
the most noticable contrast being in the “low inside tube” sampling model. This relates to the notion that the Voronoi
and kNN graphs effectively use an adaptive local bandwidth, versus the fixed bandwidth used by the ε-neighborhood
graph. Comparing the former two (Voronoi and kNN graphs), we also see that there are fewer “holes” in the Voronoi
graph as it has the quality that it seeks neighbors “in each direction” for each design point.

4.3 Regression function estimation
Next we study the use of discrete TV from the Voronoi, k-nearest neighbor, and ε-neighborhood graphs as a penalty in
a nonparametric regression estimator. In other words, given noisy observations as in (1) of the function f0 in (27), we
solve the graph TV denoising problem (14) with penalty operator D equal to the edge incidence matrix corresponding
to the Voronoi (12), ε-neighborhood (21), and kNN (22) graphs.

We fix n = 1274, and draw each zi ∼ N(0, σ2), where the noise level σ2 > 0 is chosen so that the signal-to-noise
ratio, defined as

SNR =
Var(f0(xi))

σ2
,

is equal to 1. (Here Var(f0(xi)) denotes the variance of f0(xi) with respect to the randomness from drawing xi ∼ P .)
Each graph TV denoising estimator is fit over a range of values for the tuning parameter λ, and at value of λ we record
the L2(Pn) mean squared error

1

n

n∑
i=1

(
f̂(xi)− f0(xi)

)2
.

Figure 5 shows the average of this L2(Pn) error, along with its standard error, across the 20 repetitions. The x-axis is
parametrized by an estimated degrees of freedom for each λ value, to place the methods on common footing—that is,
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Figure 4: Visualization of the Voronoi, kNN, and ε-neighborhood graphs for a sample of n = 1274 design points from
each of the three sampling distributions considered. We see qualitatively very different behaviors in these three graph
models, and we can also intuit the different asymptotic limits of their discrete TV functionals; for example, the strong
dependence of the ε-neighborhood graph on the sampling density is quite noticeable in the “low inside tube” setting
(bottom left plot).
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recalling the general formula in (19) for any TV denoising estimator, we convert each value of λ to the average number
of resulting connected components over the 20 repetitions.

The results of Figure 5 broadly align with the expectations set forth at the end of Section 3: the density-weighted
methods (using kNN and ε-neighborhood graphs) perform better when the irregularity is concentrated in a low density
area (“low inside tube”), and the density-free method (the Voronoigram) does better when the irregularity is concentrated
in a high density area (“high inside tube”). We also observe that across all settings, the best performing estimator tends
to be the most parsimonious—the one that consumes the fewest degrees of freedom when optimally tuned.

100 101 102 103

10 2

10 1

L2 (
P n

) m
ea

n 
sq

ua
re

d 
er

ro
r

Low inside tube

100 101 102 103

Degrees of freedom

10 2

10 1

High inside tube

100 101 102 103

10 2

10 1

Uniform
Weighted Voronoi
Unweighted Voronoi
k-nearest neighbor
-neighborhood

Figure 5: Results from the function estimation experiment (“weighted Voronoi” refers to the usual Voronoi graph and
“unweighted Voronoi” the graph with the same edge structure but unit edge weights). We see that the density-weighted
methods—TV denoising over the kNN and ε-neighborhood graphs—generally do better in the “low inside tube” setting,
where the irregularity in f0 is concentrated in a low density region of the design distribution. Conversely, density-free
method—TV denoising on the Voronoi graph, also known as the Voronoigram—does better in the “high inside tube”
scenario, where irregularity is concentrated in a high density region. Lastly, TV denoising on the unweighted Voronoi
graph does very well in each scenario.

In the “low inside tube” setting (leftmost panel of Figure 5), we see that ε-neighborhood graph total variation does
worse than its kNN counterpart, even though we would have expected the former to outperform the latter (because it
weights the density more heavily; cf. (25) and (26)). The poor performance of TV denoising over the ε-neighborhood
graph may be ascribed to the large number of disconnected points (see Figures 4 and 6), whose fitted values it cannot
regularize. Such isolated points are also the reason why the minimal degrees of freedom obtained by this estimator (as
λ→∞) is larger than that for TV denoising over the kNN and Voronoi graphs, across all settings. In Appendix C, we
carry out a sensitivity analysis where we grow the ε-neighborhood and kNN graphs more densely, while retaining a
comparable average degree (to each other). There we find that the performance of the estimators becomes comparable
(the ε-neighborhood graph still has some disconnected points), which further emphasizes the peril of graph denoising
methods that permit isolated points.

Interestingly, under the uniform sampling distribution (rightmost panel of Figure 5), where the asymptotic limits of
the discrete TV functionals over the Voronoi, kNN, and ε-neighborhood graph are the same, we see that the Voronoigram
performs best in mean squared error, which is encouraging empirical evidence in its favor.

Finally, Figure 5 also displays the error of the unweighted Voronoigram, which we use to refer to TV denoising on
the unweighted Voronoi graph, obtained by setting each wV

ij = 1 in (8). This is somewhat of a “surprise winner”—it
performs close to the best in each of the sampling scenarios, and is computationally cheaper than the Voronoigram (it
avoids the expensive step of computing the Voronoi edge weights, which require surface area calculations). We lack an
asymptotic characterization for discrete TV on the unweighted Voronoi graph, thus we cannot provide a strong a priori
explanation for the favorable performance of the unweighted Voronoigram across our experimental suite. Nevertheless,
in view of the example adjacency graphs in Figure 4, we hypothesize that its favorable performance is due in part to
the adaptive local bandwidth inherent to the Voronoi graph, which seeks neighbors “in each direction” while avoiding
edge crossings. Moreover, in Section 5 we show that the unweighted Voronoigram shares the property of minimax rate
optimality (for estimating functions bounded in TV and L∞), further strengthening its case.
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4.4 Extrapolation: from fitted values to functions
As the last part of our experimental investigations, we consider extrapolating the graph TV denoising estimators, which
represent a sequence of fitted values at the design points: f̂(xi), i = 1, . . . , n, to a entire fitted function: f̂(x), x ∈ Ω.
As discussed and motivated in Section 2.4, we use the 1NN extrapolation rule for each estimator. This is equivalently
viewed as piecewise constant extrapolation over the Voronoi tessellation.
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Figure 6: Extrapolants from graph TV denoising estimates, using 1NN extrapolation. We can see several qualitative
differences, for example, the issues posed by isolated points in the ε-neighborhood graph. We also note that the number
of connected components in the graph used to learn the estimator (which gives an unbiased estimate of its degrees of
freedom) is guaranteed to match the number of connected components in the extrapolant only for the Voronoi methods.

Figure 6 plots the extrapolants for each TV denoising estimator, fitted over a particular sample of n = 1274 points
from each design distribution. In each case, the estimator was tuned to have optimal mean squared error (cf. Figure 5).
From these visualizations, we are able to clearly understand where certain estimators struggle; for example, we can see
the effect of isolated components in the ε-neighborhood graph in the “low inside tube” setting, and to a lesser extent in
the “high inside tube” and uniform sampling settings too. As for the Voronoigram, we previously observed (cf. Figure 5
again) that it struggles in the “low inside tube” setting due to the large weights placed on edges crossing the annulus,
and in the upper left plot of Figure 6 we see “patchiness” around the annulus, where large jumps are heavily penalized,
rather than sharper jumps made by other estimators (including its unweighted sibling). This is underscored by the large
number of connected components in the Voronoigram versus others in the “low inside tube” setting.

Lastly, because the partition induced by the 1NN extrapolation rule is exactly the Voronoi diagram, we note that the
number of connected components on the training set {x1, . . . , xn}—as measured by connectedness of the fitted values
f̂(x1), . . . , f̂(xn) over the Voronoi graph—always matches the number of connected components on the test set Ω—as
measured by connectedness of the extrapolant f̂ over the domain Ω. This is not true of TV denoising over the kNN and
ε-neighborhood graphs, where we can see a mismatch between connectedness pre- and post-extrapolation.
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5 Estimation theory for BV classes
In this section, we analyze error rates for estimating f0 given data as in (1), under the assumption that f0 has bounded
total variation. Thus, of central interest will be a (seminorm) ball in the BV space, which we denote by

BV(L) = {f ∈ L1(Ω) : TV(f) ≤ L}.

For simplicity, here and often throughout this section, we suppress the dependence on the domain Ω when referring to
various function classes of interest. We use P for the design distribution, and we will primarily be interested in error in
the L2(P ) norm, defined as

‖f̂ − f0‖2L2(P ) =

∫ (
f̂(x)− f0(x)

)2
dP (x).

We also use Pn for the empirical distribution of sample x1, . . . , xn of design points, and we will also be concerned with
error in the L2(Pn) norm, defined as

‖f̂ − f0‖2L2(Pn) =
1

n

n∑
i=1

(
f̂(xi)− f0(xi)

)2
.

We will generally use the terms “error” and “risk” interchangeably. Finally, we will consider the following assumptions,
which we refer to as the standard assumptions.

• The data (xi, yi), i = 1, . . . , n are i.i.d. following (1), where each zi ∼ N(0, σ2).

• The design points are drawn from a distribution P that satisfies Assumption A1.

• The dimension satisfies d ≥ 2 and remains fixed as n→∞.

Note that under Assumption A1, asymptotic statements about L2(P ) and L2(µ) errors are equivalent, with µ denoting
Lebesgue measure (the uniform distribution) on Ω, since it holds that pmin‖g‖2L2(µ) ≤ ‖g‖

2
L2(P ) ≤ pmax‖g‖2L2(µ) for

any function g.

5.1 Impossibility result without L∞ boundedness
A basic issue to explain at the outset is that, when d ≥ 2, consistent estimation over the BV class BV(L) is impossible
in L2(P ) risk. This is in stark contrast to the univariate setting, d = 1, in which TV-penalized least squares (Mammen
and van de Geer, 1997; Sadhanala and Tibshirani, 2019), and various other estimators, offer consistency.

One way to see this is through the fact that BV(Ω) does not compactly embed into L2(Ω) for d ≥ 2, which implies
that L2 estimation over BV(L) is impossible (see Section 5.5 of Johnstone, 2015 for a discussion of this phenomenon
in the Gaussian sequence model). We now state this impossibility result and provide a more constructive proof, which
sheds more light on the nature of the problem.

Proposition 2. Under the standard assumptions, there exists a constant c > 0 (not depending on n) such that

inf
f̂

sup
f0∈BV(1)∩L2(Ω)

E‖f̂ − f0‖2L2(P ) ≥ c > 0,

where the infimum is taken over all estimators f̂ that are measurable functions of the data (xi, yi), i = 1, . . . , n.

Proof. As explained above, under Assumption A1 we may equivalently study L2(µ) risk, which we do henceforth in
this proof. We simply denote ‖ · ‖L2 = ‖ · ‖L2(µ). Consider the two-point hypothesis testing problem of distinguishing

H0 : f?0 = 0 versus H1 : f?1 =
ε−d/2

2d
· 1(0,ε)d ,

where 0 < ε < 1. By construction, f ∈ L2(Ω) and TV(f) ≤ 1 for each of f = f?0 and f = f?1 . Additionally, we have
‖f?0 − f?1 ‖L2 = 1

2d . It follows from a standard reduction that

inf
f̂

sup
f0∈BV(1)∩L2(Ω)

E‖f̂ − f0‖L2 ≥ inf
f̂

sup
f0∈{f?

0 ,f
?
1 }

E‖f̂ − f0‖L2

≥ inf
ψ

(
PH0

(ψ = 1) + PH1
(ψ = 0)

)
, (28)
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where the infimum in the rightmost expression is over all measurable tests ψ. Now, conditional on the event

E = {xi 6∈ (0, ε)d, i = 1, . . . , n},

the distributions are the same under null and alternative hypotheses, PH0
(·|E) = PH1

(·|E). Additionally, note that we
have P(E) ≥ (1− pmaxε

d)n under Assumption A1. Consequently, for any test ψ,

PH1
(ψ = 1) = PH1

(ψ = 1|E)P(E) + PH1
(ψ = 1|Ec)P(Ec)

≤ PH1
(ψ = 1) + 1− (1− pmaxε

d)n

= PH0
(ψ = 1) + 1− (1− pmaxε

d).

In other words, just rearranging the above, we have shown that

PH0
(ψ = 1) + PH1

(ψ = 0) ≥ (1− pmaxε
d).

Taking ε→ 0, and plugging this back into (28), establishes the desired result.

The proof of Proposition 2 reveals one reason why consistent estimation over BV(L) is not possible: when d ≥ 2,
functions of bounded variation can have “spikes” of arbitrarily small width but large height, which cannot be witnessed
by any finite number of samples. (We note that this has nothing to do with noise in the response, and the proposition
still applies in the noiseless case with σ = 0.) This motivates a solution: in the remainder of this section, we will rule
out such functions by additionally assuming that f0 is bounded in L∞.

5.2 Minimax error: upper and lower bounds
Henceforth we assume that f0 has bounded TV and has bounded L∞ norm, that is, we consider the class

BV∞(L,M) = {f ∈ L1(Ω) : TV(f) ≤ L, ‖f‖L∞ ≤M}.

Here ‖ · ‖L∞ = ‖ · ‖L∞(Ω) is the essential supremum norm on Ω. Perhaps surprisingly, additionally assuming that f0

is bounded in L∞ dramatically improves prospects for estimation. The following theorem shows that two different and
simple modifications of the Voronoigram, appropriately tuned, each achieve a n−1/d rate of convergence in its sup risk
over BV∞(L,M), modulo log factors.

Theorem 2. Under the standard assumptions, consider either of the following modified Voronoigram estimators θ̂:

• the minimizer in the Voronoigram problem (8), once we replace each weight wV
ij by a clipped version defined as

w̃V
ij = max{c0n−(d−1)/d, wV

ij}, for any constant c0 > 0.

• the minimizer in the Voronoigram problem (8), once we replace each weight wV
ij by 1.

Let λ = cστn(log n)1/2+α for any α > 1 and a constant c > 0, where τn = n(d−1)/d for the clipped weights estimator
and τn = 1 for the unit weights estimator. There exists another constant C > 0 such that for all sufficiently large n and
f0 ∈ BV∞(L,M), the estimated function f̂ =

∑n
i=1 θ̂i · 1Vi

(which is piecewise constant over the Voronoi diagram)
satisfies

E‖f̂ − f0‖2L2(P ) ≤ C
(
σL(log n)5/2+α+1/d

n1/d
+

(log n)1+α

n
+
LM(log n)1+1/d

n1/d

)
. (29)

We now certify that this upper bound is tight, up to log factors, by providing a complementary lower bound.

Theorem 3. Under the standard assumptions, provided that n,L,M satisfy c0(M2n)−
(d−1)

d ≤ L ≤ C0(M2n)1/d for
constants C0 > c0 > 0, the minimax risk satisfies

inf
f̂

sup
f0∈BV∞(L,M)

E‖f̂ − f0‖2L2(P ) ≥ CLM(M2n)−1/d, (30)

for another constant C > 0, where the infimum is taken over all estimators f̂ that are measurable functions of the data
(xi, yi), i = 1, . . . , n.
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Taken together, Theorems 2 and 3 establish that the minimax rate of convergence over BV∞(1, 1) is n−1/d, modulo
log factors. Further, after subjecting it to minor modifications—either clipping small edge weights, or setting all edge
weights to unity (the latter being particularly desirable from a computational point of view)—the Voronoigram is
minimax rate optimal, again up to log factors.

The proof of the lower bound (30) is Theorem 3 is fairly standard and can be found in Appendix D. The proof of
the upper bound (29) in Theorem 2 is much more involved, and the key steps are described over Sections 5.3 and 5.4
(with the details deferred to Appendix D). Before moving on to key parts of the analysis, we make several remarks.

Remark 4. It is not clear to us whether clipping small weights in the Voronoigram penalty as we do in Theorem 2 (via
w̃V
ij = max{c0n−(d−1)/d, wV

ij}) is actually needed, or whether the unmodified estimator (8) itself attains the same or a
similar upper bound, as in (29). In particular, it may be that under Assumption A1, the surface area of the boundaries of
Voronoi cells (defining the weights) are already lower bounded in rate by n−(d−1)/d, with high probability; however
this is presently unclear to us.

Remark 5. The design points must be random in order to have nontrivial rates of convergence in our problem setting.
If x1, . . . , xn were instead fixed, then for d ≥ 2 and any n it is possible to construct f0 ∈ BV∞(1, 1) with f0(xi) = 0,
i = 1, . . . , n and (say) ‖f‖L2 = 1/2. Standard arguments based on reducing to a two-point hypothesis testing problem
(as in the proof of Proposition 2) reveal that the minimax rate in L2 is trivially lower bounded by a constant, rendering
consistent estimation impossible once again.

This is completely different from the situation for d = 1, where the minimax risks under fixed and random design
models for TV bounded functions are basically equivalent. Fundamentally, this is because for d ≥ 2 the space BV(Ω)
does not compactly embed into C0(Ω), the space of continuous functions (whereas for d = 1, all functions in BV(Ω)
possess at least an approximate form of continuity). Note carefully that this is a different issue than the failure of BV(Ω)
to compactly embed into L2(Ω), and that it is not fixed by intersecting a TV ball with an L∞ ball.

Remark 6. We can generalize the definition of total variation in (2), by generalizing the norm we use to constrain the
“test” function φ to an arbitrary norm ‖ · ‖ on Rd. (See (S.1) in the appendix.) The original definition in (2) uses the `2
norm, ‖ · ‖ = ‖ · ‖2. What would minimax rates look if we used a different choice of norm to define TV? Suppose that
we use an `p norm, for any p ≥ 1; that is, suppose we take ‖ · ‖ = ‖ · ‖p as the norm to constrain the “test” functions in
the supremum. Then under this change, the minimax rate will still remain n−1/d, just as in Theorems 2 and 3. This is
simply due to the fact that `p norms are equivalent on Rd (thus a unit ball in the TV-`p seminorm will be sandwiched in
between two balls in TV-`2 seminorm of constant radii).

Remark 7. The minimax rate for estimating a Lipschitz function, that is, the minimax rate over the class

Lip(L) = {f : Ω→ R : |f(x)− f(z)| ≤ L‖x− z‖2 for all x, z ∈ Ω},

is n−2/(2+d) in squared L2 risk, for constant L > 0 (not growing with n); see, e.g., Stone (1982). When d = 2, this is
equal to n−1/2, implying that the minimax rates for estimation over Lip(1) and BV∞(1, 1) match (up to log factors).
This is despite the fact that Lip(1) is a strict subset of BV∞(1, 1), with the latter containing far more diverse functions,
such as those with sharp discontinuities (indicator functions being a prime example). When d ≥ 3, we can see that the
minimax rates drift apart, with that for BV∞(1, 1) being slower than Lip(1), increasingly so for larger d.

Remark 8. A related point worthy of discussion is about what types of estimators can attain optimal rates over Lip(1)
and BV∞(1, 1). For Lip(1), various linear smoothers are known to be optimal, which describes an estimator f̂ of the
form f̂(x) = w(x)Ty for a weight function w : Ω→ Rn (the weight function can depend on the design points but not
on the response vector y). This includes kNN regression and kernel smoothing, among many other traditional methods.
For BV∞(1, 1), meanwhile, we have shown that the (modified) Voronoigram estimator is optimal (modulo log factors),
which is highly nonlinear as a function of y. All other examples of minimax rate optimal estimators that we provide
in Section 5.5 are nonlinear in y as well. In fact, we conjecture that no linear smoother can achieve the minimax rate
over BV∞(1, 1). There is very strong precedence for this, both from the univariate case (Donoho and Johnstone, 1998)
and from the multivariate lattice case (Sadhanala et al., 2016). We leave a minimax linear analysis over BV∞(1, 1) to
future work.

Remark 9. Lastly, we comment on the relationship to the results obtained in Padilla et al. (2020). These authors study
TV denoising over the ε-neighborhood and kNN graphs; our analysis also extends to cover these estimators, as shown in
Section 5.5. They obtain a comparable squared L2 error rate of n−1/d, under a related but different set of assumptions.
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In one way, their assumptions are more restrictive than ours, because they require conditions on f0 that are stronger
than TV and L∞ boundedness: they require it to satisfy an additional assumption that generalizes piecewise Lipschitz
continuity, but is difficult to assess, in terms of understanding precisely which functions have this property. (They also
directly consider functions that are piecewise Lipschitz, but this assumption is so strong that they are able to remove the
BV assumption entirely and attain the same error rates.)

In another way, the results in Padilla et al. (2020) go beyond ours, since they accomodate the case when the design
points lie on a manifold, in which case their estimation rates are driven by the intrinsic (not ambient) dimension. Such
manifold adaptivity is possible due to strong existing results on the properties of the ε-neighborhood and kNN graphs in
the manifold setting. Is is unclear to us whether the Voronoi graph has similar properties. This would be an interesting
topic for future work.

5.3 Analysis of the Voronoigram: L2(Pn) risk
We outline the analysis of the Voronoigram. The analysis proceeds in three parts. First, we bound the L2(Pn) risk of
the Voronoigram in terms of the discrete TV of the underlying signal over the Voronoi graph. Second, we bound this
discrete TV in terms of the continuum TV of the underlying function. This is presented in Lemmas 1 and 2, respectively.
The third step is to bound the L2(P ) risk after extrapolation (to a piecewise constant function on the Voronoi diagram),
which is presented in Lemma 3 in the next subsection. All proofs are deferred until Appendix D.

For the first part, we effectively reduce the discrete analysis of the Voronoigram—in which we seek to upper bound
its L2(Pn) risk in terms of its discrete TV—to the analysis of TV denoising on a grid. Analyzing this estimator over a
grid is desirable because a grid graph has nice spectral properties (cf. the analyses in Wang et al. (2016); Hutter and
Rigollet (2016); Sadhanala et al. (2016, 2017, 2021) which all leverage such properties). In the language of functional
analysis, the core idea here is an embedding between the spaces defined by the discrete TV operators with respect to
one graph G and another G′, of the form

‖D(G′) θ‖1 ≤ Cn‖D(G) θ‖1, for all θ ∈ Rn,

where D(G), D(G′) denote their respective edge incidence operators. This approach was pioneered in Padilla et al.
(2018), who used it to study error rates for TV denoising in quite a general context. It is also the key behind the analysis
of TV denoising on the ε-neighborhood and kNN graph in Padilla et al. (2020), who also perform a reduction to a grid
graph. The next lemma, inspired by this work, shows that the analogous reduction is available for the Voronoi graph.

Lemma 1. Under the standard assumptions, consider either of the two modified Voronoi weighting schemes defined in
Theorem 2:

• w̃V
ij = max{c0n−(d−1)/d, wV

ij} for each i, j such that wV
i,j > 0;

• w̌V
ij = 1 for each i, j such that wV

i,j > 0.

Let D denote the edge incidence operator corresponding to the modified graph, and θ̂ the solution in (14) (equivalently,
it is the solution in (8) after substituting in the modified weights). Then there exists a matrix D′, that can be viewed as a
suitably modified edge incidence operator corresponding to a d-dimensional grid graph, such that

‖D′θ‖1 ≤ Cnτn‖Dθ‖1, for all θ ∈ Rn, (31)

with probability at least 1− 3/n4 (with respect to the distribution of design points), where Cn > 0 grows polylogarith-
mically in n and τn is the scaling factor defined in Theorem 2. Further, letting λ = cστn(log n)1/2+α for any α > 1
and a constant c > 0, there exists another constant C > 0 such that for all sufficiently large n and f0 ∈ BV(Ω),

E
[

1

n
‖θ̂ − θ0‖22

]
≤ C

(
στn(log n)1/2+α

n
E‖Dθ0‖1 +

(log n)α

n

)
, (32)

where we denote θ0 = (f0(x1), . . . , f0(xn)) ∈ Rn.

Notice that, in equivalent notation, we can write the left-hand side in (32) as n−1‖θ̂ − θ0‖22 = ‖f̂ − f0‖2L2(Pn), for
the estimated function satisfying f̂(xi) = θ̂i, i = 1, . . . , n; and for the `1 term on the right-hand side in (32) we can
write ‖Dθ0‖1 = DTV(f0(x1:n); w) for suitable edge weights w—either of the two choices defined in bullet points at
the start of the theorem—over the Voronoi graph.
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As we can see, the L2(Pn) risk of the Voronoigram depends on the discrete TV of the true signal over the Voronoi
graph. A natural question to ask, then, is whether a function bounded in continuum TV is also bounded in discrete TV,
when the latter is measured using the Voronoi graph. Our next result answers this in the affirmative. It is inspired by
analogous results developed in Green et al. (2021a,b) for Sobolev functionals.

Lemma 2. Under Assumption A1, there exists a constant C > 0 such that for all sufficiently large n and f0 ∈ BV(Ω),
with w denoting either of the two choices of edge weights given at the start of Lemma 1,

E
[

DTV
(
f0(x1:n); w

)]
≤ Cτ̄n(log n)1+1/d TV(f0), (33)

where τ̄n = n(d−1)/d/τn (which is 1 for the clipped weights estimator and n(d−1)/d for the unit weights estimator).

Lemmas 1 and 2 may be combined to yield the following result, which is the L2(Pn) analog of Theorem 2.

Corollary 1. Under the standard assumptions, for either of the two modified Voronoigram estimators from Theorem 2,
letting λ = cστn(log n)1/2+α for any α > 1 and a constant c > 0, there exists another constant C > 0 such that for
all sufficiently large n and f0 ∈ BV(L),

E‖f̂ − f0‖2L2(Pn) ≤ C
(
σL(log n)3/2+α+1/d

n1/d
+

(log n)α

n

)
. (34)

Note that for a constant L (not growing with n), the L2(Pn) bound in (34) converges at the rate n−1/d, up to log
factors. Interestingly, this L2(Pn) guarantee does not require f0 to be bounded in L∞, which we saw was required for
consistent estimation in L2(P ) error. Next, we will turn to an L2(P ) upper bound, which does require L∞ boundedness
on f0. That this is not needed for L2(Pn) consistency is intuitive (at least in hindsight): recall that we saw from the
proof of Proposition 2 that inconsistency in L2(P ) occurred due to tall spikes with vanishing width but non-vanishing
L2 norm, which could not be witnessed by a finite number of samples. To the L2(Pn) norm, which only measures error
at locations witnessed by the sample points, these pathologies are irrelevant.

5.4 Analysis of the Voronoigram: L2(P ) risk
To close the loop, we derive bounds on the L2(P ) risk of the Voronoigram via the L2(Pn) bounds just established. For
this, we need to consider the behavior of the Voronoigram estimator off of the design points. Recall that an equivalent
interpretation of the Voronoigram fitted function, f̂ =

∑n
i=1 f̂(xi) · 1Vi , is that it is given by 1-nearest-neighbor (1NN)

extrapolation, applied to (xi, f̂(xi)), i = 1, . . . , n. Our approach here is to define an analogous 1NN extrapolant f̄0 to
(xi, f0(xi)), i = 1, . . . , n, and then use the triangle inequality, along with the fact that f̂ , f̄0 are piecewise constant on
the Voronoi diagram, to argue that

‖f̂ − f0‖2L2(P ) ≤ 2‖f̂ − f̄0‖2L2(P ) + 2‖f̄0 − f0‖2L2(P )

= 2

n∑
i=1

(∫
Vi

1dP
)(
f̂(xi)− f0(xi)

)2
+ 2‖f̄0 − f0‖2L2(P )

≤ 2pmaxn ·
(

max
i=1,...,n

µ(Vi)

)
︸ ︷︷ ︸

Kn

‖f̂ − f0‖2L2(Pn) + 2‖f̄0 − f0‖2L2(P ), (35)

where µ(Vi) denotes the Lebesgue volume of Vi. The first term in (35) is the L2(Pn) error multiplied by a factor Kn

that is driven by the maximum volume of a Voronoi cell, and we can show Kn is well-controlled (of order log n) under
Assumption A1. The second term is a kind of L2(P ) approximation error from applying the 1NN extrapolation rule to
evaluations of f0 itself. When f0 ∈ BV∞(L,M), this is also well-controlled, as we show next.

Lemma 3. Assume that x1, . . . , xn are i.i.d. from a distribution satisfying Assusmption A1. Then there is a constant
C > 0 such that for all sufficiently large n and f0 ∈ BV∞(L,M),

E‖f̄0 − f0‖2L2(P ) ≤ C
(
LM(log n)1+1/d

n1/d

)
. (36)
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We make two remarks to conclude this subsection.

Remark 10. For nonparametric regression with random design, a standard approach is to use uniform concentration
results that couple the L2(P ) and L2(Pn) norms in order to obtain an error guarantee in one norm from a guarantee in
the other; see, e.g., Chapter 14 of Wainwright (2019). In our setting, such an approach is not applicable—the simplest
explanation being that for any x1, . . . , xn, there will always exist a function f ∈ BV∞(1, 1) for which ‖f‖L2(Pn) = 0
but ‖f‖L2(P ) = 1/2. This is the same issue as that discussed in Remark 5.

Remark 11. The contribution of the extrapolation risk in (36) to the overall bound in (29) is not negligible. This raises
the possibility that, for this problem, extrapolation from random design points with noiseless function values can be at
least as hard as L2(Pn) estimation from noisy responses. This is in contrast with conventional wisdom which says that
the noiseless problem is generally much easier. Of course, Lemma 3 only provides an upper bound on the extrapolation
risk, without a matching lower bound. Resolving the minimax L2(P ) error in the noiseless setting, and more broadly,
studying its precise dependence on the noise level σ, is an interesting direction for future work.

5.5 Other minimax optimal estimators
Finally, we present L2(P ) guarantees that show that other estimators can also obtain minimax optimal rates (up to log
factors) for the class of functions bounded in TV and L∞. First, we consider TV denoising on ε-neighborhood and kNN
graphs, using 1NN extrapolation to turn them into functions on Ω. The analysis is altogether very similar to that for the
Voronoigram outlined in the preceding subsections, and the details are deferred to Appendix D. A notable difference,
from the perspective of methodology, is that these estimators require proper tuning in the graph construction itself.

Theorem 4. Under the standard assumptions, consider the graph TV denoising estimator θ̂ε which solves problem (14)
with D = D(Gε), the edge incidence operator of the ε-neighborhood graph Gε, with edge weights as in (21). Letting
ε = c1((log n)α/n)1/d and λ = c2σ(log n)1/2−α for any α > 1 and constants c1, c2 > 0, there is a constant C > 0
such that for all sufficiently large n and f0 ∈ BV∞(L,M), the 1NN extrapolant f̂ε =

∑n
i=1 θ̂

ε
i · 1Vi

satisfies

E‖f̂ε − f0‖2L2(P ) ≤ C
(
σL(log n)3/2+α/d

n1/d
+

(log n)1+α

n
+
LM(log n)1+1/d

n1/d

)
. (37)

Consider instead the graph TV denoising estimator θ̂k which solves problem (14) with D = D(Gk), the edge incidence
operator of the kNN graph Gk, with edge weights as in (22). Letting k = c′1(log n)3 and λ = c′2σ(log n)1/2−α for any
α > 1 and constants c′1, c

′
2 > 0, there is a constant C ′ > 0 such that for all sufficiently large n and f0 ∈ BV∞(L,M),

the 1NN extrapolant f̂k =
∑n
i=1 θ̂

k
i · 1Vi

satisfies

E‖f̂k − f0‖2L2(P ) ≤ C
′
(
σL(log n)9/2−α+3/d

n1/d
+

(log n)1+α

n
+
LM(log n)1+1/d

n1/d

)
. (38)

Next, and last, we consider wavelet denoising. For this we assume that the design density is uniform on Ω = (0, 1)d.
The analysis is quite different from the preceding ones, but it relies on fairly standard techniques in wavelet theory, and
we defer the details to Appendix D.

Theorem 5. Under the standard conditions, further assume that P = µ, the uniform measure on Ω = (0, 1)d. For an
estimator f̂wav based on hard-thresholding Haar wavelet coefficients, there exist constants c, C > 0 such that for all
sufficiently large n and f0 ∈ BV∞(L,M), it holds that

E‖f̂wav − f0‖2L2 ≤
CLM

n1/d
+ C ·

{
Lδ∗n max{1, 1/M, log2(M

√
n)} d = 2

L2/d(δ∗n)4/(2+d) + LM(δ∗n/M)2/d d ≥ 3,
(39)

where δ∗n = (c/
√
n)((log n)3/2 +M(log n)1/2).

6 Discussion
In this paper, we studied total variation as it touches on various aspects of multivariate nonparametric regression, such
as discrete notions of TV based on scattered data, the use of discrete TV as a regularizer in nonparametric estimators,
and estimation theory over function classes where regularity is given by (continuum) TV.

25



We argued that a particular formulation of discrete TV, based on the graph formed by adjacencies with respect to
the Voronoi diagram of the design points x1, . . . , xn, has several desirable properties when used as the regularizer in a
penalized least squares context—defining an estimator we call the Voronoigram. Among these properties:

• it is user-friendly (requiring no auxiliary tuning parameter unlike other geometric graphs, such as ε-neighborhood
or k-nearest-neighbor graphs);

• it tracks “pure TV” in large samples, meaning that discrete TV on the Voronoi graph converges asymptotically to
continuum TV, independent of the design density (as opposed to ε-neighborhood or kNN graphs, which give rise
to certain types of density-weighted TV in the limit);

• it achieves the minimax optimal convergence rate in L2 error over a class of functions bounded in TV and L∞;

• it admits a natural duality between discrete and continuum formulations, so the fitted values f̂(xi), i = 1, . . . , n
have exactly the same variation (as measured by discrete TV) over the design points as the fitted function f̂ (as
measured by continuum TV) over the entire domain.

The last property here is completely analogous to the discrete-continuum duality inherent in trend filtering (Tibshirani,
2014, 2022), which makes the Voronoigram a worthy successor to trend filtering for multivariate scattered data, albeit
restricted to the polynomial order k = 0 (piecewise constant estimation).

Several directions for future work have already been discussed throughout the paper. We conclude by mentioning
one more: extension to the polynomial order k = 1, that is, adaptive piecewise linear estimation, in the multivariate
scattered data setting. For this problem, we believe the estimator proposed by Koenker and Mizera (2004), defined in
terms of the Delaunay triangulation (which is a dual graph to the Voronoi tessellation) of the design points, will enjoy
many properties analogous to the Voronoigram, and is deserving of further study.
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