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A Added details and proofs for Sections 1 and 2

A.1 Discussion of sampling model for BV functions
We clarify what is meant by the sampling model in (1), since, strictly speaking, each element f ∈ BV(Ω) is really an
equivalence class of functions, defined only up to sets of Lebesgue measure zero. This issue is not simply a formality,
and becomes a genuine problem for d ≥ 2, as in this case the space BV(Ω) does not compactly embed into C0(Ω), the
space of continuous functions on Ω (equipped with the L∞ norm). A key implication of this is that the point evaluation
operator is not continuous over BV(Ω).

In order to make sense of the evaluation map, x 7→ f(x), we will pick a representative, denoted f? ∈ f , and speak
of evaluations of this representative. Our approach here is the same as that taken in Green et al. (2021a,b), who study
minimax estimation of Sobolev functions in the subcritical regime (and use an analogous random design model). We let
f? be the precise representative, defined (Evans and Gariepy, 2015) as:

f?(x) =

lim
ε→0

1

µ(B(x, ε))

∫
B(x,ε)

f(z) dz if the limit exists

0 otherwise.

Here µ denotes Lebesgue measure and B(x, ε) is the ball of radius ε centered at x.
Now we explain why the particular choice of representative is not crucial, and any choice of representative would

have resulted in the same interpretation of function evaluations in (1), almost surely, assuming that each xi is drawn
from a continuous distribution on Ω. Recall that for a locally integrable function f on Ω, we say that a given point
x ∈ Ω is a Lebesgue point of f provided that limε→0(

∫
B(x,ε)

f(z) dz)/µ(B(x, ε)) exists and equals f(x). By the
Lebesgue differentiation theorem (e.g., Theorem 1.32 of Evans and Gariepy, 2015), for any f ∈ L1(Ω), almost every
x ∈ Ω is a Lebesgue point of f . This means that each evaluation f?(xi) of the precise representative will equal the
evaluation of any member of the equivalence class, almost surely (with respect to draws of xi). This justifies the
notation f(xi) used in the main text, for f ∈ BV(Ω) and xi drawn from a continuous probability distribution.

A.2 TV representation for piecewise constant functions
Here we will state and prove a more general result from which Proposition 1 will follow. First we give a more general
definition of measure theoretic total variation, wherein the norm used to constrain the “test function” φ in the supremum
is an arbitrary norm ‖ · ‖ on Rd,

TV(f ; Ω, ‖ · ‖) = sup

{∫
Ω

f(x) div φ(x) dx : φ ∈ C1
c (Ω;Rd), ‖φ(x)‖ ≤ 1 for all x ∈ Ω

}
. (S.1)

Note that our earlier definition in (2) corresponds to the special case TV(f ; Ω, ‖ · ‖2), that is, corresponds to choosing
‖ · ‖ = ‖ · ‖2 in (S.1). In the more general TV context, this special case is often called isotropic TV.

Proposition S.1. Let V1, . . . , Vn be an open partition of Ω such that each Vi is semialgebraic. Let f be of the form

f =

n∑
i=1

θi · 1Vi ,
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for arbitrary θ1, . . . , θn ∈ R. Then, for any norm ‖ · ‖ and its dual norm ‖ · ‖∗ (induced by the Euclidean inner product),
we have

TV(f ; Ω, ‖ · ‖) =

n∑
i,j=1

(∫
∂Vi∩∂Vj

‖ni(t)‖∗ dHd−1(t)

)
· |θi − θj |,

where ni(t) is the measure theoretic unit outer normal for Vi at a boundary point t ∈ ∂Vi. In particular, in the isotropic
case ‖ · ‖ = ‖ · ‖2,

TV(f ; Ω, ‖ · ‖2) =

n∑
i,j=1

Hd−1(∂Vi ∩ ∂Vj) · |θi − θj |.

Remark 1. The condition that each Vi is semialgebraic may to weakened to what is called “polynomially bounded
boundary measure.” Namely, the proposition still holds if each map r 7→ Hd−1(∂Vi∩B(0, r)) is polynomially bounded
(cf. Assumption 2.2 in Mikkelsen and Hansen, 2018). This is sufficient to guarantee a locally Lipschitz boundary (a
prerequisite for the application of Gauss-Green) and to characterize the outer normals associated with the partition
V1, . . . , Vn.

Proof. We begin by deriving an equivalent expression of total variation of piecewise constant functions.

TV(f ; Ω, ‖·‖)

= sup

{∫
Ω

f(x) div φ(x)dx : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀x

}
= sup

{
n∑
i=1

∫
Vi

θi div φ(x)dx : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀x

}

= sup

{
n∑
i=1

θi

∫
∂Vi

〈φ(t), ni(t)〉dHd−1(t) : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀x

}
(S.2)

= sup

{
n∑

i,j=1

(
θi

∫
∂Vi∩∂Vj

〈φ(t), ni(t)〉dHd−1(t) + θj

∫
∂Vi∩∂Vj

〈φ(t), nj(t)〉dHd−1(t)

)

+
∑

i:V̄i∩∂Ω6=∅

θi

∫
∂Vi∩∂Ω

〈φ(t), ni(t)〉dHd−1(t)︸ ︷︷ ︸
=0; (φ compactly supported)

: φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀t

} (S.3)

= sup

{
n∑

i,j=1

∫
∂Vi∩∂Vj

(θi − θj)〈φ(t), ni(t)〉dHd−1(t) : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀t

}
(S.4)

we obtain (S.2) by applying the Gauss-Green Theorem (Evans and Gariepy, 2015, Theorem 5.16); (S.3) by observing
that when the boundaries of three or more Vi 6= Vj 6= Vk 6= · · · intersect, the outer normal vector is zero (Mikkelsen
and Hansen, 2018, Lemma A.2(c)); and (S.4) because when the boundaries of exactly two Vi 6= Vj intersect, they have
opposing outer normals (Mikkelsen and Hansen, 2018, Lemma A.2(b)). Apply Hölder’s inequality to obtain an upper
bound,

TV(f ; Ω, ‖·‖)

≤ sup

{
n∑

i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

‖φ(t)‖∗‖ni(t)‖dHd−1(t) : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀t

}

=

n∑
i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

‖ni(t)‖dHd−1(t),

where recall ‖·‖, ‖·‖∗ are dual norms. Finally, we obtain a matching lower bound via a mollification argument. The
target of our approximating sequence will be a pointwise duality map with respect to ‖·‖, but first we need to do a little
bit of work. Define the function φ0 : ∪ni,j=1∂Vi ∩ ∂Vj → Rd by

φ0(t) ∈ {g/‖g‖∗ : g ∈ F (ni(t)), t ∈ ∂Vi ∩ ∂Vj},
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and its piecewise constant extension to Ω, φ̃ : Ω→ Rd by

φ̃(x) = φ0

(
t ∈ argmin

t
{‖x− t‖2 : t ∈ ∪ni,j=1∂Vi ∩ ∂Vj}

)
,

where for a Banach space E and its continuous dual E∗, we write F : E → P (E∗) for the dual map defined by

F (x0) =
{
f0 ∈ E∗ : ‖f0‖E∗ = ‖x0‖E and 〈f0, x0〉(E,E∗) = ‖x0‖2E

}
,

and moreover when E∗ is strictly convex, the duality map is singleton-valued (Brezis, 2011). Observe that φ̃ ∈ Lploc(Ω),
1 ≤ p <∞, so there exists an approximating sequence φ̃k ∈ C∞c (Ω,Rd), k = 1, 2, 3, . . ., such that limk→∞ φ̃k → φ̃
µ-a.e. We invoke Fatou’s Lemma and properties of the duality map to obtain a matching lower bound,

TV(f ; Ω, ‖·‖)

= sup

{
n∑

i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

〈φ(t), ni(t)〉dHd−1(t) : φ ∈ C1
c (Ω;Rd), ‖φ‖∗ ≤ 1 ∀t

}

≥
n∑

i,j=1

|θi − θj | lim inf
k→∞

∫
∂Vi∩∂Vj

〈φ̃k(t), ni(t)〉dHd−1(t)

≥
n∑

i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

〈
lim inf
k→∞

φ̃k(t), ni(t)

〉
dHd−1(t)

=

n∑
i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

〈
lim
k→∞

φ̃k(t), ni(t)

〉
dHd−1(t)

=

n∑
i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

〈φ̃(t), ni(t)〉dHd−1(t)

=

n∑
i,j=1

|θi − θj |
∫
∂Vi∩∂Vj

‖ni(t)‖dHd−1(t),

establishing equality.

B Proofs for Section 3

B.1 Roadmap for the proof of Theorem 1
The proof of Theorem 1 consists of several parts, and we summarize them below. Some remarks on notation: throughout
this section, we use σVor for the constant cd appearing in (24), and we abbreviate ‖ · ‖ = ‖ · ‖2. Also, we use C1(Ω) and
C2(Ω) to denote the spaces of continuously differentiable and twice continuously differentiable functions, respectively,
equipped with the L∞ norm.

1. An edge {i, j} in the Voronoi graph depends not only on xi and xj but also on all other design points xk, k 6= i, j.
In Lemma S.1, we start by showing that the randomness due this dependence on xk, k 6= i, j is negligible,

E
[(

DTV(f ;wV)− Un,Vor(f)
)2] ≤ C ‖f‖2C1(Ω)(log n)(d+2)/d

n1/d
, (S.5)

for a constant C > 0. The functional Un,Vor(f) is an order-2 U-statistic,

Un,Vor(f) =
1

2

n∑
i=1

n∑
j=1

∣∣f(xi)− f(xj)
∣∣HVor(xi, xj),

with kernel HVor(x, y) defined by

HVor(x, y) = E
[
Hd−1(∂Vi ∩ ∂Vj)|xi, xj

]
=

∫
L∩Ω

(
1− px(z)

)(n−2)
dz.
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Here L = Lxy is the (d− 1)-dimensional hyperplane L = {z : ‖x− z‖ = ‖y− z‖}, and px(z) = P (B(z, ‖x−
z‖)). (Note that px(z) = py(z) for all z ∈ L).

2. We proceed to separately analyze the variance and bias of Un,Vor(f). In Lemma S.2, we establish that Un,Vor(f)
concentrates around its mean, giving the estimate, for a constant C > 0,

Var
[
Un,Vor(f)

]
≤ C (log n)3

n
‖f‖2C1(Ω). (S.6)

3. It remains to analyze the bias, the difference between the expectation of Un,Vor(f) and continuum TV. Lemma S.3
leverages the fact that the kernel HVor(x, y) is close to a spherically symmetric kernel—at least at points x, y
sufficiently far from the boundary of Ω—to show that the expectation of the U-statistic Un,Vor(f) is close to (an
appropriately rescaled version of) the nonlocal functional

TVε,K

(
f ; Ω, h

)
:=

∫
Ω

∫
Ω

|f(x)− f(y)|KVor

(
‖y − x‖
ε(x)

)
h(x) dy dx, (S.7)

for bandwidth ε(x) = (np(x))−1/d, weight h(x) = (p(x))(d+1)/d, and kernel KVor(t) defined in (S.13).
Lemma S.4 in turn shows that this nonlocal functional is close to (a scaling factor) times

∫
Ω
‖∇f‖. Together,

these lemmas imply that

lim
n→∞

E[Un,Vor(f)] = σVor

∫
Ω

‖∇f(x)‖ dx. (S.8)

Combining (S.5), (S.6), and (S.8) with Chebyshev’s inequality implies the consistency result stated in (24). In the rest
of this section, across Sections B.2–B.4, we state and prove the various lemmas referenced above.

B.2 Step 1: Voronoi TV approximates Voronoi U-statistic
Lemma S.1 upper bounds the expected squared difference between Voronoi TV and the U-statistic Un,Vor(f).

Lemma S.1. Suppose x1:n are sampled independently from a distribution P satisfiying A1. There exists a constant
C > 0 such that for all n ∈ N sufficiently large, and any f ∈ C1(Ω),

E
[(

DTV(f ;wV)− Un,Vor(f)
)2] ≤ C ‖f‖2C1(Ω)(log n)(d+2)/d

n1/d
.

Proof of Lemma S.1. We begin by introducing some notation and basic inequalities used throughout this proof. Take
ε0 = (log n/n)1/d. Let Bx(z) := Bo(z, ‖x− z‖) denote the open ball centered at z of radius ‖x− z‖, and note that
by our assumptions on p, we have px(z) := P (Bx(z)). We will repeatedly use the estimates

px(z) ≥ pmin

2d
µd‖x− z‖d,

and therefore for c1 = pmin

2d µd,
(1− px(z))n ≤ exp(−c1n‖x− z‖d).

It follows by Lemma S.18 that for any constants a, c > 0, there exists a constant C > 0 depending only on a, c and d
such that ∫

L∩Ω

(1− cpx(z))n ≤ C
(

1{‖x− y‖ ≤ Cε0}
n(d−1)/d

+
1

n5

)
.

We will assume n ≥ 8, so that the same estimate holds with respect to n − 4 ≥ n/2. Finally for simplicity write
∆(xi, xj) := |f(xi)− f(xj)|

(
Hd−1(∂Vi ∩ ∂Vj)−HVor(xi, xj)

)
.

We note immediately that, because x1:n are identically distributed, it follows from linearity of expectation that

E
[(

DTVn,Vor(f ;wV)− Un,Vor(f)
)2]

=

(
n

2

)
E[
(
∆(x1, x2)

)2
]

+

(
n

3

)
E
[
∆(x1, x2)∆(x1, x3)

]
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+

(
n

4

)
E
[
∆(x1, x2)∆(x3, x4)

]
=:

(
n

2

)
T1 +

(
n

3

)
T2 +

(
n

4

)
T3.

We separately upper bound |T1| (which will make the main contribution to the overall upper bound) and |T2| and |T3|
(which will be comparably negligible). In each case, the general idea is to use the fact that the fluctuations of the
Voronoi edge weightsHd−1(∂V1 ∩ ∂V2) around the conditional expectation HVor(x1, x2) are small unless x1 and x2

are close together.

Upper bound on T1. We begin by conditioning on x1, x2, and considering the conditional expectation

E
[
(∆(x1, x2))2|x1, x2

]
= |f(x1)− f(x2)|2Var(Hd−1(∂V1 ∩ ∂V2)|x1, x2).

By Jensen’s inequality,

Var(Hd−1(∂V1 ∩ ∂V2)|x1, x2) ≤ Hd−1(L ∩ Ω)

∫
L∩Ω

Var
(
1{Pn(Bx1

(z)) = 0}|x1

)
dz

= Hd−1(L ∩ Ω)

∫
L∩Ω

(
1− px1

(z)
)(n−2)

dz

≤ C
( 1

n(d−1)/d
1{‖x1 − x2‖ ≤ Cε0}+

1

n5

)
.

Taking expectation over x1 and x2 gives

T1 ≤ C
(‖f‖2C1(Ω)

n(d−1)/d

∫
Ω

∫
Ω

‖x− y‖21{‖x− y‖ ≤ Cε0} dy dx+
‖f‖2L∞(Ω)

n5

)

≤ C
(‖f‖2C1(Ω)ε

(d+2)
0

n(d−1)/d
+
‖f‖2L∞(Ω)

n5

)
= C

(‖f‖2C1(Ω)(log n)(d+2)/d

n(2+1/d)
+
‖f‖2L∞(Ω)

n5

)
.

Upper bound on T2. Again we begin by conditioning, this time on x1:3, meaning we consider

E
[
∆(x1, x2)∆(x1, x3)|x1:3

]
= |f(x1)− f(x2)||f(x1)− f(x3)|Cov

[
Hd−1(∂V1 ∩ ∂V2),Hd−1(∂V1 ∩ ∂V3)|x1:3

]
.

We begin by focusing on this conditional covariance. Write L = {z ∈ Ω : ‖z − x1‖ = ‖z − x2‖} and likewise
L′ = {z ∈ Ω : ‖z − x1‖ = ‖z − x3‖}. Exchanging covariance with integration gives∣∣∣∣Cov

[
Hd−1(∂V1 ∩ ∂V2),Hd−1(∂V1 ∩ ∂V3)|x1:3

]∣∣∣∣
≤
∫
L

∫
L′

∣∣Cov
[
1{Pn(Bx1(z)) = 0}, 1{Pn(Bx1(z′)) = 0}|x1:3

]∣∣ dz′ dz
(i)

≤
∫
L

∫
L′

(
1− px1

(z) + px1
(z′)

2

)(n−3)

dz dz′

+

∫
L

∫
L′

(1− px1
(z))(n−3)(1− px1

(z′))(n−3) dz′ dz

≤ C
( 1

n(d−1)/d
1{‖x1 − x2‖ ≤ Cε0}+

1

n5

)( 1

n(d−1)/d
1{‖x1 − x3‖ ≤ Cε0}+

1

n5

)
≤ C

( 1

n2(d−1)/d
1{‖x1 − x2‖ ≤ Cε0}1{‖x1 − x3‖ ≤ Cε0}+

1

n5

)
.

(S.9)

The inequality (i) follows first from the standard fact that for positive random variables X and Y ,
∣∣Cov[X,Y ]

∣∣ ≤
E[XY ] + E[Y ]E[X], and second from the upper bound

E
[
1{Pn(Bx1(z)) = 0}, 1{Pn(Bx1(z′)) = 0}

]
≤
(

1− P
(
Bx1(z) ∪Bx1(z′)

))(n−3)
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≤
(

1−
P
(
Bx1

(z)
)

+ P
(
Bx1

(z′)
)

2

)(n−3)

.

Taking expectation over x1:3, we have

T2 ≤ C
( ‖f‖2C1(Ω)

n2(d−1)/d

∫
Ω

∫
Ω

∫
Ω

‖x− y‖‖x− z‖1{‖x− y‖ ≤ Cε0}1{‖x− z‖ ≤ Cε0} dz dy dx+
‖f‖2L∞(Ω)

n5

)

≤ C
(‖f‖2C1(Ω)ε

2(d+1)
0

n2(d−1)/d
+
‖f‖2L∞(Ω)

n5

)
= C

(‖f‖2C1(Ω)(log n)2(d+1)/d

n4
+
‖f‖2L∞(Ω)

n5

)
.

Upper bound on T3. Again we begin by conditioning, this time on x1:4, so that

E
[
∆(x1, x2)∆(x3, x4)|x1:4

]
= |f(x1)− f(x2)||f(x3)− f(x4)|Cov

[
Hd−1(∂V1 ∩ ∂V2),Hd−1(∂V3 ∩ ∂V4)|x1:4

]
,

Write L = {z ∈ Ω : ‖z − x1‖ = ‖z − x2‖} and likewise L′ = {z ∈ Ω : ‖z − x3‖ = ‖z − x4‖}, we focus on the
conditional covariance

Cov
[
Hd−1(∂V1∩∂V2),Hd−1(∂V3∩∂V4)|x1:4

]
=

∫
L

∫
L′

Cov
[
1{Pn(Bx1(z)) = 0}, 1{Pn(Bx3(z′)) = 0}|x1:4

]
dz′ dz

We now show that this covariance is very small unless x1 and x3 are close. Specifically, suppose ‖x1− x3‖ > ε0. Then
either ‖z − x1‖ ≥ ε0/3, or ‖z′ − x3‖ ≥ ε0/3, or Bx1

(z) ∩Bx3
(z′) = ∅. In either of the first two cases, we have that∣∣∣Cov

[
1{Pn(Bx1(z)) = 0}, 1{Pn(Bx3(z′)) = 0}|x1:4

]∣∣∣
≤ 2 exp(−pmin

4d
(n− 4)‖x1 − z‖d) exp(−pmin

4d
(n− 4)‖x3 − z′‖d)}

≤ 2 exp(−pmin

4d
(n− 4)εd0) ≤ C

n5
.

In the third case, it follows that P (Bx1
(z) ∪ Bx3

(z′)) = px1
(z) + px3

(z). Assume x3, x4 6∈ Bx1
(z), and likewise

x1, x2 6∈ Bx3
(z′), otherwise there is nothing to prove. We use the definition of covariance Cov[X,Y ] = E[XY ] −

E[X]E[Y ] to obtain the upper bound,∣∣∣Cov
[
1{Pn(Bx1

(z)) = 0}, 1{Pn(Bx3
(z′)) = 0}|x1:4

]∣∣∣
=
∣∣(1− (px1(z) + px3(z)))(n−4) − (1− px1(z))(n−4)(1− px3(z))(n−4)

∣∣
= (1− px1

(z))(n−4)(1− px3
(z))(n−4)

∣∣∣∣(1− px1(z)px3(z)

(1− px1
(z))(1− px3

(z))

)(n−4)

− 1
∣∣∣

≤ (1− px1
(z))(n−4)(1− px3

(z))(n−4)px1
(z)px3

(z)n

≤ p2
maxµ

2
d exp(−pmin

4d
(n− 4)‖x1 − z‖d) exp(−pmin

4d
(n− 4)‖x2 − z‖d)‖x1 − z‖d‖x3 − z′‖dn

≤ C exp(−pmin

4d
(n− 4)‖x1 − z‖d) exp(−pmin

4d
(n− 4)‖x2 − z‖d)ε2d

0 n

Integrating over z, z′, it follows that if ‖x1 − x3‖ > ε0, then∣∣∣Cov
[
Hd−1(∂V1∩∂V2),Hd−1(∂V3∩∂V4)|x1:4

]∣∣∣ ≤ C( ε2d
0

n(d−2)/d
1{‖x1−x2‖ ≤ Cε0}1{‖x3−x4‖ ≤ Cε0}+

1

n5

)
.

Otherwise ‖x1 − x3‖ ≤ ε0, and using the same inequalities as in (S.9), we find that∣∣∣Cov
[
Hd−1(∂V1 ∩ ∂V2),Hd−1(∂V3 ∩ ∂V4)|x1:4

]∣∣∣
6



≤ C
( 1

n2(d−1)/d
1{‖x1 − x2‖ ≤ Cε0}1{‖x3 − x4‖ ≤ Cε0}{‖x1 − x3‖ ≤ ε0}+

1

n5

)
.

Taking expectation over x1:4, we conclude that

T3 ≤ C
(
ε2d

0 ‖f‖2C1(Ω)

n(d−2)/d

∫
Ω

∫
Ω

∫
Ω

∫
Ω

‖x− y‖‖h− z‖1{‖x− y‖ ≤ Cε0}1{‖h− z‖ ≤ Cε0} dh dz dy dx

+
‖f‖2C1(Ω)

n2(d−1)/d

∫
Ω

∫
Ω

∫
Ω

∫
Ω

‖x− y‖‖h− z‖1{‖x− y‖C ≤ ε0}1{‖h− z‖ ≤ Cε0, ‖x− h‖ ≤ ε0} dh dz dy dx

+
‖f‖2L∞(Ω)

n5

)
≤ C

(‖f‖2C1(Ω)ε
4d+2
0

n(d−2)/d
+
‖f‖2C1(Ω)ε

3d+2
0

n2(d−1)/d
+
‖f‖2L∞(Ω)

n5

)
= C

(‖f‖2C1(Ω)(log n)(4d+2)/d

n5
+
‖f‖2L∞(Ω)

n5

)
.

Combining our upper bounds on T1-T3 gives the claim of the lemma.

B.3 Step 2: Variance of Voronoi U-statistic
Lemma S.2 leverages classical theory regarding order-2 U-statistics to show that the Voronoi U-statistic Un,Vor(f)
concentrates around its expectation. This is closely related to an estimate provided in García Trillos et al. (2017), but
not strictly implied by that result: it handles a specific kernel HVor that is not compactly supported, and functions f
besides f(x) = 1{x ∈ A} for some A ⊆ Ω.

Lemma S.2. Suppose x1:n are sampled independently from a distribution P satisfiying A1. There exists a constant
C > 0 such that for any f ∈ C1(Ω),

Var
[
Un,Vor(f)

]
≤ C (log n)3

n
‖f‖2C1(Ω). (S.10)

Lemma S.2 can be strengthened in several respects. Under the assumptions of the lemma, better bounds are available
than (S.10) which do not depend on factors of log n. Additionally, under weaker assumptions than f ∈ C1(Ω), it is
possible to obtain bounds which are looser than (S.10) but which still imply that Var

[
Un,Vor(f)

]
→ 0 as n → ∞.

Neither of these are necessary to prove Theorem 1, and so we do not pursue them further.

Proof of Lemma S.2. We will repeatedly use the following fact, which is a consequence of Lemma S.18: there exists a
constant C > 0 not depending on n such that for any x, y ∈ Ω,

HVor(x, y) ≤
∫
L∩Ω

exp
(
−(pmin/2d)‖x− z‖d

)
dz ≤ C

( 1

n(d−1)/d
1{‖x− y‖ ≤ Cε0}+

1

n2

)
. (S.11)

Now, we recall from Hoeffding’s decomposition of U-statistics (Hoeffding, 1948) that the variance of Un,Vor(f) can be
written as

Var[Un,Vor(f)] =
1

4

(
n(n− 1)Var[h(x1, x2)] + n(n− 1)(n− 2)Var[h1(x1)]

)
(S.12)

where h(x, y) = |f(x)− f(y)|HVor(x, y) and h1(x) = E[h(x1, x2)|x1].
We now use (S.11) to upper bound the variance of h and h1. For h, we have that

Var[h(x1, x2)] ≤ E[h2(x1, x2)]

≤ p2
max‖f‖2C1(Ω)

∫
Ω

∫
Ω

‖y − x‖2
(
HVor(x, y)

)2
dy dx

≤ C‖f‖2C1(Ω)

(
1

n2(d−1)/d

∫
Ω

∫
Ω

‖y − x‖21{‖x− y‖ ≤ Cε0} dy dx+
1

n4

)

7



≤ C
(
ε3d

0 ‖f‖2C1(Ω) +
‖f‖2C1(Ω)

n4

)
.

For h1, we have that for every x ∈ Ω,

|h1(x)| ≤ ‖f‖C1(Ω)pmax

∫
Ω

|y − x‖HVor(y, x) dy

≤ C‖f‖C1(Ω)

(
1

n(d−1)/d

∫
Ω

|y − x‖1{‖y − x‖ ≤ Cε0} dy +
1

n2

)
≤ C‖f‖C1(Ω)

(
ε2d

0 +
1

n2

)
.

Integrating over x ∈ Ω, we conclude that

Var[h1(x1)] ≤ E[(h1(x1))2] ≤ C‖f‖2C1(Ω)

(
ε4d

0 +
1

n4

)
.

Plugging these estimates back into (S.12) gives the upper bound in (S.10).

B.4 Step 3: Bias of Voronoi U-statistic
Under appropriate conditions, the expectation of Un,Vor(f) is approximately equal to (an appropriately rescaled version
of) the nonlocal functional (S.7) for bandwidth ε(1)(x) = (np(x))−1/d, weight (p(x))(d+1)/d, and kernel

KVor(t) =

∫ ∞
0

exp

(
−µd

{ t2
4

+ s2
}d/2)

sd−2 ds. (S.13)

Lemma S.3. Suppose x1:n are sampled independently from a distribution P satisfying A1. For any f ∈ C1(Ω),

E
[
Un,Vor(f)

]
= n(d+1)/d ηd−2

2
· TVε(1),KVor

(
f ; Ω, p(d+1)/d

)
+O

(
(log n)3+1/d

n1/d
‖f‖C1(Ω)

)
.

Proof. We will use Lemma S.17, which shows that at points x, y ∈ Ω sufficiently far from the boundary of Ω, the
kernel HVor(x, y) is approximately equal to a spherical kernel. To invoke this lemma, we need to restrict our attention
to points sufficiently far from the boundary. In particular, letting h = hn be defined as in Lemma S.17, we conclude
from (S.93) that∫

Ω

∫
Ω

|f(y)− f(x)|HVor(x, y)p(y)p(x) dy dx =∫
Ωh

∫
Ω

|f(y)− f(x)|HVor(x, y)p(y)p(x) dy dx+O

(
h

n2
‖f‖C1(Ω)

)
, (S.14)

where we have used the assumption f ∈ C1(Ω) and (S.93) to control the boundary term, since∫
Ω\Ωh

∫
Ω

|f(y)− f(x)|HVor(x, y)p(y)p(x) dy dx

≤
C3p

2
maxηd−2‖f‖C1(Ω)

n(d−1)/d

∫
Ω\Ωh

∫
Ω

‖y − x‖KVor

(
‖y − x‖
C4n1/d

)
dy dx

(i)

≤
C3C

(d+1)/d
4 p2

maxηd−2‖f‖C1(Ω)

n2

∫
Ω\Ωh

∫
Rd
‖h‖KVor(‖h‖) dh dx

(ii)

≤
C3C

(d+1)/d
4 p2

maxηd−2ηd−1‖f‖C1(Ω)

n2

∫
Ω\Ωh

∫ ∞
0

tdKVor(t) dt dx

(iii)

≤
C‖f‖C1(Ω)

n2
µ(Ω \ Ωh)

≤
Ch‖f‖C1(Ω)

n2
,

(S.15)
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where (i) follows by changing variables h = (y − x)/C3n
1/d, (ii) by converting to polar coordinates, and (iii) upon

noticing that
∫∞

0
tdKVor(t) <∞.

Returning to the first-order term in (S.14), we can use (S.92) to replace the integral with HVor by an integral with
the Voronoi kernel KVor. Precisely,∫

Ωh

∫
Ω

|f(y)− f(x)|HVor(x, y)p(y)p(x) dy dx

=
ηd−2

n(d−1)/d

∫
Ωh

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)
p(y)

(
p(x)

)1/d
dy dx

+O

(
1

n3

∫
Ω

∫
Ω

|f(y)− f(x)| dy dx
)

+O

(
(log n)2

n

∫
Ω

∫
Ω

|f(y)− f(x)|1
{
‖x− y‖ ≤ C(log n/n)1/d

}
dy dx

)
=

ηd−2

n(d−1)/d

∫
Ωh

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)
p(y)

(
p(x)

)1/d
dy dx

+O

(‖f‖C1(Ω)

n3
+

(log n)3+1/d

n2+1/d
‖f‖C1(Ω)

)
=

ηd−2

n(d−1)/d

∫
Ω

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)
p(y)

(
p(x)

)1/d
dy dx

+O

(‖f‖C1(Ω)

n3
+

(log n)3+1/d

n2+1/d
‖f‖C1(Ω) +

h‖f‖C1(Ω)

n2

)
, (S.16)

with the second equality following from the upper bound (S.39), and the third equality from exactly the same argument
as in (S.15). Finally, we use the Lipschitz property of p to conclude that∫

Ω

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)
p(y)

(
p(x)

)1/d
dy dx

=

∫
Ω

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)(
p(x)

)(d+1)/d
dy dx+O

(‖f‖C1(Ω)

n(d+2)/2

)
, (S.17)

since ∫
Ω

∫
Ω

|f(y)− f(x)|KVor

(
‖x− y‖
ε(1)

)
|p(y)− p(x)|

(
p(x)

)1/d
dy dx

≤ C‖f‖C1(Ω)p
1/d
max

∫
Ω

∫
Ω

‖y − x‖2KVor

(
‖x− y‖
ε(1)

)
dy dx

≤ C
‖f‖C1(Ω)p

1/d
max

p
1/d
minn

(2+d)/d

∫
Ω

∫
Rd
‖h‖2KVor(‖h‖) dh dx

= C
‖f‖C1(Ω)p

1/d
maxηd−1

p
1/d
minn

(2+d)/d

∫
Ω

∫ ∞
0

td+1KVor(t) dt dx

≤ C
‖f‖C1(Ω)

n(2+d)/d
,

with the last inequality following since
∫∞

0
td+1KVor(t) dt = C <∞. Combining (S.14), (S.16) and (S.17) yields the

final claim.

Finally, Lemma S.4 shows that the kernelized TV TVε,K(f ; Ω, h) converges to a continuum TV under appropriate
conditions.

Assumption A2. The bandwidth ε(x) = ε̄ng(x) for a sequence ε̄n → 0 and a bounded function g ∈ L∞(Ω). The
kernel function K satisfies

∫∞
0
K(t)td+1 dt <∞. The weight function h ∈ L∞(Ω).
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Note that Assumption A1 implies that Assumption A2 is satisfied by bandwidth ε(1), kernel KVor and weight
function h = p(d+1)/d.

Lemma S.4. Assuming A2, for any f ∈ C2(Ω),

lim
n→∞

(ε̄n)−(d+1)TVε,K(f ; Ω, h) = σK

∫
Ω

‖∇f(x)‖h(x)(g(x))d+1 dx (S.18)

where

σK :=
2ηd−2

(d− 1)

∫ ∞
0

K(t)td dt. (S.19)

Proof. The proof of Lemma S.4 follows closely the proof of some related results, e.g., Lemma 4.2 of García Trillos and
Slepčev (2016). We begin by summarizing the major steps.

1. We use a 2nd-order Taylor expansion to replace differencing by derivative inside the nonlocal TV.

2. Naturally, the nonlocal TV behaves rather differently than a local functional near the boundary of Ω. We show
that the contribution of the integral near the boundary is negligible.

3. Finally, we reduce from a double integral to a single integral involving the norm ‖∇f‖.

Step 1: Taylor expansion. Since f ∈ C2(Ω) we have that

f(y)− f(x) = ∇f(x)>(y − x) +O(‖f‖C2(Ω)‖y − x‖2).

Consequently,

TVε,K(f ; Ω, h) =

∫
Ω

∫
Ω

(
|∇f(x)>(y − x)|+O(‖f‖C2(Ω))

)
K

(
‖y − x‖
ε(x)

)
h(x) dy dx.

We now upper bound the contribution of the O(‖y − x‖2)-term. For each x ∈ Ω,∫
Ω

‖y − x‖K
(
‖y − x‖2

ε(x)

)
dy ≤ C|εn(x)|d+2

∫
Rd
‖z‖2K(‖z‖) dz ≤ C|εn(x)|d+2 ≤ C|εn(x)|d+2,

with the final inequality following from the assumption
∫∞

0
td+1K(t) dt < ∞. Integrating over Ω gives the upper

bound ∫
Ω

∫
Ω

O(‖f‖C2(Ω)‖y − x‖2)K

(
‖y − x‖
ε(x)

)
h(x) dy dx = O(‖f‖C2(Ω)ε̄

d+2
n ),

recalling that h(x), g(x) ∈ L∞(Ω).

Step 2: Contribution of boundary to nonlocal TV. Take r = rn to be any sequence such that rn/ε̄n →∞, rn → 0.
Breaking up the integrals in the definition of nonlocal TV gives∫

Ω

∫
Ω

|∇f(x)>(y − x)|K
(
‖y − x‖
ε(x)

)
h(x) dy dx =

∫
Ωr

∫
Rd
|∇f(x)>(y − x)|K

(
‖y − x‖
ε(x)

)
h(x) dy dx

−
∫

Ωr

∫
Rd\Ω

|∇f(x)>(y − x)|K
(
‖y − x‖
ε(x)

)
h(x) dy dx

+

∫
Ω\Ωr

∫
Ω

|∇f(x)>(y − x)|K
(
‖y − x‖
ε(x)

)
h(x) dy dx

=: I1 + I2 + I3.

Now we are going to show that I2 and I3 are negligible. For I2, noting that r/ε(x)→∞ for all x, we have that for any
x ∈ Ωr, ∫

Rd\Ω
|∇f(x)>(y − x)|K

(
‖y − x‖
ε(x)

)
h(x) dy ≤ ‖f‖C1(Ω)

∫
Rd\Ω

K

(
‖y − x‖
ε(x)

)
‖y − x‖ dy

10



≤ ‖f‖C1(Ω)(ε(x))1

∫
Rd\B(0,r/ε(x))

‖z‖K(‖z‖) dz

(i)

≤ C‖f‖C1(Ω)(ε(x))d+1

∫ ∞
r/ε(x))

td+1K(t) dt

(ii)
= o(‖f‖C1(Ω)(ε(x))d+1),

where (i) follows from converting to polar coordinates and (ii) follows by the assumption
∫∞

0
td+1K(t) dt < ∞.

Integrating over x yields I2 = o(‖f‖C1(Ω)ε
d+1
n ), since h, g ∈ L∞(Ω).

On the other hand for I3, similar manipulations show that for every x ∈ Ω,∫
Ω

|∇f(x)>(y − x)|K
(
‖y − x‖
ε(x)

)
dy ≤ C‖f‖C1(Ω)(ε(x))d+1.

Noting that the tube Ω \ Ωr has volume at most Cr, we conclude that

I3 ≤ C‖f‖C1(Ω)(ε(x))d+1µ(Ω \ Ωr) ≤ Cr‖f‖C1(Ω)(ε(x))d+1 = o(‖f‖C1(Ω)(ε(x))d+1),

with the last inequality following since r = o(1).

Step 3: Double integral to single integral. Now we proceed to reduce the double integral in I1 to a single integral.
Changing variables to z = (y − x)/ε(x), converting to polar coordinates, and letting w(x) = ∇f(x)/‖∇f(x)‖, we
have that∫

Rd
‖∇f(x)>(y − x)|K

(
‖y − x‖
ε(x)

)
dy = (ε(x))d+1

∫
Rd
|∇f(x)>z|K(‖z‖) dz

= (ε(x))d+1

(∫
Sd−1

|∇f(x)>φ| dHd−1

)(∫ ∞
0

tdK(t) dt

)
= (ε(x))d+1‖∇f(x)‖

(∫
Sd−1

|w(x)>φ| dHd−1

)(∫ ∞
0

tdK(t) dt

)
= (ε(x))d+1‖∇f(x)‖

(∫
Sd−1

|φ1| dHd−1

)(∫ ∞
0

tdK(t) dt

)
= σK(ε(x))d+1‖∇f(x)‖,

with the second to last equality following from the spherical symmetry of the integral, and the last equality by definition
of σK . Integrating over x ∈ Ωr gives

I1 = σK ε̄
d+1
n

∫
Ωr

‖∇f(x)‖h(x)(g(x))d+1 dx

= σK ε̄
d+1
n

∫
Ω

‖∇f(x)‖h(x)(g(x))d+1 dx+ o(ε̄d+1
n ‖f‖C1(Ω)),

with the second equality following from the same reasoning as was used in analyzing the integral I3.

Putting the pieces together. We conclude that

(ε̄n)−(d+1)TVε,K(f ; Ω, h)

= (ε̄n)−(d+1)

∫
Ω

∫
Ω

(
|∇f(x)>(y − x)|)

)
K

(
‖y − x‖
ε(x)

)
h(x) dy dx+O(ε̄n‖f‖C2(Ω))

= (ε̄n)−(d+1)

∫
Ωr

∫
Rd

(
|∇f(x)>(y − x)|)

)
K

(
‖y − x‖
ε(x)

)
h(x) dy dx+O(ε̄n‖f‖C2(Ω)) + o(‖f‖C1(Ω))

= σK

∫
Ω

∫
Ω

‖∇f(x)‖h(x)(g(x))d+1 dx+O(ε̄n‖f‖C2(Ω)) + o(‖f‖C1(Ω)),

completing the proof of Lemma S.4.
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C Sensitivity analysis for Section 4
In Section 4, we chose the scale k, ε in the k-nearest neighbor and ε-neighborhood graphs to be such that their average
degree would roughly match that of the Voronoi adjacency graph, and we remarked that mildly better results are
attainable if one increases the connectivity of the graphs. Here, we present an analogous set of results to those found in
Section 4, where the average degree of the k-nearest neighbor and ε-neighborhood graphs are roughly twice that of the
graphs in Section 4. All other details of the experimental setup remain the same.

• In Figure S.1, the estimates of TV by the k-nearest neighbor and ε-neighborhood graphs approach their density-
weighted limits more quickly than in Section 4, with slightly narrower variability bands.

• In Figure S.2, we see that ε-neighborhood TV denoising is now competitive with k-nearest neighbor TV denoising
and the unweighted Voronoigram for the “low inside tube” setting. In the “high inside tube” and uniform sampling
settings, the performance of k-nearest neighbor TV denoising improves slightly.

As previously remarked, the Voronoigram has no such auxiliary tuning parameter, so the weighted and unweighted
Voronoigram results here are the same as in Section 4. We also note that with greater connectivity in the k-nearest
neighbor and ε-neighborhood graphs comes greater computational burden in storing the graphs, as well as performing
calculations with them. Therefore, it is advantageous to the practitioner to use the sparsest graph capable of achieving
favorable performance.
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Figure S.1: Results from the TV estimation experiment, with greater connectivity in the kNN and ε-neighborhood graphs.
Compare these results to those in Figure 3.
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Figure S.2: Results from the function estimation experiment, with greater connectivity in the kNN and ε-neighborhood
graphs. Compare these results to those in Figure 5.
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Figure S.3: Visualization of the Voronoi, kNN, and ε-neighborhood graphs, with greater connectivity in the latter two
graphs. (The Voronoi graph does not have such an auxiliary tuning parameter.) Compare these graphs to those in
Figure 4.

13



Conn. comp.: 85

Lo
w 

in
sid

e 
tu

be

Weighted Voronoi

Conn. comp.: 31

Unweighted Voronoi

Train cc: 30
Test cc: 34

k-nearest neighbor

Train cc: 29
Test cc: 29

-neighborhood

Conn. comp.: 71

Hi
gh

 in
sid

e 
tu

be

Conn. comp.: 73 Train cc: 86
Test cc: 107

Train cc: 143
Test cc: 157

Conn. comp.: 54

Un
ifo

rm

Conn. comp.: 56 Train cc: 78
Test cc: 95

Train cc: 97
Test cc: 111

0.5

0.0

0.5

1.0

1.5
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Compare these results to those in Figure 6.

D Proofs for Section 5

D.1 Proof of Theorem 2
From (35), in the discussion preceding Lemma 3, we have

E‖f̂ − f0‖2L2(P ) ≤ E
[
Kn‖f̂ − f0‖2L2(Pn)

]
+ 2E‖f̄0 − f0‖2L2(P ), (S.20)

where

Kn = 2pmaxn ·
(

max
i=1,...,n

µ(Vi)

)
.

The second term is bounded by Lemma 3. We now outline the analysis of the first term. As in the L2(Pn) case we
will decompose the error into the case where the design points are well-spaced and the case where they are not. This
is formalized by the set X = X1 ∩X2, where X1,X2 are defined in Appendix F. x1:n falls within this set with
probability at least 1− 3/n4, and notably on this set,

max
i
µ(Vi) ≤ C1 log n/n,

for some C1 > 0, since X2 is the set upon which the conclusion of Lemma S.15 holds. We proceed by conditioning,

E
[
Kn‖f̂ − f0‖2L2(Pn)

]
= 2pmax

(
Ex
[
Ez|x

[
max
i
µ(Vi)‖θ̂ − θ0‖22

]
1{x1:n ∈X }

]
+ Ex

[
Ez|x

[
max
i
µ(Vi)‖θ̂ − θ0‖22

]
1{x1:n 6∈X }

])
.

(S.21)
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Using the fact that x1:n ∈X , the first term on the RHS of (S.21) may be bound,

Ez|x
[
max
i
µ(Vi)‖θ̂ − θ0‖22

]
1{x1:n ∈X } ≤ C1(log n) Ez|x

[
1

n
‖θ̂ − θ0‖22

]
· 1{x1:n ∈X }

≤ C2(log n)

(
λ‖Dθ0‖

n
+

logα n

n

)
, (S.22)

where the latter inequality is obtained by following the analysis of Lemma 1. For the second term on the RHS of (S.21),
we apply the crude upper bound that µ(Vi) ≤ µ(Ω) = 1 for all i = 1, . . . , n. Then apply (S.70) to obtain,

Ez|x
[
max
i
µ(Vi)‖θ̂ − θ0‖22

]
1{x1:n 6∈X } ≤ Ez|x

[
16‖z1:n‖22 + 2λ‖Dθ0‖1

]
1{x1:n 6∈X }

= (16n+ 2λ‖Dθ0‖1) 1{x1:n 6∈X }.
≤
(
16n+ 4n2λ‖θ0‖∞‖w‖∞

)
1{x1:n 6∈X }.

≤
(
16n+ 4n2λ‖θ0‖∞

)
1{x1:n 6∈X }, (S.23)

where we also use crude upper bounds on the discrete TV. Substitute (S.22) and (S.23) into (S.21) to obtain,

E
[
Kn‖f̂ − f0‖2L2(Pn)

]
≤ C3

(
(log n)λE‖Dθ0‖

n
+

(log n)1+α

n
+ λn2P{x1:n 6∈X }

)
≤ C4

(
(log n)λE‖Dθ0‖

n
+

(log n)1+α

n
+

λ

n2

)
≤ C5

(
στn(log n)3/2+αE‖Dθ0‖

n
+

(log n)1+α

n

)
, (S.24)

where in the final line we have substituted in the value of λ = cστn(log n)1/2+α. Apply Lemma 2 to (S.24) and
substitute back into (S.20) to obtain the claim.

D.2 Proof of Theorem 3
To establish the lower bound in (30), we follow a classical approach, similar to that outlined in (del Álamo et al., 2021):
first we reduce the problem to estimating binary sequences, then we apply Assouad’s lemma (Lemma S.5). This results
in a constrained maximization problem, which we analyze to establish the ultimate lower bound.

Step 1: Reduction to estimating binary sequences. We begin by associating functions fθ with vertices of the
hypercube ΘS = {0, 1}S , where S ⊆ [m]d for some m ∈ N. To construct these functions fθ, we partition Ω into cubes,

Qi =
1

m
(i1 − 1, i1)× · · · × 1

m
(id − 1, id), for i ∈ [m]d,

and for each θ ∈ ΘS take fθ to be the piecewise constant function

fθ(x) := a ·
∑
i∈S

θi1Qi(x), (S.25)

where 1Qi(x) = 1(x ∈ Qi) is the characteristic function of Qi. Observe that for all θ ∈ ΘS , letting ε := 1/m,

TV(fθ) ≤ 2da|S|εd−1, and ‖fθ‖L∞(Ω) ≤ a. (S.26)

So long as the constraints in (S.26) are satisfied {fθ : θ ∈ ΘS} ⊆ BV∞(L,M), and consequently

inf
f̂

sup
f0∈BV∞(L,M)

Ef0
‖f̂ − f0‖2L2(Ω) ≥ inf

f̂
max
θ∈ΘS

Eθ‖f̂ − fθ‖2L2(Ω) ≥
a2εd

4
inf
θ̂

max
θ∈Θ

Eθρ(θ̂, θ), (S.27)
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where ρ(θ, θ′) =
∑
i∈S |θi − θ′i| is the Hamming distance between vertices θ, θ′ ∈ ΘS . The second inequality in (S.27)

is verified as follows: for a given f̂ , letting

θ̂i =

1, if
∮
Qi

f̂(x) dx ≥ a/2,

0, otherwise,

it follows that

‖f̂ − fθ‖2L2(P ) =
∑
i∈[m]d

‖f̂ − fθ‖2L2(Qi)

≥
∑
i∈S
‖f̂ − fθ‖2L2(Qi)

≥ a2εd

4

∑
i∈S

1{θ̂i 6= θi}.

Step 2: application of Assouad’s lemma. Given a measurable space (Z,A), and a set of probability measures
M = {µθ : θ ∈ Θ} on (Z,A), Assouad’s lemma lower bounds the minimax risk over ΘS , when loss is measured by
the Hamming distance ρ(θ̂, θ) :=

∑
i∈S |θ̂i − θi|. We use a form of Assouad’s lemma given in Tsybakov (2009).

Lemma S.5 (Lemma 2.12 of Tsybakov (2009)). Suppose that for each θ, θ′ ∈ ΘS : ρ(θ, θ′) = 1, we have that
KL(µθ, µθ′) ≤ α <∞. It follows that

inf
θ̂

sup
θ∈ΘS

Eθρ(θ̂, θ) ≥ |S|
2

max

(
1

2
exp(−α), (1−

√
α/2)

)
.

To apply Assouad’s lemma in our context, we take Z = (Ω × R)⊗n, and associate each θ ∈ ΘS with the
measure µ(n)

θ , the n-times product of measure µθ = Unif(Ω)×N(fθ(x), 1). We now lower bound the KL divergence
KL(µ

(n)
θ , µ

(n)
θ′ ) when ρ(θ, θ′) = 1; letting i ∈ S be the single index at which θi 6= θ′i,

KL(µθ, µθ′) =

∫
Ω×R

log

(
φ(y − fθ(x))

φ(y − fθ′(x))

)
φ(y − fθ(x)) dy dx

=

∫
Qi×R

log

(
φ(y − aθi)
φ(y − aθ′i)

)
φ(y − aθi) dy dx

= εd
∫
R

log

(
φ(y − aθi
φ(y − aθ′i)

)
φ(y − aθi) dy

=
εda2

2
,

and it follows that KL(µ
(n)
θ , µ

(n)
θ′ ) ≤ nεda2/2. Consequently, so long as (S.26) is satisfied and

nεda2

2
≤ 1,

we may apply Lemma S.5, and deduce from (S.27) that

inf
f̂

sup
f0∈BV∞(L,M)

Ef0
‖f̂ − f0‖2L2(Ω) ≥

a2εd

4
inf
θ̂

max
θ∈Θ

Eθρ(θ̂, θ) ≥ a2εd|S|
16 exp(1)

. (S.28)
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Step 3: Lower bound. The upshot of Steps 1 and 2 is that the solution to the following constrained maximization
problem yields a lower bound on the minimax risk: letting s = |S|,

maximize
a2εds

16 exp(1)
,

subject to 1 ≤ s ≤ ε−d,

asεd−1 ≤ L

2d
,

a ≤M,

na2εd

2
≤ 1.

Setting a = M, ε = ( 2
a2n )1/d, and s = L

2daε
−(d−1) is feasible for this problem if 2dM(M

2n
2 )−

(d−1)
d ≤ L ≤

2dM(M
2n
2 )1/d, and implies that the optimal value is at least 21/d

32 exp(1)dLM(M2n)−1/d. This implies the claim (30)
upon suitable choices of constants.

D.3 Proof of Lemma 1
In this proof, write θ0 := (f0(x1), . . . , f0(xn)) and Ez|x[·] = E[·|x1:n]. We will use D to represent the modified edge
incidence operator with either clipped edge weights or unit weights; the following analysis, which uses the scaling
factor τn, applies to both. Let

X = X1 ∩X2, (S.29)

with X1,X2 as in Section F. By the law of iterated expectation,

E
[

1

n
‖θ̂ − θ0‖22

]
= Ex

[
Ez|x

[ 1

n
‖θ̂ − θ0‖22

]
· 1{x1:n ∈X }

]
+ Ex

[
Ez|x

[ 1

n
‖θ̂ − θ0‖22

]
· 1{x1:n 6∈X }

]
. (S.30)

We now upper bound each term on the right hand side separately.
For the first term, we will proceed by comparing the penalty operator D to the averaging operator (S.74) and

surrogate operator T corresponding to the graph (S.75). By construction x1:n ∈ X implies, for (ξk, uk) the kth
singular value/left singular vector of T , that

λ ≥ C1στn(log n)1/2+α

≥ max

8 max
`
|C`|1/2Φ1(D,T,A) · σ

√√√√log 2n4 ·
n∑
k=2

‖uk‖2∞
ξ2
k

,Φ2(D,T,A) · σ
√

2 log n

 ,

where the latter inequality follows from combining (S.71), (S.72) with (S.76), (S.77) in the clipped weights case, or
(S.78), (S.79) in the unit weights case, for an appropriately chosen C1. We may therefore apply Theorem S.1 with D,
T , and A, which gives

Ez|x
[

1

n
‖θ̂ − θ0‖22

]
· 1{x1:n ∈X } ≤ C

(
λ‖Dθ0‖1

n
+

logα n

n

)
, (S.31)

On the other hand, to upper bound the second term in (S.30) we use (S.70),

Ez|x
[ 1

n
‖θ̂ − θ0‖22

]
· 1{xz|x 6∈X } ≤ Ez|x

[16‖z1:n‖22
n

+
2λ‖Dθ0‖1

n

]
1{x1:n 6∈X }

≤
(

16 +
2λ‖Dθ0‖1

n

)
1{x1:n 6∈X }.

(S.32)

Substituting (S.31) and (S.32) into (S.30), we conclude that

E
[

1

n
‖θ̂ − θ0‖22

]
≤ C

(λE‖Dθ0‖1
n

+
logα n

n
+ P(x1:n 6∈X )

)
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≤ C
(λE‖Dθ0‖1

n
+

logα n

n

)
= C

(στn(log n)1/2+αE‖Dθ0‖1
n

+
logα n

n

)
, (S.33)

with the second inequality following from Lemma S.13, and the equality from the choice of λ = C1στn(log n)1/2+α.

D.4 Proof of Lemma 2
We prove the claim (33) separately for the unit weights and clipped weights case (recall that they differ by a scaling
factor τ̄n. We will subsequently abbreviate f := f0 and use the notation DTV( · ;wε←r) to denote the ε-neighborhood
graph TV, having set ε = r.

D.4.1 Unit weights

Our goal is to upper bound

E
[

DTV
(
f(x1:n); w̌V

)]
= n(n− 1)E

[
|f(x1)− f(x2)|1{Hd−1(V̄1 ∩ V̄2) > 0}

]
.

By conditioning, we can rewrite the expectation above as

p2
max

∫
Ω

∫
Ω

|f(y)− f(x)|Px3:n
{Hd−1(V̄x ∩ V̄y) > 0} dy dx, (S.34)

where Vx = {z : ‖z − x‖2 < ‖z − xi‖ ∀i = 2, 3, . . . , n}, and likewise for Vy . Note that Vx and Vy are random subsets
of Rd.

We now give an upper bound on the probability that the random cells V̄x and V̄y intersect on a set of positive
Hausdorff measure, by relating the problem to uniform concentration of the empirical mass of balls in Rd. The upper
bound will be crude, in that it may depend on suboptimal multiplicative constants, but sufficient for our purposes.
Define r(Vx) := sup{‖z − x‖ : z ∈ Vx}. Observe that if ‖y − x‖ > r(Vx) + r(Vy), then V̄x ∩ V̄y = ∅, since for any
z ∈ Vx, by the triangle inequality

{‖z − y‖ ≥ ‖y − x‖ − ‖z − x‖ > r(Vy)} =⇒ {z 6∈ Vy};

therefore
{Hd−1(V̄x ∩ V̄y) > 0} =⇒ {‖y − x‖ ≤ r(Vx) + r(Vy)}.

Now, choose z ∈ Vx for which ‖z − x‖ = r(Vx). Observe that the ball B(z, r(Vx)/2) must have empirical mass 0, i.e.,
B(z, r(Vx)/2) ∩ {x3, . . . , xn} = ∅ (indeed, this same fact must hold for any r < r(Vx)). Therefore,

Px3:n
{r(Vx) ≥ t} ≤ Px3:n

{
∃z : B(z, t/2) ∩ {x3, . . . , xn} = ∅

}
.

It follows from Lemma S.14 that if tn,δ = c
(

1
n (d log n+ log(1/δ)

)1/d
< t0, where t0 is a constant not depending on

n, δ, then
Px3:n

{∃z : B(z, tn,δ/2) ∩ {x3, . . . , xn} = ∅} ≤ δ.

Summarizing this reasoning, we have

Px3:n{Hd−1(V̄x ∩ V̄y) > 0} ≤ Px3:n

{
‖y − x‖ ≤ r(Vx) + r(Vy)

}
≤ Px3:n

{
‖y − x‖ ≤ 2r(Vx)

}
+ Px3:n

{
‖y − x‖ ≤ 2r(Vy)

}
≤ Px3:n

{
∃z : |B(z, ‖x− y‖/4) ∩ {x3, . . . , xn}| = ∅

}
+ Px3:n

{
∃z : |B(z, ‖x− y‖/4) ∩ {x3, . . . , xn}| = ∅

}
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≤

{
2, if ‖x− y‖2 ≤ 2tn,δ,

2δ, otherwise.

Setting δn = n−(d+1)/d and plugging this back into (S.34), we conclude that if tn,δn < t0, then

E
[

DTV
(
f(x1:n); w̌V

)]
≤ 2n(n− 1)

∫
Ω

∫
Ω

|f(y)− f(x)|
(

1{‖x− y‖ ≤ 2tn,δn}+ 2δn

)
dy dx

≤ 2E[DTV(f ;wε←tn,δ)] + 2n1−1/d

∫
Ω

∫
Ω

|f(y)− f(x)| dy dx. (S.35)

Note that since limn→∞ tn,δn = 0, the condition tn,δn < t0 will automatically be satisfied for all n sufficiently large.
We now conclude the proof by upper bounding each term in (S.35). The first term refers to the expected ε-

neighborhood graph total variation of f when ε = tn,δn , and by (S.39) satisfies

E[DTVn,tn,δ(f)] ≤ Cn2(tn,δn)d+1TV(f ; Ω) ≤ Cn1−1/d(log n)(d+1)/dTV(f ; Ω).

The second term above can be upper bounded using a Poincaré inequality for BV(Ω) functions, i.e.,∫
Ω

∫
Ω

|f(y)− f(x)| dy dx ≤ 2

∫
Ω

|f(x)− f(x)| dx ≤ CTV(f ; Ω).

Plugging these upper bounds back into (S.35) yields the claimed result (33) in the unit weights case.

D.4.2 Clipped weights

We now show (33) using clipped weights. Our goal is to upper bound

E
[

DTV
(
f(x1:n); w̃V

)]
= n(n−1)E

[
|f(x1)−f(x2)|max{c0n−(d−1)/d1{Hd−1(V̄1∩V̄2) > 0},Hd−1(V̄1∩V̄2)}

]
.

By conditioning, we may rewrite the expectation above as

p2
max

∫
Ω

∫
Ω

|f(y)− f(x)|Ex3:n

[
max{c0n−(d−1)/d1{Hd−1(V̄x ∩ V̄y) > 0},Hd−1(V̄x ∩ V̄y)}

]
dy dx, (S.36)

where Vx = {z : ‖z − x‖2 < ‖z − xi‖ ∀i = 2, 3, . . . , n}, and likewise for Vy. Note that Vx and Vy are random
subsets of Rd. We now focus on controlling the inner expectation of (S.36). Upper bound the maximum of two positive
functions with their sum to obtain,

E3:n

[
max{c0n−(d−1)/d1{Hd−1(V̄x ∩ V̄y) > 0},Hd−1(V̄x ∩ V̄y)}

]
≤ c0n−(d−1)/dP{Hd−1(V̄x ∩ V̄y) > 0}+ E

[
Hd−1(V̄x ∩ V̄y)

]
.

(S.37)

We recognize the first term on the RHS of (S.37) as having already been analyzed in the unit weights case; we now
focus on the second term. The latter “Voronoi kernel” term may be rewritten,

Ex3:n

[
Hd−1(V̄x ∩ V̄y)

]
=

∫
L∩Ω

(1− px(z))n−2dz,

where L = {z : ‖x − z‖ = ‖y − z‖} and px(z) = P (B(z, ‖x − z‖)). Observe by Assumption A1 that px(z) ≥
pminµd‖x− z‖d, and therefore ∫

L∩Ω

(1− px(z))n−2 ≤ exp(−cn‖x− z‖d),

for some c > 0. Apply Lemma S.19 with a = 2 to therefore bound,

Ex3:n

[
Hd−1(V̄x ∩ V̄y)

]
≤ C1

(
1{‖x− y‖ ≤ C2(log n/n)1/d}

n(d−1)/d
+

1

n2

)
, (S.38)
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for constants C1, C2 > 0. Substitute (S.38) into (S.37) and (S.36) to obtain,

E
[

DTV (f(x1:n); w̃)
]

≤ p2
maxn

2

∫
Ω

∫
Ω

|f(y)− f(x)|

(
c0n
−(d−1)/dP3:n{H(V̄x ∩ V̄y) > 0}

+ C1
1{‖x− y‖ ≤ C2(log n/n)1/d}

n(d−1)/d
+
C1

n2

)
dy dx

≤ p2
maxc0n

−(d−1)/dE
[
DTV(f(x1:n); w̌V)

]
+ p2

maxC1n
−(d−1)/dE

[
DTV(f(x1:n);wε←C2(logn/n)1/d

)
]

+ p2
maxC1

∫
Ω

∫
Ω

|f(y)− f(x)| dy dx

= T1 + T2 + T3.

We bound each of the terms above in turn. The first term appeals to (33) in the unit weights case, which we have already
proved.

T1 = p2
maxc0n

−(d−1)/dE
[
DTV(f(x1:n); w̌V)

]
≤ C3n

−(d−1)/dn(d−1)/d(log n)1+1/d TV(f)

= C3(log n)1+1/d TV(f).

The second term refers to the expected ε-neighborhood graph total variation of f when ε = C2(log n/n)1/d, which
by (S.39) satisfies,

T2 = p2
maxC1n

−(d−1)/dE
[
DTV

(
f(x1:n);wε←C2(logn/n)1/d

)]
≤ C4n

−(d−1)/dn2(log n/n)(d+1)/d TV(f)

≤ C4(log n)1+1/d TV(f).

The third term can be controlled via the Poincaré inequality,

T3 = p2
maxC1

∫
Ω

∫
Ω

|f(y)− f̄ + f̄ − f(x)| dy dx

≤ C5

∫
Ω

|f(x)− f̄ | dx

≤ C5 TV(f),

where f̄ := −
∫

Ω
f .

D.4.3 ε-neighborhood and kNN expected discrete TV

Lemma S.6. Under Assumption A1, there exist constants c, C1, C2 > 0 such that for all sufficiently large n and
f0 ∈ BV(Ω),

• The ε-neighborhood graph total variation, for any ε > 0, satisfies

E
[

DTV
(
f0(x1:n; wε)

)]
≤ C1n

2εd+1 TV(f0). (S.39)

• The k-nearest neighbors graph total variation, for any k ∈ N, satisfies

E
[

DTV
(
f0(x1:n; wk)

)]
≤ C2

(
n1−1/dk(d+1)/d + n2 exp(−ck)

)
TV(f0). (S.40)

Proof.
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ε-neighborhood expected discrete TV. This follows the proof of Lemma 1 in Green et al. (2021a), with two
adaptations to move from SobolevH2(Ω) to the BV(Ω): we deal in absolute differences rather than squared differences,
and an approximation argument is invoked at the end to account for the existence of non-weakly differentiable functions
in BV(Ω).

Begin by rewriting,

E

 n∑
i,j=1

|f(xi)− f(xj)| · 1{‖xi − xj‖ ≤ ε}

 =
n(n− 1)

2
E
[
|f(X ′)− f(X)|K

(
‖X ′ −X‖

ε

)]
, (S.41)

where X and X ′ are random variables independently drawn from P following Assumption A1 and K(t) = 1{t ≤ 1}.
Now, take Ω′ to be an arbitrary bounded open set such that B(x, c0) ⊆ Ω′ for all x ∈ Ω.

For the remainder of this proof, we assume that (i) f ∈ BV (Ω′) and (ii) ‖f‖BV (Ω′) ≤ C ′‖f‖BV (Ω) for some
constant C ′ independent of f . These conditions are guaranteed by the Extension Theorem (Evans, 2010; Section
5.4 Theorem 1), which promises an extension operator E : W 1,p(Ω) → W 1,p(Ω) (take p = 1 and the BV case is
established through an approximation argument). We also assume that f ∈ C∞(Ω), which is addressed through via an
approximation argument at the end. Since f ∈ C∞(Ω), we may rewrite a difference in terms of an integrated derivative:

f(x′)− f(x) =

∫ 1

0

∇f(x+ t(x′ − x))>(x′ − x)dx. (S.42)

It follows that

E
[
|f(X ′)− f(X)|K

(
‖X ′ −X‖

ε

)
≤ p2

max

∫
Ω

∫
Ω

|f(x′)− f(x)|K
(
‖x′ − x‖

ε

)
dx′dx

]
, (S.43)

and the final step is to bound the double integral. We have∫
Ω

∫
Ω

|f(x′)− f(x)|K
(
‖x′ − x‖

ε

)
dx′dx

=

∫
Ω

∫
Ω

∣∣∣ ∫ 1

0

∇f(x+ t(x′ − x))>(x′ − x)dt
∣∣∣K (‖x′ − x‖

ε

)
dx′dx (FTC)

≤
∫

Ω

∫
Ω

∫ 1

0

|∇f(x+ t(x′ − x))>(x′ − x)|K
(
‖x′ − x‖

ε

)
dtdx′dx (Jensen)

=

∫
Ω

∫
B(0,1)

∫ 1

0

|∇f(x+ tεz)>(εz)|K(‖z‖)εddtdzdx (z = (x′ − x)/ε)

= εd+1

∫
Ω

∫
B(0,1)

∫ 1

0

|∇f(x+ tεz)>z|K(‖z‖)dtdzdx

≤ εd+1

∫
Ω′

∫
B(0,1)

∫ 1

0

|∇f(x̃)>z|K(‖z‖)dtdzdx̃ (x̃ = x+ tεz).

Next, we apply the Cauchy-Schwarz to |∇f(x̃)>z| to obtain,∫
B(0,1)

|∇f(x̃)>z|K(‖z‖)dz ≤
∫
B(0,1)

‖∇f(x̃)‖‖z‖K(‖z‖)dz

= ‖∇f(x̃)‖
∫

(B(0,1)

‖z‖K(‖z‖)dz

= Cd‖∇f(x̃)‖

Substituting back in to the previous derivation, we obtain∫
Ω

∫
Ω

|f(x′)− f(x)|K
(
‖x′ − x‖

ε

)
dx′dx ≤ Cdεd+1

∫
Ω′

∫ 1

0

‖∇f(x̃)‖1dtdx̃
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= Cdε
d+1‖Df‖(Ω′)

≤ CdC ′εd+1‖Df‖(Ω)

Hence,

E

1

2

n∑
i,j=1

|f(xi)− f(xj)| · 1{‖xi − xj‖ ≤ ε}

 ≤ n(n− 1)

2
p2

maxCdC
′εd+1‖Df‖(Ω)

≤ C2n
2εd+1‖Df‖(Ω)

Finally, we provide an approximation argument to justify the assumption that f ∈ C1(Ω′). For a function f ∈ BV(Ω′),
we may construct a sequence of functions fk ∈ C∞(Ω′) via mollification such that fk → f µ-a.e. (specifically, at all
Lebesgue points) and ‖Dfk‖(Ω′)→ ‖Df‖(Ω′) as k →∞ (Evans and Gariepy, 2015; Theorems 4.1 & 5.3). Via an
application of Fatou’s lemma, we find that

E

[
1

2

n∑
i,j=1

|f(xi)− f(xj)| · 1{‖xi − xj‖ ≤ ε}

]

= E

1

2

n∑
i,j=1

| lim
k→∞

fk(xi)− fk(xj)| · 1{‖xi − xj‖ ≤ ε}


= E

lim inf
k→∞

1

2

n∑
i,j=1

|fk(xi)− fk(xj)| · 1{‖xi − xj‖ ≤ ε}

 (Continuity)

≤ lim inf
k→∞

E

1

2

n∑
i,j=1

|fk(xi)− fk(xj)| · 1{‖xi − xj‖ ≤ ε}

 (Fatou’s lemma)

≤ lim inf
k→∞

Cn2εd+1‖Dfk‖(Ω)

= Cn2εd+1‖Df‖(Ω)

k-nearest neighbors expected discrete TV. Let εk(x) := ‖x − x(k)(x)‖2 and εk(x, y) = max{εk(x), εk(y)} be
data-dependent radii. Notice that

DTVn,k(f) =
1

2

n∑
i,j=1

|f(xi)− f(xj)| · 1
{
‖xi − xj‖ ≤ εk(xi, xj)

}
.

By linearity of expectation and conditioning, the expected k-nearest neighbor TV can be written as a double integral,

E[DTV(f ;wk)] = n(n− 1)E
[
|f(xi)− f(xj)| 1

{
‖xi − xj‖ ≤ εk(xi, xj)

}]
= n(n− 1)E

[
E
[
|f(xi)− f(xj)| 1

{
‖xi − xj‖ ≤ εk(xi, xj)

}
|xi, xj

]]
≤ n(n− 1)

∫
Ω

∫
Ω

|f(y)− f(x)| P
{
‖x− y‖ ≤ εk(x, y)

}
dx dy

≤ n(n− 1)

∫
Ω

∫
Ω

|f(y)− f(x)|
(
P
{
‖x− y‖ ≤ εk(x)

}
+ P

{
‖x− y‖ ≤ εk(x)

})
dx dy

(The first inequality above is nearly an equality for large n, and the second inequality follows by a union bound.)
We now derive an upper bound P

{
‖x− y‖ ≤ εk(x)

}
. First, observe that the event ‖x− y‖ ≤ εk(x) is equivalent

to |B(x, ‖y − x‖) ∩ x1:n| < k. Suppose ‖y − x‖ ≥ C(k/n)1/d for C = ( 2d
pminµd

)1/d. Then

pk(x, y) := P (B(x, ‖y − x‖)) ≥ pmin

2d
µd‖y − x‖d ≥

2k

n
,
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and applying standard concentration bounds (Bernstein’s inequality) to the tails of a binomial distribution, it follows
that

P
{
|B(x, ‖y − x‖) ∩ x1:n| < k

}
= P

{
|B(x, ‖y − x‖) ∩ x1:n| − npk(x, y) < k − npk(x, y)

}
≤ exp

(
− c(npk(x, y)− k)2

npk(x, y) + |npk(x, y)− k|

)
≤ exp(−ck).

Otherwise if ‖y − x‖ < C(k/n)1/d, we use the trivial upper bound 1 on the probability of an event. To summarize, we
have shown

P
(
‖x− y‖ ≤ εk(x)

)
≤

{
1, if ‖x− y‖ < C(k/n)1/d,
exp(−ck), otherwise.

It follows from (S.40) that

E[DTV(f ;wk)] ≤ 2n2

∫
Ω

∫
Ω

|f(y)− f(x)|
((

1{‖x− y‖ < C(k/n)1/d}
)

+ exp(−ck)
)
dx dy

≤ C
(
E[DTV(f ;wε←C(k/n)1/d

)] + n2 exp(−ck)TV(f,Ω)
)
; (S.44)

the first term on the right hand side of the second inequality is the expected ε-neighborhood graph TV of f , with radius
C(k/n)1/d, while the second term is obtained from the Poincaré inequality∫

Ω

∫
Ω

|f(y)− f(x)| dy dx =

∫
Ω

∫
Ω

∣∣∣∣f(y)− f̄ + f̄ − f(x)

∣∣∣∣ dy dx ≤ C(TV(f ; Ω)
)
, (S.45)

where f̄ = −
∫

Ω
f(x) dx is the average of f over Ω. The claimed upper bound (S.40) follows from applying inequal-

ity (S.39), with ε = C(k/n)1/d, to (S.44).

D.5 Proof of Lemma 3
Recall that ‖g‖L2(P ) ≤ pmax‖g‖L2(µ) for any g ∈ L2(µ) and note that ‖f̄0‖L∞(µ) ≤ M with probability one. By
Hölder’s inequality,

E‖f̄0 − f0‖2L2(µ) ≤ E
[
‖f̄0 − f0‖L1(µ) · ‖f̄0 − f0‖L∞(µ)

]
≤ 2M E‖f̄0 − f0‖L1(µ),

(S.46)

and the problem is reduced to upper bounding the expected L1(µ) loss of f̄0. By Fubini’s Theorem we may exchange
expectation with integral, giving

E‖f̄0 − f0‖L1(µ) =

∫
Ω

E|f̄0(x)− f0(x)| dx

=

∫
Ω

∫
Ω

|f0(y)− f0(x)|p(1)
x (y) dy dx, (S.47)

where p(1)
x (·) is the density of x(1)(x). We now give a closed form expression for this density, before proceeding to

lower bound (S.47).

Closed-form expression for p(1)
x . Suppose P satisfies Assumption A1. For any y ∈ Ω and 0 < r < dist(y, ∂Ω), we

have

P
{
x(1)(x) ∈ B(y, r)

}
≤ n P

{
x1 ∈ B(y, r)

}(
P{x2 6∈ B(x, ‖y − x‖}

)(n−1)

≤ npmaxµ
(
B(y, r)

)(
1− P

(
B(x, ‖y − x‖)

))(n−1)

.

Taking limits as r → 0 gives

p(1)
x (y) = lim

r→0

P
{
x(1)(x) ∈ B(y, r)

}
µ(B(y, r))

= npmax

(
1− P

(
B(x, ‖y − x‖)

))(n−1)

.
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Upper bound on (S.47). There exists a constant Cd such that for all x, y ∈ Ω,

P
(
B(x, ‖y − x‖)

)
≥ pmin

Cd
µ(B(x, ‖y − x‖)) =

pminµd
Cd

‖y − x‖d.

This implies an upper bound on the density of x(1)(x),

p(1)
x (y) ≤ n

(
1− pminµd

Cd
‖y − x‖d

)(n−1)

≤ n exp

(
−pminµd

Cd

(‖y − x‖
n−1/d

)d)
,

where we have used the inequality (1 − x)n ≤ exp(−nx) for |x| ≤ 1. Using the inequality, valid for all monotone
non-increasing functions g : [0,∞)→ [0,∞), that g(t) ≤ 1{t ≤ t0}g(0) + g(t0), we further conclude that

p(1)
x (y) ≤ n1{‖y − x‖ ≤ ε(1)

n }+
1

n
,

for ε(1)
n := ( 2Cd

pminµd
(log n/n))1/d. Plugging back into (S.47), we see that the expected L1(µ) error is upper bounded by

the expected discrete TV of a neighborhood graph with particular kernel and radius, plus a remainder term. Specifically,

E‖f̄0 − f0‖L1(µ) ≤ n
∫

Ω

∫
Ω

|f0(y)− f0(x)|1{‖y − x‖ ≤ ε(1)
n } dy dx+

1

n

∫
Ω

∫
Ω

|f0(y)− f0(x)| dy dx

≤ n
∫

Ω

∫
Ω

|f0(y)− f0(x)|1{‖y − x‖ ≤ ε(1)
n } dy dx+

C TV(f0; Ω)

n
(S.48)

=
1

n
E[DTV(f0;wε←ε

(1)
n ))] +

C TV(f0; Ω)

n
,

where (S.48) above follows from the Poincaré inequality (S.45). We can therefore apply (S.39), which upper bounds
the expected ε-neighborhood graph TV, and conclude that

E‖f̄0 − f0‖L1(µ) ≤ C
(

(log n)1+1/d

n1/d
+

1

n

)
TV(f0; Ω) ≤ C

(
L(log n)1+1/d

n1/d

)
.

Inserting this upper bound into (S.46) completes the proof of Lemma 3.

D.6 Proof of Theorem 4
The analysis of the ε-neighborhood and kNN TV denoising estimators proceeds identically, so we consider them
together. Henceforth let D denote the penalty operator for either estimator and f̂ denote their 1NN extrapolants. Follow
the proof of Theorem 2 (given in Appendix D.1) to decompose the L2(P ) error for some C > 0,

E
[
‖f̂ − f0‖2L2(P )

]
≤ C

(
λ log n E‖Dθ0‖

n
+

(log n)1+α

n
+
LM(log n)1+1/d

n1/d

)
, (S.49)

where we have applied Lemma 3 which controls the 1NN extrapolation error. Lemma S.6 provides that under the
standard assumptions, there exist constants C1, C

′
1 > 0 such that for all sufficiently large n and θ0 = f0(x1:n),

f0 ∈ BV(Ω),

• setting ε = c1(logα n/n)1/d,

E‖Dεθ0‖1 ≤ C1n
(d−1)/d(log n)α+α/d TV(f0); (S.50)

• setting k = c′1(log n)3,
E‖Dkθ0‖1 ≤ C ′1n(d−1)/d(log n)3+3/d TV(f0). (S.51)

Take these values of ε, k and λ = cσ(log n)1/2−α, c = c2, c
′
2, and substitute (S.50), (S.51) into (S.49) to obtain the

claim.
Note that the L2(Pn) in-sample error may be obtained similarly, beginning with an analysis identical to that of

Lemma 1 to obtain the preliminary upper bound,

E
[
‖f̂ − f0‖2L2(Pn)

]
≤ C

(
λ E‖Dθ0‖

n
+

(log n)1+α

n

)
.

24



D.7 Proof of Theorem 5
In this section we prove the upper bound (39). The proof is comprised of several steps and we start by giving a high-level
summary.

• We begin in Section D.7.1 by formalizing the estimator f̂wave alluded to in Theorem 5, based on hard thresholding
of Haar wavelet empirical coefficients.

• Section D.7.2 reviews wavelet coefficient decay of BV(Ω) and L∞(Ω) functions. These rates of decay imply
that the wavelet coefficients of f0 ∈ BV∞(L,M) must belong to the normed balls in a pair of Besov bodies,
defined formally in (S.58). Besov bodies are sequence-based spaces that reflect the wavelet coefficient decay of
functions in Besov spaces.

• Section D.7.3 gives a deterministic upper bound on the squared-`2 error of thresholding wavelet coefficients
when the population-level coefficients belong to intersections of Besov bodies. This deterministic upper bound is
based on analyzing two functionals—a modulus of continuity (S.101) and the tail width (S.102)— in the spirit
of (Donoho et al., 1995); the difference is that we are considering intersections of Besov bodies.

• The aforementioned modulus of continuity measures the size of the `2-norm ‖θ − θ′‖2 relative to `∞-norm
‖θ − θ′‖∞. In Section D.7.4, we give an upper bound on the `∞ norm of the difference between sample and
population-level wavelet coefficients.

• Finally, in Section D.7.5 we combine the results of Sections D.7.3 and D.7.4 to establish upper bounds on the
expected squared-`2 error of hard thresholding sample wavelet coefficients. The same upper bound will apply to
the expected squared-L2(Ω) error of f̂wave, by Parseval’s theorem.

D.7.1 Step 1: Hard-thresholding of wavelet coefficients

To define the estimator f̂wave that achieves the upper bound in (39), we first review the definition of tensor product Haar
wavelets.

Definition 1 (Haar wavelet). The Haar wavelet ψ : (0, 1)→ R is defined by

ψ(x) := 1{x ∈ (0, 1/2]} − 1{x ∈ (1/2, 1)}. (S.52)

For each i ∈ {0, 1}d \ {(0, . . . , 0)}, the tensor product Haar wavelet Ψi : (0, 1)d → R is defined by

Ψi(x) := ψi1(x1) . . . ψid(xd), (S.53)

where ψ1(x) = ψ(x) and ψ0(x) = 1. To ease notation, let I = {0, 1}d \ {(0, . . . , 0)} and K(`) = [2` − 1]d. For each
` ∈ N ∪ {0}, k ∈ K(`) and i ∈ I, put Ψi

`k(x) := 2`d/2Ψi(2`x − k). Finally, let Φ(x) = 1{x ∈ (0, 1)d}. The Haar
wavelet basis is the collection {Ψi

`k : ` ∈ N, k ∈ K(`), i ∈ I} ∪ {Φ}, and it forms an orthonormal basis of L2((0, 1)d).

We now describe the estimator f̂wave, which applies hard thresholding to sample wavelet coefficients. For each
` ∈ N ∪ {0}, k ∈ K(`) and i ∈ I, write

θ`ki(f) :=

∫
Ω

Ψi
`k(x)f(x) dx, θ̃`ki(f) :=

1

n

n∑
j=1

f(xj)Ψ
i
`k(xj),

for the population-level and empirical wavelet coefficients of a given f ∈ L2(Ω). The sample wavelet coefficient is
θ̃`ki(y1:n). The hard thresholding estimator we use is defined with respect to a threshold λ > 0 and a truncation level
`∗ ∈ N ∪ {0} as

θ̂
(λ,`∗)
`ki :=

{
θ̃`ki(y1:n) · 1{θ̃`ki(y1:n) ≥ λ}, ` = 0, . . . , `∗

0, ` ≥ log2(n)/d+ 1,
(S.54)

and we map the sequence estimate θ̂(λ,`∗) =
(
θ̂

(λ,`∗)
`ki : ` ∈ N, k ∈ K(`), i ∈ I

)
to the function

f̂ (λ,`∗)(x) = y +
∑
`∈N

∑
k∈K(`),i∈I

θ̂
(λ,`∗)
`ki Ψi

`k(x), (S.55)
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where y = 1
n

∑n
i=1 yi is the sample average of the responses. (S.55) defines a family of estimators depending on

the threshold λ, and the estimator f̂wave is the hard thresholding estimate f̂ (λ,`∗) with the specific choices λ =
8n−1/2 log3/2(2n/δ) and `∗ = log2(n)/d.

D.7.2 Step 2: Wavelet decay

In this section we recall the wavelet coefficient decay of functions in BV(Ω) and in L∞(Ω). For each ` ∈ N ∪ {0},
define

θ`·(f) =
(
θi`k(f) : k ∈ K(`), i ∈ I

)
.

and write θ(f) for the vector with entries θ(f)` := θ`·(f).

Lemma S.7. Let f ∈ L∞(Ω). Then for all ` ∈ N ∪ {0},

‖θ`·(f)‖∞ ≤ 2−`d/2‖f‖L∞(Ω). (S.56)

Lemma S.8. There exists a constant C1 such that for all f ∈ BV(Ω) and ` ∈ N ∪ {0},

‖θ`·(f)‖1 ≤ C12−`(1−d/2)TV(f ; Ω). (S.57)

The decay rates established by Lemmas S.7 and S.8 imply that if f0 ∈ BV∞(L,M), then θ(f0) belongs to
Θ0,∞
∞ (M) and Θ1,1

∞ (L), where Θs,p
∞ (C) consists of sequences θ for which

‖θ‖Θs,p∞ := sup
`∈N∪{0}

2`(s+d/2−d/p)‖θ`·‖p < C. (S.58)

The sets Θs,p
∞ (C) can be interpreted as normed balls in Besov bodies, since a function f belongs to the Besov space

Bs,p∞ if and only if its coefficients in a suitable wavelet basis satisfy ‖θ(f)‖Θs,p∞ <∞.
The conclusions of Lemmas S.7 and S.8 are generally well-understood (see for instance Giné and Nickl (2021) for

the upper bound on wavelet decay of L∞(Ω) functions when d = 1, and Cohen et al. (2003) for the wavelet decay of
BV(Ω) functions). For purposes of completeness only, we include proofs of these results in Appendix G.3.1.

D.7.3 Step 3: Deterministic upper bound on `2-error

In this section, we analyze the `2-error of the hard-thresholding estimator θ̂(λ,`∗). Specifically, we upper bound the
magnitude of ‖θ̂(λ,`∗) − θ(f0)‖2 as a function of the `∞ distance between the (truncated) sample and population-level
wavelet coefficients, i.e the quantity

εn := ‖(θ̃(y1:n)− θ(f0))≤`∗‖∞,

where

(θ≤`∗)
i
`k :=

{
θi`k, if ` ≤ `∗,
0, otherwise.

Note that this upper bound is purely deterministic.

Proposition S.2. Suppose θ(f0) ∈ Θ0,∞
∞ (M) ∩ Θ1,1

∞ (L). Then there exists a constant C3 that does not depend on
n,M or L for which the following statement holds: if λ ≥ 2εn, then the estimator θ̂(λ,`∗) of (S.55) satisfies the upper
bound

‖θ̂(λ,`∗) − θ(f0)‖22 ≤ 4C1LM2−`
∗

+ C3 ·


Lλmax{1, 1/M, log2(M/λ)}, if d = 2

L2/dλ4/(2+d) + LM
( λ
M

)2/d

, if d ≥ 3.
(S.59)

The proof is deferred to Appendix G.3.2.

26



D.7.4 Step 4: Uniform convergence of wavelet coefficients

Lemma S.9 gives an upper bound on the maximum difference between sample and population-level wavelet coefficients
that holds uniformly over all ` = 0, . . . , log2(n)/d, k ∈ K(`) and i ∈ I. Its proof is deferred to Appendix G.3.3.

Lemma S.9. Suppose we observe data (x1, y1), . . . , (xn, yn) according to (1), where f0 ∈ L∞(Ω;M). There exists a
constant C4 not depending on n such that the following statement holds for all δ > 0: with probability at least 1−C4δ,

‖(θ̃(y1:n)− θ(f0))≤log2(n)/d‖∞ ≤
4 log3/2(2n/δ)√

n
+

√
12M

√
log(2n/δ)√
n︸ ︷︷ ︸

:=δn

. (S.60)

D.7.5 Step 5: Upper bound on risk

We are now ready to prove the stated upper bound (39). In this section we take λ = 2δn and `∗ = log2(n)/d.
Combining Proposition S.2 and Lemma S.9, we have that with probability at least 1− C4δ,

‖θ̂(λ,`∗) − θ0(f)‖22 ≤
4C1LM

n1/d
+ C3 ·


2Lδn max{1, 1/M, log2(M/2δn)}, if d = 2,

L2/d(2δn)4/(2+d) + LM
(2δn
M

)2/d

, if d ≥ 3.
(S.61)

The following lemma allows us to convert this upper bound, which holds with probability 1− C4δ, to an upper bound
which holds in expectation. Its proof is deferred to Appendix G.3.4.

Lemma S.10. LetX > 0 be a positive random variable. Suppose there exist positive numbersA1, . . . , AK , a1, . . . , aK ,
b1, . . . , bK > 1 and B such that for all δ ∈ (0, 1),

P
(
X >

K∑
k=1

Ak logak(bk/δ)
)
≤ Bδ.

Then there exists a constant C5 depending only on a1, . . . , ak and B such that

E[X] ≤ C5

K∑
k=1

Ak(log bk)ak .

Now we use Lemma S.10 to complete the proof of Theorem 5. Note that for any a > 0,

δan ≤
2a√
n

(
(log(2n/δ))3a/2 +M

√
log(2n/δ)

)
.

Thus we may can apply Lemma S.10 to (S.61), which, setting δ∗n = 4√
n

(
(log 2n)3/2 +M log(n)1/2

)
, gives

E‖θ̂(λ,`∗) − θ0(f)‖22 ≤
4C1LM

n1/d
+ C6 ·


2Lδ∗n max{1, 1/M, log2(M

√
n)}, if d = 2,

L2/d(2δ∗n)4/(2+d) + LM
(2δ∗n
M

)2/d

, if d ≥ 3.
(S.62)

where C6 = 2C3C5.
Finally, we translate this to an upper bound on the expected risk of f̂wave = f̂ (λ,`∗). Since {Ψi

`k, ` ∈ N ∪ {0}, k ∈
K(`), i ∈ I} ∪ {Φ} forms an orthonormal basis of L2(Ω), by Parseval’s theorem we have

‖f̂ (λ,`∗) − f0‖2L2(Ω) = (y − E[f0])2 + ‖θ̂(λ,`∗) − θ(f0)‖22.

Taking expectation on both sides, the claimed upper bound (39) follows by (S.62), upon proper choice of constant
C = max{4C1, 16C6}.
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E Analysis of graph TV denoising
In this section, we review tools for analyzing graph total variation denoising. Suppose an unknown θ0 ∈ Rn and
observations y1, . . . , yn,

yi = θ0i + zi, i = 1, . . . , n, (S.63)

where zi ∼ N (0, σ2). The graph total variation denoising estimator θ̂ associated with a graph G = (V,E), |V | = n, is
given by

θ̂ = argmin
θ∈Rn

1

2
‖y1:n − θ‖22 + λ‖Dθ‖1, (S.64)

where D ∈ Rm×n is the edge incidence matrix of G.
The initial analysis of graph total variation denoising was performed by Hutter and Rigollet (2016) for the two-

dimensional grid. Sadhanala et al. (2016) subsequently generalized the analysis to d-dimensional lattices, and Wang
et al. (2016) provided tools for the analysis of general graphs. These techniques rely on direct analysis of properties of
graph G and the penalty D in induces, which is tractable when G has a known and regular properties (e.g., it is a lattice
graph).

Unfortunately, direct analysis onD may not always be feasible. It may be possible, however, to compare the operator
D to a surrogate operator whose properties we analyze instead. For our purposes, we compare D to a linear operator
which first takes averages on a partition, and then computes differences across cells of the partition. Comparison to
this type of surrogate operator was used by Padilla et al. (2020) to bound the risk of graph total variation denoising
in probability; the following theorem provides an analogous risk bound in expectation. We note that elements of the
“surrogate operator analysis” are also found in Padilla et al. (2018).

Theorem S.1. Suppose we observe data according to model (S.63) and compute the graph TV denoising estimator θ̂
of (S.64). Let A ∈ Rn×n denote an averaging operator over N̄ groups of the form,

A =


n−1

1 1n11
>
n1

0 . . . 0
0 n−1

2 1n2
1>n2

. . . 0
...

...
. . .

...
0 0 . . . n−1

N̄
1nN̄1

>
nN̄

 ,
with M := maxj nj , and let Ā ∈ RN̄×n be the same matrix with redundant rows removed. Further let T ∈ Rm̄×N̄ be
a surrogate penalty operator, with singular value decomposition T = UΣV >, such that

‖TĀθ‖1 ≤ Φ1(D,T,A)‖Dθ‖1, (S.65)
‖(I −A)θ‖1 ≤ Φ2(D,T,A)‖Dθ‖1, (S.66)

for quantities Φ1(D,T,A),Φ2(D,T,A) that may depend on n, for all θ ∈ Rn. If the penalty parameter

λ > max

8M1/2Φ1(D,T,A) · σ

√√√√log(2n4)

N̄∑
k=2

‖uk‖2∞
ξ2
k

,Φ2(D,T,A) · σ
√

2 log(n)

 (S.67)

where uk is the kth column of U and ξk the kth diagonal entry of Σ, then there exists a constant C > 0 such that

E
[

1

n
‖θ̂ − θ0‖22

]
≤ C

(
λ‖Dθ0‖1

n
+
Mnullity(T )

n

)
. (S.68)

Proof. We follow the approach of Padilla et al. (2020), with adaptations to provide a bound in expectation rather than
in probability. From the basic inequality,

‖θ̂ − θ0‖22 ≤ 2〈z1:n, θ̂ − θ0〉+ λ(‖Dθ0‖1 − ‖Dθ̂‖1),

where z1:n ∈ Rn is the vector of error terms zi, i = 1, . . . , n. We provide two deterministic bounds under the “good
case” that the error term falls into the set,

Zλ =

{
z1:n : max

{
M1/2Φ1(D,T,A) sup

Āθ∈row(T ):‖TĀθ‖1≤1

|〈z1:n, Āθ〉|,Φ2(D,T,A)‖z1:n‖∞

}
≤ λ

8

}
, (S.69)

where z1:n ∈ RN̄ has entries z1:nj = n
1/2
j (Āz1:n)j , and under the “bad case” that z1:n 6∈ Zλ.
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Upper bound in the “good case”. Decompose the first term on the RHS,

〈z1:n, θ̂ − θ0〉 = 〈z1:n, θ̂ −Aθ̂〉+ 〈z1:n, Aθ0 − θ0〉+ 〈z1:n, A(θ0 − θ̂)〉

≤ 〈z1:n, A(θ0 − θ̂)〉+ ‖z1:n‖∞(‖(I −A)θ̂‖1 + ‖(I −A)θ0‖1)

≤ 〈z1:n, A(θ0 − θ̂)〉+ ‖z1:n‖∞Φ(D,T,A)(‖Dθ0‖1 + ‖Dθ̂‖1),

where the final inequality follows from (S.66). Observe that we may rewrite, for any θ ∈ Rn,

〈z1:n, Aθ〉 =

N̄∑
j=1

nj∑
i=1

z1:n(
∑j−1
k=1 nk)+i(Āθ)j

d
=

N̄∑
j=1

n
1/2
j z1:nj(Āθ)j

⇒ 〈z1:n, Aθ〉 ≤M1/2|〈z1:n, Āθ〉|
≤M1/2

∣∣〈projV (z1:n), Āθ〉+ 〈projV ⊥(z1:n), Āθ〉
∣∣

≤M1/2
∣∣‖projV (z1:n)‖2‖Āθ‖2 + 〈projV ⊥(z1:n), Āθ〉

∣∣
≤M1/2

(
‖projV (z1:n)‖2‖θ‖2 + |〈projV ⊥(z1:n), Āθ〉|

∣∣ ,
where z1:n ∈ RN̄ has independent N (0, σ2) entries and V = null(T ). Substitute back in to obtain,

‖θ̂ − θ0‖22 ≤ 2M1/2(‖projV (z1:n)‖2‖θ̂ − θ0‖2 + |〈projV ⊥(z1:n), Ā(θ̂ − θ0)〉|)

+ 2‖z1:n‖∞Φ(D,T,A)(‖Dθ0‖1 + ‖Dθ̂‖1) + λ(‖Dθ0‖1 − ‖Dθ̂‖1),

and consequently,

‖θ̂ − θ0‖2(‖θ̂ − θ0‖2 − 2M1/2‖projV (z1:n)‖2)

≤ 2M1/2|〈projV ⊥(z1:n), Ā(θ̂ − θ0)〉|+ 2‖z1:n‖∞Φ(D,T,A)(‖Dθ0‖1 + ‖Dθ̂‖1) + λ(‖Dθ0‖1 − ‖Dθ̂‖1)

Case 1. ‖θ̂ − θ0‖2 ≤ 4M1/2‖projV (z1:n)‖2.
Case 2. ‖θ̂ − θ0‖2 > 4M1/2‖projV (z1:n)‖2. Then,

‖θ̂ − θ0‖22 ≤ 4M1/2|〈projV ⊥(z1:n), Ā(θ̂ − θ0)〉|+ 4‖z1:n‖∞Φ(D,T,A)(‖Dθ0‖1 + ‖Dθ̂‖1) + λ(‖Dθ0‖1 − ‖Dθ̂‖1).

We then bound,

|〈projV ⊥(z1:n), Ā(θ̂ − θ0)〉| =

∣∣∣∣∣
〈

projV ⊥(z1:n),
Ā(θ̂ − θ0)

‖TĀ(θ̂ − θ0)‖1

〉
‖TĀ(θ̂ − θ0)‖1

∣∣∣∣∣
≤ sup
Āθ∈V ⊥:‖TĀθ‖1≤1

|〈z1:n, Āθ〉|‖TĀ(θ̂ − θ0)‖1

≤ sup
Āθ∈V ⊥:‖TĀθ‖1≤1

|〈z1:n, Āθ〉|Φ(D,T,A)(‖Dθ̂‖1 + ‖Dθ0‖1),

where the last inequality follows by (S.66). Conditioning on z1:n ∈ Zλ, we find that under Case 2,

‖θ̂ − θ0‖22 ≤
λ

2
(‖Dθ̂‖1 + ‖Dθ0‖1) +

λ

2
(‖Dθ̂‖1 + ‖Dθ0‖1) + λ(‖Dθ0‖1 − ‖Dθ̂‖1)

≤ 2λ‖Dθ0‖1.

Therefore, conditioning on z1:n ∈ Zλ and combining Case 1 and Case 2, we obtain that

‖θ̂ − θ0‖22 ≤ 16M‖projV (z1:n)‖22 + 2λ‖Dθ0‖1.
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Upper bound in the “bad case”. On the “bad event” that z1:n 6∈ Zλ, we apply Hölder directly to the basic inequality
to bound,

‖θ̂ − θ0‖22 ≤ 2‖z1:n‖2‖θ̂ − θ0‖2 + λ‖Dθ0‖1,

and rearrange to obtain,
‖θ̂ − θ0‖22 ≤ 16‖z1:n‖22 + 2λ‖Dθ0‖1. (S.70)

Combining the “good case” and “bad case” upper bounds.
1

n
E‖θ̂ − θ0‖22 =

1

n
E
[
‖θ̂ − θ0‖221{z1:n ∈ Zλ}+ ‖θ̂ − θ0‖221{z1:n 6∈ Zλ}

]
≤ 1

n

[
E
[
16M‖projV (z1:n)‖22 + 2λ‖Dθ0‖1

]
+ E

[
(16‖z1:n‖22 + 2λ‖Dθ0‖1)1{z1:n 6∈ Zλ}

]]
≤ 1

n

[
16Mdim(V ) + 4λ‖Dθ0‖1 +

√
E[‖z1:n‖42] · P[z1:n 6∈ Zλ]

]
≤ 1

n

[
16Mdim(V ) + 4λ‖Dθ0‖1 +

√
3n · P[z1:n 6∈ Zλ]

]
It remains to bound the probability of the bad case,

P{z1:n 6∈ Zλ} ≤ P

{
M1/2 sup

Āθ∈V ⊥:‖TĀθ‖1≤1

|〈z1:n, Āθ〉| ≥ λ/8Φ(D,T,A)

}
+ P {‖z1:n‖∞ ≥ λ/8Φ(D,T,A)}

≤ P{M1/2Φ(D,T,A)‖(T+)>z1:n‖∞ ≥ λ/8}+ P{Φ(D,T,A)‖z1:n‖∞ ≥ λ/8}.

Standard results on the maxima of Gaussians provide that,

P

M1/2Φ1(D,T,A)‖(T+)>z1:n‖∞ ≥M1/2Φ1(D,T,A) · σ

√√√√log(2n2/δ) ·
N̄∑
k=2

‖uk‖2∞
ξ2
k

 ≤ δ,
P
{

Φ2(D,T,A)‖z1:n‖∞ ≥ Φ2(D,T,A) · σ
√

log(2n2/δ)
}
≤ δ.

Recalling the choice of penalty parameter,

λ > max

8M1/2Φ1(D,T,A) · σ

√√√√log(2n4)

N̄∑
k=2

‖uk‖2∞
ξ2
k

,Φ2(D,T,A) · σ
√

2 log(n)

 ,

we conclude that
P{z1:n 6∈ Zλ} ≤

2

n2
,

completing the proof.

We now state a well-known result controlling certain functionals of the lattice difference operator. These quantities
have been analyzed by others studying graph total variation denoising on lattices, e.g., Hutter and Rigollet (2016) and
Sadhanala et al. (2017).

Lemma S.11. Let T be the edge incidence operator of the d-dimensional lattice graph N elements per direction.
Denote n = Nd. The left singular vectors of T satisfy an incoherence condition,

‖uj‖∞ ≤
Cd√
n
, j = 1, . . . , n,

for some Cd > 0, and its singular values satisfy an asymptotic scaling,

cd(j/n)1/d ≤ ξj ≤ Cd(j/n)1/d, j = 2, . . . , n,

for some 0 < cd < Cd. Consequently,
n∑
j=2

‖uj‖2∞
ξ2
j

= Cd

{
log n d = 2,

1 d > 2.
(S.71)
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F Embeddings for random graphs
We begin by providing a result that controls the number of sample points that fall into each cell of a lattice mesh.

Lemma S.12. Suppose x1, . . . , xn are sampled from a distribution P supported on (0, 1)d with density p such that
0 < pmin < p(x) < pmax < 1 for all x ∈ (0, 1)d. Form a partition of (0, 1)d using an equally spaced mesh with
N = C1(pminn/ logα n)1/d, α > 1, along each dimension. Let C` denote the `th cell of the mesh, and let |C`| denote
its empirical content. Then for all x1:n ∈X1, with P{x1:n ∈X1} ≥ 1− 2/n4,

max
`
|C`| ≤ C3 logα n, (S.72)

min
`
|C`| ≥ c4 logα n, (S.73)

for n sufficiently large, where C3, c4 > 0 depend only on pmin, pmax, d.

Proof. From standard concentration bounds (e.g., Von Luxburg et al., 2014; Proposition 27) on a random variable
m ∼ Bin(n, p), for all δ ∈ (0, 1],

P{m ≥ (1 + δ)np} ≤ exp{−1

3
δ2np},

P{m ≤ (1− δ)np} ≤ exp{−1

3
δ2np}.

Apply these bounds with p = P{x ∈ C`} to obtain that,

P
{

max
`
|C`| ≥ (1 + δ)Cd1

pmax

pmin
logα n

}
≤ Nd exp

{
−1

3
δ2Cd1 logα n

}
,

P
{

min
`
|C`| ≤ (1− δ)Cd1 logα n

}
≤ Nd exp

{
−1

3
δ2Cd1 logα n

}
,

for all δ ∈ (0, 1). Setting the RHS to 1/n4,

Cd1pminn

logα n
exp{−1

3
δ2C−d1 logα n} ≤ 1

n4

log(Cd1pmin)− log(logα n)− 1

3
δ2C−d1 logα n ≤ −5 log n

⇒ 1

3
δ2C−d1 logα n ≥ 5 log n+ log(Cd1pmin)− log(logα n)

δ2 ≥ 3Cd1

(
5 log1−α n+

log(Cd1pmin)

logα n
− log(logα n)

logα n

)
δ ≥ C2 log(1−α)/2 n,

for some C2 > 0 for all n sufficiently large. Therefore deduce that,

P
{

max
`
|C`| ≥ Cd1

pmax

pmin
logα n+ Cd1C2

pmax

pmin
log(1+α)/2 n

}
≤ 1

n4
,

P
{

min
`
|C`| ≤ Cd1 logα n− Cd1C2 log(1+α)/2 n

}
≤ 1

n4
.

Recall that α > 1 by assumption, and choose C3, c4 > 0 with n sufficiently large to obtain the claim.

The following lemma establishes embeddings from certain random graphs into a coarser lattice graph.

Lemma S.13. Partition the domain (0, 1)d using an equally spaced mesh with N = C1(pminn/ logα n)1/d elements
per direction. Suppose that x1:n ∈X1, with x1:n re-indexed such that

x1, . . . , x|C1| ∈ C1,
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x|C1|+1, . . . , x|C1|+|C2| ∈ C2,
...

x∑Nd−1
`=1 |C`|+1

, . . . , xNd ∈ CNd .

Consider the averaging operators,

A =


|C1|−11|C1|1

>
|C1| 0 . . . 0

0 |C2|−11|C2|1
>
|C2| . . . 0

...
...

. . .
...

0 0 . . . |CNd |−11|C
Nd
|1
>
|C
Nd
|

 , (S.74)

and the lattice difference operator T based on the graph

GT = ({1, . . . , Nd}, ET ), (S.75)

where (i, j) ∈ ET if the midpoints of Ci, Cj are 1/N apart. Also, let Ā ∈ RNd×n be the matrix obtained by dropping
the redundant rows of A.

• Build the Voronoi graph from x1:n, and let D̃V denote the edge incidence operator with edge set EV and edge
weights w̃V

ij = max{c0n−(d−1)/d, wV
ij} for each i, j. Further condition on the set X2 such that the result of

Lemma S.14 holds with probability 1 − 1/n4 (equivalently, the set that the result of Lemma S.15 holds with
probability 1− 1/n4). Then there exists a constant C6 > 0 such that for all θ ∈ Rn,

‖TĀθ‖1 ≤ C6n
(d−1)/d‖D̃Vθ‖1. (S.76)

‖(I −A)θ‖1 ≤ C6(log n)αn(d−1)/d‖D̃Vθ‖1, (S.77)

• Build the Voronoi graph from x1:n, and let ĎV denote the edge incidence operator with edge set EV and edge
weights w̌V

ij = 1 for each i, j such that wV
i,j > 0. Further condition on the set X2 such that the result of

Lemma S.14 holds with probability 1− 1/n4. Then there exists a constant C7 > 0 such that for all θ ∈ Rn,

‖TĀθ‖1 ≤ C7‖ĎVθ‖1. (S.78)

‖(I −A)θ‖1 ≤ C7(log n)α‖ĎVθ‖1, (S.79)

• Build the ε-neighborhood graph from x1:n, with ε ≥ 2
√
d/N . Then with the constant c4 from Lemma S.12, it

holds that for all θ ∈ Rn,

‖TĀθ‖1 ≤
1

c24 log2α n
‖Dεθ‖1. (S.80)

‖(I −A)θ‖1 ≤
2

c4 logα n
‖Dεθ‖1, (S.81)

• Build the k-nearest neighbors graph from x1:n, with k ≥ C5 log3 n. Further condition on the set X2 such that
the result of Lemma S.14 holds with probability 1− 1/n4. Then with the constant c4 from Lemma S.12, it holds
for all θ ∈ Rn,

‖TĀθ‖1 ≤
1

c24 log2α n
‖Dkθ‖1. (S.82)

‖(I −A)θ‖1 ≤
2

c4 logα n
‖Dkθ‖1, (S.83)

Proof. ε-neighborhood graph. First, we prove (S.80) and (S.81). For the former, observe that

‖TĀθ‖1 =
∑

(k,`)∈ET

∣∣∣∣∣∣|Ck|−1
∑
i∈Ck

θi − |C`|−1
∑
j∈C`

θj

∣∣∣∣∣∣
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≤
∑

(k,`)∈ET

1

|Ck||C`|
∑

i∈|Ck|,j∈|C`|

|θi − θj |

≤ 1

c24 log2α n

∑
(k,`)∈ET

∑
i∈Ck,j∈C`

|θi − θj |

≤ 1

c24 log2α n
‖Dεθ‖1,

as ε = 2
√
d/N . For the latter, similarly deduce that

‖(I −A)θ‖1 =

n∑
i=1

∣∣∣∣∣∣θi − |C(i)|−1
∑
j∈C(i)

θj

∣∣∣∣∣∣
≤

n∑
i=1

|C(i)|−1

∣∣∣∣∣∣
∑
j∈C(i)

θj − θi

∣∣∣∣∣∣
≤

n∑
i=1

|C(i)|−1
∑
j∈C(i)

|θi − θj |

=

Nd∑
`=1

|C`|−1
∑
i∈C`

∑
j∈C`

|θi − θj |

≤ 2

c4 logα n

Nd∑
`=1

∑
i<j∈C`

|θi − θj |

≤ 2

c4 logα n
‖Dεθ‖1.

k-nearest neighbors graph. Recall that we have conditioned on the set X2 such that the result of Lemma S.14 holds.
In particular, (S.86) gives that

min
i=1,...,n

εk(xi) ≥ C
(
k

n

)1/d

,

where εk(xi) := ‖xi − x(k)(xi)‖2. The results (S.82) and (S.83) then follow by observing that on the event X2, the
k-nearest neighbors graph with k ≥ C5 log3 n dominates the ε-neighborhood graph with ε = 2

√
d/N .

Voronoi adjacency graph. We will prove the results (S.78) and (S.79) by providing a graph comparison inequality
between the ε-neighborhood graph with ε = 2

√
d/N and the Voronoi adjacency graph. The results (S.76), (S.77)

follow from the inequality ‖ĎVθ‖1 ≤ c−1
0 n(d−1)/d‖D̃Vθ‖1 for all θ ∈ Rn.

Intuition and outline. The central goal of this proof is to show that

‖Dεθ‖1 ≤ C(n)‖ĎVθ‖1,

for all θ ∈ Rn, where C(n) is at most polylogarithmic in n. This will be accomplished by

(i) verifying that for any {xi, xj} ∈ Eε, there exists a path {xi, xk1
}, {xk1

, xk2
}, . . . , {xkij , xj} ∈ EV, and

(ii) showing that if one uses the shortest path in the Voronoi adjacency graph GV to connect each {xi, xj} ∈ Eε,
then no one edge is used more than C9 log2α n times, where C9 is a positive constant and α > 1 may be chosen.

Step (i). Consider xi, xj such that {xi, xj} ∈ Eε. We will show the existence of a path between xi and xj in GV

and also characterize some properties of the path for step (ii).
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By definition, ‖xi − xj‖ ≤ ε. Denote

xij :=
xi + xj

2
,

rij := ‖xi − xij‖.

Consider the subgraph Gij = (V ij , Eij), where

V ij := {Vk : Vk ∩B(xij , rij) 6= ∅},
Eij := {{Vk, V`} : Vk, V` ∈ V ij ,Hd−1(∂Vk ∩ ∂V`) > 0},

where B(xij , rij) is the closed ball centered at xij with radius rij . By construction, xi, xj ∈ V ij , and by Lemma S.16,
Gij is connected. Therefore a path between xi and xj exists in the graph Gij (one can use, e.g., breadth-first search or
Dijkstra’s algorithm to find such a path).

Step (ii). For any {xi, xj} ∈ Eε \ EV, we create a path in GV as prescribed in step (i). With these paths created,
we upper bound the number of times any edge in EV is used. We do so by uniformly bounding above the number of
times a vertex xk appears in these paths (and since each edge involves two vertices, this immediately yields an upper
bound on the number of times an edge appears in these paths). We split this into two substeps:

(a) first, we derive a necessary condition for xk to appear in the path between xi and xj ;

(b) then, we will upper bound the number of possible pairs xi, xj such that this necessary condition is satisfied.

Step (ii a). For xk to appear in the path between xi and xj as designed in step (i), it is necessary for Vk ∈ V ij .
Consider x ∈ Vk ∩B(xij , rij). Since x belongs to the Voronoi cell Vk,

‖x− xk‖ < min{‖x− xi‖, ‖x− xj‖},

but since x also lies in B(xij , rij),
‖x− xij‖ < rij .

It follows that,

‖xk − xij‖ ≤ ‖x− xk‖+ ‖x− xij‖
≤ ‖x− xi‖+ ‖x− xij‖
≤ ‖x− xij‖+ ‖xi − xij‖+ ‖x− xij‖
≤ 3rij ,

thus if Vk ∈ V ij , then it is necessary for xk ∈ B(xij , 3rij).
Step (ii b). Recalling ε = 2

√
d/N , where N = C1(pminn/ logα n)1/d, we have a uniform upper bound of

max
{xi,xj}∈Eε

rij ≤ C8

(
logα n

n

)1/d

,

for some C8 > 0. Thus, we conclude that for an edge of xk to be involved in a path between xi and xj , it is necessary
for

xij ∈ B(xk, 3C8(log n/n)1/d),

or more loosely,
xi, xj ∈ B(xk, 4C8(log n/n)1/d),

recalling that rij = ‖xij − xi‖ = ‖xij − xj‖ and the uniform upper bound on rij . Therefore, the number of paths in
which any xk may appear is bounded above,

(nPn(·, 4C8(logα n/n)1/d))2 ≤ C9 log2α n,

where the final inequality is obtained by (S.85).
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G Auxiliary lemmas and proofs

G.1 Useful concentration results
The following is an immediate consequence of the well-known fact that the set of balls B in Rd has VC dimension
d+ 1, e.g., Lemma 16 of (Chaudhuri and Dasgupta, 2010).

Lemma S.14. Suppose x1, . . . , xn are drawn from P satisfying Assumption A1. There exist constants C1-C5 depending
only on d, pmin, and pmax such that the following statements hold: with probability at least 1− δ, for any z ∈ Ω,

{|B(z, r) ∩ {x1, . . . , xn}| = 0} =⇒

{
r < C1

(
log n+ log(1/δ)

n

)1/d
}
, (S.84)

and r < C2

(
k − C3(d log n+ log(1/δ) +

√
k(d log n+ log(1/δ)))

n

)1/d


=⇒ {|B(z, r) ∩ {x1, . . . , xn}| < k} .

(S.85)

In particular, if k ≥ C4(log(1/δ))2 log n, then

{|B(z, r) ∩ {x1, . . . , xn}| ≥ k} =⇒

{
r ≥ C5

(
k

n

)1/d
}
. (S.86)

G.2 Properties of the Voronoi diagram
G.2.1 High probability control of cell geometry

The following lemma shows that with high probability, no Voronoi cell is very large. Let r(Vi) := max{‖x − xi‖ :
x ∈ Vi} be the radius of the Voronoi cell Vi.

Lemma S.15. Suppose x1, . . . , xn are drawn from P satisfying Assumption A1. There exist constants C1 and C2 such
that the following statement holds: for any δ ∈ (0, 1), with probability at least 1− δ

max
i=1,...,n

r(Vi) ≤ C1

(
log n+ log(1/δ)

n

)1/d

, (S.87)

and

max
i=1,...,n

µ(Vi) ≤ C2

(
log n+ log(1/δ)

n

)
. (S.88)

Proof. If x ∈ Vi, then |B(x, 1
2‖x− xi‖) ∩ {x1, . . . , xn}| = 0. (Note that the same holds true if 1

2 is replaced with any
a ∈ [0, 1)). Taking x to be such that ‖x− xi‖ = r(Vi), it follows by Lemma S.14 that

1

2
r(Vi) =

1

2
‖x− xi‖ ≤ C

(
log n+ log(1/δ)

n

)1/d

,

with probability at least 1− δ. Multiplying both sides by 2 and taking a maximum over i = 1, . . . , n gives (S.87). The
upper bound (S.88) on the maximum Lebesgue measure of Vi follows immediately, since Vi ⊆ B(x, r(Vi)).

G.2.2 Connectedness of the Voronoi adjacency graph

The following lemma relates graph theoretic connectedness to a kind of topological connectedness that excludes
connectedness using sets ofHd−1-measure zero.

Lemma S.16. Let Ω ⊂ Rd be open such that there does not exist any set S ( Ω withHd−1(S) = 0 such that Ω \ S is
disconnected. Let {V1, . . . , Vm} denote an open polyhedral partition of Ω. Then the graph G = ({V1, . . . , Vm}, E),
where

E = {{Vi, Vj} : Hd−1(∂Vi ∩ ∂Vj) > 0},
is connected.
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Proof. Assume by way of contradiction that G is disconnected. Therefore there exists sets of vertices C1, C2 such that

Hd−1(V̄i ∩ V̄j) = 0, (S.89)

for all Vi ∈ C1, Vj ∈ C2. Next, define

Ω1 := (∪Vi∈C1 V̄i)◦,
Ω2 := (∪Vj∈C2 V̄j)◦,

such that {Ω1,Ω2} constitutes an open partition of Ω. Let

S := Ω \ (Ω1 ∪ Ω2) (S.90)
= Ω ∩ ((∂Ω1 ∩ ∂Ω2) ∪ ((Ωc1)◦ ∩ (Ωc2)◦))

= Ω ∩ ((∂Ω1 ∩ ∂Ω2) ∪ (Ω2 ∩ Ω1))

= Ω ∩ ∂Ω1 ∩ ∂Ω2. (S.91)

From (S.89) and (S.91) we see thatHd−1(S) = 0. On the other hand, (S.90) yields that Ω\S = Ω1∪Ω2 is disconnected
(Ω1,Ω2 are open and disjoint).

G.2.3 Analysis of the Voronoi kernel

Recall that in the proof of Theorem 1, we compare Voronoi TV to a U-statistic involving the kernel function

HVor(x, y) = E[Hd−1(∂Vx1
∩ ∂Vx2

)|x1 = x, x2 = y] =

∫
L∩Ω

(1− px(z))(n−2) dz.

The following lemma shows that this kernel function is close to a spherically symmetric kernel.

Lemma S.17. Suppose x1, . . . , xn are sampled from distribution P satisfying A1. There exist constants C1-C4 > 0
such that for h = hn = C1(3 log n/n)1/d, the following statements hold.

• For any x, y ∈ Ωh,

HVor(x, y) =
ηd−2

(np(x))
d−1
d

KVor

(
‖y − x‖
ε(1)

)
+O

(
1

n3
+

(log n)2

n
1
{
‖x− y‖ ≤ C2(log n/n)1/d

})
(S.92)

• For any x, y ∈ Ω,

HVor(x, y) ≤ C3

n(d−1)/d
KVor

(
‖y − x‖
C4n1/d

)
. (S.93)

Proof of (S.92). We now replace the integral above with one involving an exponential function that can be more easily
evaluated. Then we evaluate this latter integral.

Step 1: Reduction to easier integral. Let Ωx = {z ∈ Ω : dist(z, ∂Ω) > ‖z − x‖}. (Note that L ∩ Ωx = L ∩ Ωy.)
Separate the integral into two parts,∫

L∩Ω

(
1− px(z)

)(n−2)

dz =

∫
L∩Ωx

(
1− px(z)

)(n−2)

dz +

∫
L∩(Ω\Ωx)

(
1− px(z)

)(n−2)

dz.

We start by showing that the second term above is negligible for x, y ∈ Ωh. For any z ∈ Ω \ Ωx, it follows by the
triangle inequality that

dist(x, ∂Ω) ≤ ‖x− z‖+ dist(z,Ω) ≤ 2‖x− z‖.

Since x ∈ Ωh, it follows that px(z) ≥ (pmin/2d)‖z − x‖d ≥ (pmin/2
d+1d)(dist(x, ∂Ω))d ≥ (pmin/2

d+1d)hd.
Integrating over z ∈ Ω \ Ωx implies an upper bound on the second term,∫

L∩(Ω\Ωx)

(
1− px(z)

)(n−2)

dz ≤
∫
L∩(Ω\Ωx)

exp(−(n− 2)px(z)) dz
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= O(exp(−(pmin/2
d+2d)nhd))

= O(
1

n3
),

with the last line following upon choosing C1 ≥ (pmin/2
d+2d)−1/d in the definition of h.

On the other hand, if z ∈ Ωx then B(z, ‖z − x‖) ⊂ Ω. Consequently, letting p̃x(z) := p(x)µd‖z − x‖d, it follows
by the Lipschitz property of p that

|px(z)− p̃x(z)| ≤
∫
B(z,‖z−x‖)

|p(z)− p(x)| dz ≤ Cµd‖z − x‖d+1,

and
| exp

(
−npx(z)

)
− exp

(
−np̃x(z)

)
| ≤ Cµd‖z − x‖d+1n.

Additionally recall that exp(−np) ≥ (1 − p)n ≥ exp(−np)(1 − np2) for any |p| < 1. Combining these facts, we
conclude that∫
L∩Ωx

(
1− px(z)

)n
dz =

∫
L∩Ωx

exp(−npx(z))
(
1 +O(npx(z)2)

)
dz

=

∫
L∩Ωx

exp(−np̃x(z))
(

1 +O(n‖z − x‖2d) +O(n‖z − x‖d+1)
)
dz

(i)
=

∫
L∩Ωx

exp(−np(x)µd‖x− z‖d) dz +O
( 1

n3
+

1

n
1
{
‖x− y‖ ≤ C2(log n/n)1/d

})
(ii)
=

∫
L

exp
(
−np(x)µd‖x− z‖d

)
dz +O

( 1

n3
+

(log n)2

n
1
{
‖x− y‖ ≤ C2(log n/n)1/d

})
.

(S.94)
We prove the last two equalities, which control the remainder terms, after completing our analysis of the leading order
term.

Step 2: Leading order term. Let r = ‖x− y‖/2. Due to rotational symmetry, we may as well take x = re1, y =
−re1, in which case the integral becomes∫

L

exp
(
−np(x)µd‖x− z‖d

)
dz =

∫
{0}×Rd−1

exp
(
−np(x)µd‖re1 − z‖d

)
dz

=

∫
Rd−1

exp
(
−np(x)µd(r

2 + ‖z‖2)d/2
)
dz,

with the latter equality following from the Pythagorean theorem. Converting to polar coordinates, we see that∫
Rd−1

exp
(
−np(x)µd(r

2 + ‖z‖2)d/2
)
dz =

∫ ∞
0

∫
Sd−2

exp
(
−np(x)µd(r

2 + t2)d/2
)
td−2 dθ dt

= ηd−2

∫ ∞
0

exp
(
−np(x)µd(r

2 + t2)d/2
)
td−2 dt

=
ηd−2

(np(x))
d−1
d

∫ ∞
0

exp
(
−µd

{(
r(np(x))1/d

)2
+ s2

}d/2)
sd−2 ds,

=
ηd−2

(np(x))
d−1
d

KVor

(
‖y − x‖
ε(1)

)
,

with the second to last equality following by substituting s = t/(np(x))−1/d.

Controlling remainder terms. We complete the proof of (S.92) by establishing (i) and (ii) in (S.94).
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Proof of (i). Take ε0 = (4 log n/µdpminn)1/d, and note that if ‖z−x‖ ≥ ε0 then exp
(
−µdnp(x)‖z−x‖d

)
≤ 1

n4 .
Recalling the definition of p̃x(z), we have

n

∫
L∩Ωx

exp
(
−np̃x(z)

)
‖z − x‖d+1 dz = n

∫
L∩Ωx

exp
(
−µdnp(x)‖z − x‖d

)
‖z − x‖d+1 dz

≤ n
∫
L∩B(x,ε0)

exp
(
−µdnpmin‖z − x‖d

)
‖z − x‖d+1 dz +

Hd−1(L ∩ Ω)

n3

≤ nεd+1
0

∫
L∩B(x,ε0)

exp
(
−µdnpmin‖z − x‖d

)
dz +

Hd−1(L ∩ Ω)

n3

≤ nεd+1
0 Hd−1(L ∩B(x, ε0)) +

Hd−1(L ∩ Ω)

n3
.

(S.95)
For any x, y we haveHd−1(L ∩B(x, ε0)) ≤ µd−1ε

d−1
0 . If additionally ‖x− y‖/2 > ε0 then L ∩B(x, ε0) = ∅, and

soHd−1(L ∩B(x, ε0)) = 0. Compactly, these estimates can be written as

Hd−1(L ∩B(x, ε0)) ≤ µd−11{‖x− y‖ ≤ 2ε0}εd−1
0 .

Plugging this back into (S.95), we conclude that

n

∫
L∩Ωx

exp
(
−np̃x(z)

)
‖z − x‖d+1 dz ≤ nε2d

0 1{‖x− y‖ ≤ 2ε0}+
Hd−1(L ∩ Ω)

n3

≤ C
( (log n)2

n
1{‖x− y‖ ≤ C2(log n/n)1/d}+

1

n3

)
,

for C2 = 2(4/(pminµd))
1/d. This is precisely the claim.

Proof of (ii). Recall the fact established previously, that if z ∈ L \ Ωx then ‖z − x‖ ≥ h/2. Therefore,∫
L\Ωx

exp
(
−np̃x(z)

)
dz ≤

∫
L\Ωx

exp
(
−µdnpmin‖z − x‖d

)
dz

≤
∫
L\B(x,2)

exp
(
−µdnpmin‖z − x‖d

)
dz +

∫
(L∩B(x,2)\Ωx)

exp
(
−µdpminn(h/2)d

)
dz

≤
∫
L\B(x,2)

exp
(
−µdnpmin‖z − x‖d

)
dz +

Hd−1(L ∩B(x, 2))

n3
,

with the last inequality following upon choosing C1 ≥ 2/(µdpmin)1/d in the definition of h. The remaining integral is
exponentially small in n, proving the upper bound (ii).

Proof of (S.93). Note immediately that

HVor(x, y) ≤
∫
L∩Ω

exp(−npx(z)) dz ≤
∫
L

exp(−nµdpmin‖x− z‖d/2d) dz.

We have already analyzed this integral in the proof of (S.92), with the analysis implying that∫
L

exp(−nµdpmin‖x− z‖d/2d) dz =
ηd−2(2d)

d−1
d

(npmin)(d−1)/d
KVor

(
‖y − x‖

(2dn/pmin)1/d

)
.

This is exactly (S.93) with C3 = ηd−2(2d/pmin)(d−1)/d and C4 = (2d/pmin)1/d.

G.2.4 Compact kernel approximation

The kernel function HVor(x, y) is not compactly supported, and in our analysis it will frequently be convenient to
approximate it by a compactly supported kernel. The following lemma does the trick. Let ε0 := (log n/n)1/d.
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Lemma S.18. Let x, y ∈ Ω, and L = {z : ‖x − z‖ = ‖y − x‖}. For any a, c > 0, there exists a constant C > 0
depending only on a, c and d such that∫

L∩Ω

exp(−cn‖x− z‖d) dz ≤ C
(

1{‖x− y‖ ≤ Cε0}
n(d−1)/d

+
1

na

)
(S.96)

where ε0 := (log n/n)1/d.

Proof. Let ε̃0 = C1ε0 for C1 = (a/c)1/d. The key is that if ‖x− z‖ ≥ ε̃0, then

exp(−cn‖x− z‖d) ≤ 1

na
.

Now suppose ‖y − x‖ > 2ε̃0. Then ‖x− z‖ ≥ ε̃0 for all z ∈ L, and∫
L∩Ω

exp(−cn‖x− z‖d) dz ≤ H
d−1(L ∩ Ω)

na
.

It follows that∫
L∩Ω

exp(−cn‖x− z‖d) dz ≤ 1{‖y − x‖ ≤ 2ε̃0}
∫
L∩Ω

exp(−cn‖x− z‖d) dz +
Hd−1(L ∩ Ω)

na

≤ 1{‖y − x‖ ≤ 2ε̃0}
∫
Bd−1((x+y)/2,ε̃0)

exp(−cn‖x− z‖d) dz + 2
Hd−1(L ∩ Ω)

na

≤ 1{‖y − x‖ ≤ 2ε̃0}
n(d−1)/d

∫
Rd−1

exp(−‖z‖d) dz + 2
Hd−1(L ∩ Ω)

na

≤ C2

(
1{‖y − x‖ ≤ 2ε̃0}

n(d−1)/d
+

1

na

)
.

forC2 = max{
∫
Rd−1 exp(−‖z‖d) dz, 2Hd−1(L∩Ω)}. Equation (S.96) follows upon takingC = max{2C1, C2}.

G.3 Proofs of technical lemmas for Theorem 5
G.3.1 Proofs of Lemmas S.7 and S.8

Proof of Lemma S.7. For each k ∈ K(`) and i ∈ I, it follows from Hölder’s inequality that

|θi`k(f)| ≤ ‖f‖L∞(Ω)‖Ψi
`k‖L1(Ω) = ‖f‖L∞(Ω)2

−`d/2,

and taking supremum over k ∈ K(`) and i ∈ I gives the result.

Proof of Lemma S.8. The proof hinges on an application of an integration by parts identity (S.97), valid for all
f ∈ C1(Ω). We thus first derive (S.57) for all f ∈ C1(Ω), before returning to complete the full proof.

Now, taking f ∈ C1(Ω), a simple calculation verifies that for each i = 1, . . . , d, and all Ψi
`k such that i ∈ I, we

have ∫
Ω

f(x)Ψi
`k(x) dx = −

∫
Ω

DifIiΨ
i
`k(x) dx. (S.97)

Here I1f(x) =
∫ x1

−∞ f((t, x2, . . . , xd)) dt is the partial integral operator in the 1st coordinate, and Ii are defined
likewise. Now, we introduce some notation: for all x, y ∈ Ω, and for each i = 1, . . . , d, take

Ki
`(x, y) =

∑
k∈K(`),i∈Ii

Ψi
`,k(x)Ψi

`,k(y), Λi`(x, y) =
∑

k∈K(`),i∈Ii

Ψi
`,k(x)IiΨ

i
`,k(y).

By definition, Ki
` is the integral operator such that

P`,if(x) :=
∑

k∈K(`),i∈Ii

θik`(f)Ψi
`k(x) =

∫
f(y)Ki

`(x, y) dy,
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and we may use the integration by parts identity (S.97) to obtain

P`,if = −
∫
Dif(y)Λi`(·, y) dy. (S.98)

Taking absolute value, integrating over Ω and applying Fubini’s theorem, we determine that

‖P`,if‖L1(Ω) ≤
∫

Ω

∫
Ω

|Dif(y)||Λi`(x, y)| dx dy

≤ ‖Dif‖L1(Ω) · sup
y∈Ω
‖Λi`(·, y)‖L1(Ω)

≤ ‖Dif‖L1(Ω) · sup
y∈Ω

∑
k∈K(`),i∈Ii

‖Ψi
`k‖L1(Ω) · |IiΨi

`,k(y)|

≤ 2d2−`‖Dif‖L1(Ω).

Now, for each i = 1, . . . , d, take
θi`·(f) =

(
θi`k(f) : k ∈ K(`), i ∈ Ii

)
,

where Ii ⊂ I contains all indices i ∈ I for which ij = 0 for all j < i, and ii = 1.
Using the L2(Ω) orthogonality property of the Haar basis and applying Hölder’s inequality gives

‖θi`·(f)‖1 = ‖θi`·(P`,if)‖1 ≤ ‖P`,if‖L1(Ω) · ‖
∑

k∈K,i∈Ii

Ψi
`k‖L∞(Ω) ≤ 2`d/2‖P`,if‖L1(Ω).

and summing up over i = 1, . . . , d gives the desired upper bound on ‖θ`·(f)‖1.
Finally, a density argument will imply the same result holds for any f ∈ BV(Ω). In particular, there exists a

sequence {fn} ⊂ C1(Ω) for which

lim
n→∞

‖fn − f‖L1(Ω) → 0, lim
n→∞

TV(fn; Ω) = TV(f ; Ω), (S.99)

see, e.g., Evans and Gariepy (2015, Theorem 5.3); consequently

‖θk·(f)‖1 = lim
n→∞

‖θk·(fn)‖1 ≤ d2d2`(1−d/2) · lim
n→∞

TV(fn; Ω) = d2d2`(1−d/2)TV(f ; Ω),

and the proof is complete upon taking C1 = d2d.

G.3.2 Proof of Proposition S.2

The proof of Proposition S.2 follows in spirit the analysis of (Donoho et al., 1995). First we upper bound the `2-loss by
the sum of two terms, a modulus of continuity and tail width, then we proceed to separately upper bound each term.
The primary difference between our situation and that of (Donoho et al., 1995) is that we are working with respect to
intersections of Besov bodies rather than Besov bodies themselves.

For the rest of this proof, take θ̂ = θ̂(λ,`∗) and θ0 = θ(f0).

Step 1: Upper bound involving modulus of continuity and tail width. We are going to establish that

‖θ̂ − θ0‖2 ≤ Ω
(

Θ0,∞
∞ (2M) ∩Θ1,1

∞ (2L), εn + λ
)

+ ∆
(

Θ0,∞
∞ (M) ∩Θ1,1

∞ (L), `∗
)
, (S.100)

where Ω(Θ, ε) is the modulus of continuity

Ω(Θ, ε) := sup
θ,θ∈Θ

{
‖θ − θ′‖2 : ‖θ − θ′‖∞ ≤ ε

}
, (S.101)

and ∆(Θ, `) is the tail width
∆(Θ, `) := sup

θ∈Θ
‖θ − θ≤`‖2. (S.102)
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Observe that by the triangle inequality,

‖θ̂ − θ0‖2 ≤ ‖θ̂ − θ0,≤`∗‖2 + ‖θ0 − θ0,≤`∗‖2.

The second term on the right hand side of the previous expression is upper bounded by ∆
(
Θ0,∞
∞ (M) ∩Θ1,1

∞ (L), `∗
)
.

We turn now to upper bounding the first term by the modulus of continuity. Observe that for each index, we are in one
of two situations: either

|θ̃i`,k| < λ =⇒ |θ̂i`k| = 0 and |θ̂i`k − θi0,`k| = |θi0,`k| ≤ λ+ εn,

or
|θ̃i`,k| ≥ λ =⇒ |θi0,`k| ≥ |θ̃i`,k| − εn ≥

1

2
|θ̃`k| =

1

2
|θ̂`k| and |θ̂`k − θi0,`k| ≤ εn.

It follows that for every ` ∈ N∪{0}, k ∈ K(`), we have |θ̂`k| ≤ 2|θi0,`k|, and so θ̂ ∈ Θ0,∞
∞ (2M)∩Θ1,1

∞ (2L). Moreover,
the above calculations also confirm that ‖θ̂ − θ0,≤`∗‖∞ ≤ λ+ εn. Thus

‖θ̂ − θ0,≤`∗‖2 ≤ Ω
(
Θ0,∞
∞ (2M) ∩Θ1,1

∞ (2L), εn + λ),

establishing (S.100).

Step 2: Tail width. Fix θ ∈ Θ0,∞
∞ (M) ∩Θ1,1

∞ (L). For each ` ∈ N ∪ {0} we have

‖θ`·‖22 ≤ ‖θ`·‖1‖θ`·‖∞ ≤ C12−`LM,

with the first inequality following from Hölder, and the second inequality from Lemmas S.7 and S.8. Summing over
` = `∗ + 1, `∗ + 2, . . . gives

‖θ − θ≤`∗‖22 =

∞∑
`=`∗+1

‖θ`·‖22 ≤ 2C1LM2−`
∗
,

and it follows that
∆(Θ0,∞

∞ (M) ∩Θ1,1
∞ (L), `∗) ≤

√
2C1LM2−`

∗/2. (S.103)

Step 3: Modulus of continuity. Fix θ, θ′ ∈ Θ0,∞
∞ (2M)∩Θ1,1

∞ (2L) such that ‖θ− θ′‖∞ ≤ ε. For each ` ∈ N∪ {0} we
have

‖θ`· − θ′`·‖22 ≤ min{2`d‖θ`· − θ′`·‖2∞, ‖θ`· − θ′`·‖∞‖θ`· − θ′`·‖1}
≤ min{2`dε2, 2C1εL2`(d/2−1), 4C1ML2−`},

(S.104)

with the final inequality following from the triangle inequality, i.e. ‖θ − θ′‖ ≤ ‖θ‖+ ‖θ′‖, and Lemmas S.7 and S.8.
The three upper bounds in (S.104) divide N ∪ {0} into three zones, based on the indices ` for which each upper

bound is tightest.

• The first dense zone contains ` = 0, . . . , dlog2(2C1L/ε) · 2
2+de =: N1. In the dense zone, the extremal vectors θ

are dense, i.e. everywhere non-zero.

• The second intermediate zone contains ` = N1 + 1, . . . , dlog2(2M/ε) · 2
de =: N2. In the intermediate zone, the

extremal vectors θ are neither dense nor sparse.

• The third sparse zone contains ` = N2 + 1, . . .. In the sparse zone, the extremal vectors are sparse, i.e. they have
exactly one non-zero entry.

Summing over ` ∈ N ∪ {0} gives

‖θ − θ′‖22 =

∞∑
`=0

‖θ`· − θ′`·‖22

≤ ε2
N1∑
`=0

2`d + 2C1Lε

N2∑
`=N1+1

2−`(1−d/2) + 4MC1L

∞∑
`=N2+1

2−`, (S.105)

where we use the convention that
∑N2

`=N1+1 · = 0 if N1 ≥ N2. There are three terms on the right hand side of (S.105),
and we derive upper bounds on each.
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• For the first term, recalling that
∑N
`=0 a

` = aN+1−1
a−1 for any a > 1, and noting that dbe ≤ b+ 1, we have

ε2
N1∑
`=0

2`d = ε2
( (2d)N1+1 − 1

2d − 1

)
≤ 4dε2

(2C1L

ε

)2/d

= 4d(2C1)2/dL2/dε4/(2+d).

• For the second term, we obtain separate upper bounds depending on whether d = 2 or d ≥ 3: when d = 2,

2C1Lε

N2∑
`=N1+1

2−`(1−d/2) = 2C1Lε(N2 − (N1 + 1))+ ≤ 2C1LεN2 ≤ 2C1Lε
(
log2(2M/ε) + 1

)
,

and for d ≥ 3,

2C1Lε

N2∑
`=N1+1

2−`(1−d/2) ≤ 2C1Lε2
(N2+1)(d/2−1) ≤ 2dC1Lε

(2M

ε

)1−2/d

= 2d+1−2/dC1LM(M−1ε)2/d.

• For the third term,

4MC1L

∞∑
`=N2+1

2−` = 8MC1L2−(N2+1) ≤ 4MC1L
( ε

2M

)2/d

=
4C1

22/d
L(M−1ε)2/d.

Combining these upper bounds, we conclude that for an appropriate choice of constant
C2 := 3 max{4d(2C1)2/d, 2C1, 2

d+1−2/dC1 , 4C122/d},

‖θ − θ′‖22 ≤ C2 ·


Lεmax{1, 1/M, log2(M/ε)}, if d = 2

L2/dε4/(2+d) + LM
( ε

M

)2/d

, if d ≥ 3.

Since this holds for all θ, θ′, it follows that the modulus of continuity is likewise upper bounded, i.e.

{
Ω
(

Θ0,∞
∞ (2M) ∩Θ1,1

∞ (2L), εn + λ
)}2

≤ C3 ·


Lλmax{1, 1/M, log2(M/λ)}, if d = 2

L2/dλ4/(2+d) + LM
( λ
M

)2/d

, if d ≥ 3,
(S.106)

where C3 := 21+2/dC2, and we recall the assumption λ ≥ 2εn, which implies εn + λ ≤ 2λ. Combining (S.100),
(S.103) and (S.106) gives the desired upper bound (S.59).

G.3.3 Proof of Lemma S.9

We are going to show that

P(
∣∣θ̃i`k(y1:n)− θi`k(f0)

∣∣ ≥ δn) ≤ 3δ

n
. (S.107)

From (S.107), taking a union bound over all ` = 0, . . . , log2(n)/d, k ∈ K(`) and i ∈ I implies the claim with
C4 := 2(d+2), noting that |I| = 2d − 1 and so

1
d log2(n)∑
`=0

|I||K(`)| ≤ 2d

1
d log2(n)∑
`=0

2` ≤ 2(d+2)n.

It remains to show (S.107). For ease of notation, in the remainder of this proof we write θ̃(·) = θ̃i`k(·) and θ(·) = θi`k(·).
Decomposing yi = f0(xi) + zi, we have∣∣θ̃(y1:n)− θ(f0)

∣∣ ≤ ∣∣θ̃(y1:n)− θ̃(f0)
∣∣+
∣∣θ̃(f0)− θ(f0)

∣∣, (S.108)
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and we now proceed to give high-probability upper bounds on each term in (S.108). To do so, recall Bernstein’s
inequality: if x1, . . . , xn are independent, zero-mean random variables such that |xi| ≤ b and E[x2

i ] ≤ σ2, for all
i = 1, . . . , n, then

P

(∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣ ≥ t
)
≤ 2 exp

(
−

1
2nt

2

σ2 + 1
3bt

)
. (S.109)

Term 1 in (S.108): response noise. To upper bound |θ̃(y1:n)− θ̃(f0)| = |θ̃(z1:n)|, we condition on the event

Z =
{

max
i=1,...,n

zi ≤
√

4 log(2n/δ)
}
,

which occurs with probability at least 1− δ/n. Note that the following statements hold conditional on Z:

1. The noise variables zi are conditionally independent, zi ⊥ zj |Z , and have conditional mean E[zi|Z] = 0.

2. The conditional variance of ziΨi
`k(xi) is upper bounded,

Var
(
ziΨ

i
`k(xi)|Z

)
≤ E

[
z2
i

(
Ψi
`k(xi)

)2|Z] ≤ 2 log(2n/δ)E
[(

Ψi
`k(xi)

)2|Z] = 2 log(2n/δ),

with the last equality following from the L2(Ω) normalization of Ψi
`k, along with the independence of xi and zi.

3. For each i = 1, . . . , n,
|ziΨi

`k(xi)| ≤
√

2 log(2n/δ)2`d/2 ≤
√

2n log(2n/δ).

We may therefore apply Bernstein’s inequality (S.109) conditional onZ , and conclude that for δ1,n = 4 log3/2(2n/δ)/
√
n,

P
(
|θ̃(z1:n)| ≥ δ1,n

)
≤ P(Zc) + P(|θ̃(z1:n)| ≥ δ1,n|Z) ≤ 2δ

n
. (S.110)

Term 2 in (S.108): empirical coefficient. To upper bound |θ̃(f0)−θ(f0)|, observe that the random variables Ψ`k(xi)f0(xi)−
θ(f0) for i = 1, . . . , n are mean-zero and independent. Additionally,

Var
(
f0(xi)Ψ

i
`k(xi)

)
≤M2

and
|f0(x)Ψi

`k(x)| ≤ 2`d/2M.

Applying Bernstein’s inequality (S.109) again, unconditionally this time, we conclude that for δ2,n =
√

12M
√

log(2n/δ)/
√
n,

P
(
|θ̃(f0)− θ(f0)| ≥ δ2,n

)
≤ δ

n
. (S.111)

Together (S.110) and (S.111) imply (S.107), noting that δn = δ1,n + δ2,n.

G.3.4 Proof of Lemma S.10

Set f(δ) =
∑K
k=1Ak logak(bk/δ). We use the identity

E[X] =

∫ ∞
0

P(X > t) dt ≤ f(1) +

∫ ∞
f(1)

P(X > t) dt. (S.112)

Note f−1(f(1)) = 1, f−1(∞) = 0 and f ′(δ) =
∑K
k=1Akak(log b/δ)ak−1/δ. U-substitution with t = f(δ) gives

E[X] = −
∫ 1

0

P(X > f(δ))f ′(δ) dδ

=

K∑
k=1

akAk

∫ 1

0

P(X > f(δ))
(log bk/δ)

ak−1

δ
dδ
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≤ B
K∑
k=1

akAk

(∫ 1

0

(log bk/δ)
ak−1 dδ

)
≤ B

K∑
k=1

akAk max{2ak , 1}
(

(log bk)ak−1 +

∫ 1

0

(log 1/δ)ak−1 dδ
)

= B

K∑
k=1

akAk max{2ak , 1}
(

(log bk)ak−1 + Γ(ak)
)
,

where the last inequality follows by the algebraic fact (x + y)a ≤ 2a(xa + ya) for all a > 0, and the last equality
comes from substituting h = log(1/δ). Combining this with (S.112), we conclude that

E[X] ≤
K∑
k=1

Ak(log bk)ak +B

K∑
k=1

akAk max{2ak , 1}
(

(log bk)ak−1 + Γ(ak)
)

≤ C5

K∑
k=1

Ak(log bk)ak

for C5 := 2Bmaxk=1,...,K{ak2ak}.
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